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Winterthurerstrasse 190, 8057 Zürich, Switzerland

The Standard Model (SM) describes particle physics with great precision. However, it does
not account for the generation of neutrino masses, whose nature we do not understand. Both
a Dirac and a Majorana mass term could intervene, leading to the existence of heavy part-
ners of the SM neutrinos, presumably more massive and nearly sterile. For suitable choices
of parameters, heavy neutrinos can also provide dark matter candidates, and generate the
observed baryon asymmetry of the universe. Heavy neutrinos can be searched for at beam
dump facilities such as the proposed SHiP experiment if their mass is of the order of few
GeV, or at high energy lepton colliders, such as the Future e+e− Circular Collider, FCC-ee,
presently under study at CERN, for higher masses. This contribution presents a review of the
sensitivities for heavy neutrino searches at SHiP and FCC-ee.

1 Introduction

The data from experiments with solar, atmospheric, reactor and accelerator neutrinos provide
compelling evidence for the existence of a 3-neutrinos mixing process in vacuum, caused by
nonzero neutrino masses, which is in contrast with the Standard Model (SM) predictions. Ex-
periments also show that the three flavours of neutrinos (antineutrinos) ν`, with ` = e, µ, τ , are
always produced in a left-handed νL (right-handed ν̄R) helicity state [1]. At present there is no
experimental evidence for the existence of right-handed (left-handed) neutrinos νR (antineutri-
nos ν̄L). Therefore, if such states exist, they must be interacting very weakly with SM particles,
and are therefore also called “sterile” neutrinos.

There is not a unique way to extend the Standard Model in order to account for neutrino
masses. Both a Dirac mass term, or a Majorana mass term, would imply the existence of
right-handed neutrinos; the cohexistence of these two terms would lead to the type I seesaw
mechanism. One of the most popular theories accounting for neutrino masses, the νMSM [2],
sketched in Figure 1(a), suggests Majorana masses ranging from sub-MeV to TeV, and Dirac
masses smaller or similar to the electron mass. Three right-handed neutrino states complement
the left-handed SM neutrinos, addressing all the known shortcomings of the SM. Depending
on the masses and couplings of the right-handed neutrinos, the lightest one would provide a
Dark Matter candidate in the keV region, while the two others, in the MeV-GeV range, would
provide mass to the SM neutrinos through the seesaw mechanism, and generate asymmetry
between matter and antimatter through leptogenesis.
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(a) In the νMSM, three right-handed counterparts
N1,2,3 are added to the particle content of the SM [3].

.
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(b) Decay of an heavy neutrino through mixing with
a SM neutrino [4].

Figure 1 – Sketch of the particle content of the νMSM, and the decay of heavy neutrinos.

2 The νMSM

The νMSM complements the particle content of the SM by adding three right-handed neutrinos,
also referred to as HNLs (Heavy Neutral Leptons). The SM lagrangian extends to:

L = LSM + N̄ii/∂Ni − fiαΦN̄iLα −
Mi

2
N̄i

c
Ni + h.c. (1)

where Φ and Lα(α = e, µ, τ) are respectively the Higgs and lepton doublets, f is a matrix
of Yukawa couplings and Mi is a Majorana mass term. The Ni fields represent right-handed
neutrinos. One of the new states, N1, is a very long lived dark matter candidate, with a lifetime
possibly exceeding the age of the Universe, and a mass in the O(keV) range [5]. The other
two states have very similar mass mN , being almost degenerate, with mN in the MeV-GeV
range. They would cause the baryon-antibaryon asymmetry of the Universe through a process
of leptogenesis enabled by the lepton number violating Majorana mass term [6]. The two heavier
states would also produce the observed neutrino masses through the type I seesaw mechanism,
first introduced in the context of Grand Unified Theories [7, 8].

2.1 Heavy neutrino phenomenology

The phenomenology of sterile neutrino production is thoroughly described in [9, 10, 11]. HNLs
can be produced in decays where a SM neutrino is replaced by an HNL through kinetic mixing.
They then decay to SM particles by mixing again with a SM neutrino. These now massive
neutrino states can decay to a variety of final states through the emission of a W± or Z0 boson
(see Figure 1(b)). Branching ratios for the production and decay of HNLs can be obtained from
those for the light neutrino channels as shown in [10]. In particular, heavy neutrinos with mass
up to a few GeV can be produced in semileptonic decays of π,K,D and B mesons (Figure 2(a)).
Heavier right-handed neutrinos can emerge in decays of theW± and Z bosons where one neutrino
is replaced by a HNL (Figure 2(b)).

HNLs up to a few GeV in mass can decay to a meson-lepton pair, or to three leptons (h`,
h0ν, ``′ν, 3ν final states). If the HNL mass is substantially larger than the QCD scale ΛQCD,
however, the two emitted quarks will tend to hadronize separately, producing two jets in the
detector, accompanied by either a charged lepton or a neutrino (jj`, jjν). The three-lepton
final state remains as likely as for low mass HNLs.

The parameter space of the νMSM is bound on all sides (Figure 4). Low mass HNLs would
participate in the Big Bang Nucleosynthesis (BBN) and modify the observed relative abundances
of light nuclei. Very low couplings, depending on the HNL mass, cannot explain the observed



(a) Production in charm meson decays. (b) Production in W±, Z decays.

Figure 2 – Production of HNLs the decays of mesons and gauge bosons.

SM neutrino mass differences with the seesaw mechanism. Finally, the necessity to justify the
baryon asymmetry of the Universe (BAU) limits the parameter space from above: if the mixing
is too large, HNLs would be in thermal equilibrium during the expansion of the Universe, and
thus fail to produce baryogenesis through oscillation. For HNL masses approaching mW , the
rate of interactions is enhanced due to the now kinematically allowed decay channel N2,3 → `W ,
leading to stronger constraints on the mixing parameter [12, 13].

3 Prospects for low mass searches

SHiP is a newly proposed general-purpose fixed target facility at CERN, with the aim of looking
for very weakly interacting long living particles. The 400 GeV/c SPS proton beam will be
stopped in a heavy target, designed to maximize the production of heavy mesons while reducing
that of neutrinos and muons to a minimum. An iron hadron stopper will absorb secondary
hadrons and residual non-interacting protons. Muons emerging from the beam dump will be
deflected from the detector area by a system of magnets of alternate polarity. The hidden
sector detector will search for evidence of hidden particles decaying in a large fiducial volume,
contained in a 62 m long vacuum vessel with elliptical cross-section of 5×10 m2. A straw-tubes
magnetic spectrometer is placed at the end of the vacuum tank. The particle identification
system comprises hadron and electromagnetic calorimeters, and a muon detector. Conservative
studies show that a level of vacuum of 10−6 atm reduces the background due to SM neutrino
interactions to less than 0.1 events in 5 years. In addition, the decay volume is preceded by
two background taggers, surrounded by a layer of liquid scintillator for the whole length of the
vessel, and followed by a high precision timing detector. This allows to control backgrounds
due to random combination of tracks and to upstream interactions, effectively making SHiP a
“zero-background” experiment [14]. The SHiP experimental layout is shown in Figure 3(a).

Past experiments have set important constraints on the parameter space for HNLs. The
most significant limits below the charm mass were obtained in the fixed target experiments
PS191 [15, 16], CHARM [17] and NuTeV [18]. Table 1 lists the relevant parameters of the
above three experiments, in comparison with those planned for SHiP [14]. For each one of
these experiments, no signal candidates were found. Regions of the HNL parameter space were
excluded, down to couplings U2 as low as 10−6 (CHARM, NuTeV) or even 10−8 (PS191), limited
to masses below 450 MeV due to the low energy of the PS beam.

As shown in Figure 4(a), SHiP will greatly improve the sensitivity of the previous experi-
ments using the production of heavy hadrons at the SPS. In particular, 8×1017 D mesons and
3×1015 τ leptons are expected in about 5 years of nominal SPS operation. Beauty hadrons will



Experiment PS191 NuTeV CHARM SHiP

Proton energy (GeV) 19.2 800 400 400
Protons on target (×1019) 0.86 0.25 0.24 20
Decay volume (m3) 360 1100 315 1780
Decay volume pressure (bar) 1 (He) 1 (He) 1 (air) 10−6 (air)
Distance to target (m) 128 1400 480 80-90
Off beam axis (mrad) 40 0 10 0

Table 1: Comparison of the experimental conditions for HNL search experiments [14].

also contribute to the physics sensitivity. Below the beauty hadron mass, the SHiP experiment
will be able to exceed the sensitivity of previous experiments for HNLs by several orders of
magnitude. HNL couplings could be probed close to the ultimate seesaw limit.

Hidden Sector decay volume 

Spectrometer 
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ντ detector 

Muon sweeping magnets 

Target / Hadron absorber 

(a) The SHiP proposed experiment [14] (b) The FCC proposal [19]

Figure 3 – Proposed facilities that could probe for heavy neutrinos in the near or medium term future.

4 Prospects for collider searches

Heavy right-handed neutrinos can also be searched for at high luminosity lepton colliders, such
as the Future e+e− Circular Collider (FCC-ee), sketched in Figure 3(b), currently being studied
at CERN [19]. The machine would fit in a 100 km tunnel and would be able to operate at centre-
of-mass energies in the 90-350 GeV range. Luminosity studies show that FCC-ee, operated at
the Z resonance, could produce 1012 to 1013 Z bosons per year, and therefore allow to investigate
extremely rare decays [20, 21, 22].

A review of possible methods to perform HNL searches at future e+e− colliders is given
in [13]. Hints of the existence of sterile neutrinos can be found in the discrepancy between the
measured number of neutrino families – the ratio of the Z invisible width to its leptonic decay
width – and that of the SM lepton flavours. The former, Nν = 2.9840 ± 0.0082 [23], appears
to be about two standard deviations lower than 3, and such decifit could be compatible with
the presence of sterile neutrinos. However, for small mixing angles between sterile and active
neutrinos, as those predicted by all models trying to explain the matter-antimatter asymmetry,
the most efficient way to look for sterile neutrinos at a high-energy lepton collider is to operate
it as a Z factory [13].

HNLs can be produced in Z → νν̄ decays with a SM neutrino kinematically mixing to an
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(a) Normal hierarchy
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(b) Inverted hierarchy

Figure 4 – Physics reach in the HNL parameter space for SHiP and two realistic FCC-ee configurations and for
two νMSM scenarios: normal hierarchy of SM neutrino masses and coupling to the muon flavour dominating, and
inverted hierarchy with coupling to the electron flavour dominating, respectively. Previous searches are shown as
dotted lines. Greyed-out areas represent the cosmological boundaries of the scenario [4, 13].

HNL, therefore producing Z → νN . At very small couplings, the lifetime of the HNL becomes
substantial, giving the possibility to suppress background arising from W ∗W ∗, Z∗Z∗ and Z∗γ∗

processes with the requirement of a displaced secondary vertex [13].
Figure 4 analyses the sensitivities of SHiP and of an hypotetical FCC-ee experiment in the

parameter space of the νMSM, for two realistic FCC-ee configurations. The minimum and
maximum displacements of the secondary vertex in FCC-ee depend on the characteristics of
the tracking detectors of the experiment. For the first (second) FCC-ee configuration, an inner
tracker with resolutions of 100 µm (1 cm) and an outer tracker with diameter of 1 m (5 m) were
considered. The production of 1012 (1013) Z bosons is assumed.

The SHiP experiment will be able to scan a large part of the parameter space below the B
meson mass. In addition, the results shown in Figure 4 show that heavier HNLs can be searched
for at a future Z factory. The synergy between a large fixed-target experiment at the SPS and
a future Z factory would allow to explore most of the νMSM parameter space.
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