
Classical and Quantum
Gravity      

PAPER • OPEN ACCESS

Low regularity extensions beyond Cauchy
horizons
To cite this article: M Lesourd and E Minguzzi 2022 Class. Quantum Grav. 39 065007

 

View the article online for updates and enhancements.

You may also like
New Gowdy-symmetric vacuum and
electrovacuum solutions
Jörg Hennig

-

Universality of the quantum energy flux at
the inner horizon of asymptotically de
Sitter black holes
Peter Hintz and Christiane K M Klein

-

Smooth Gowdy-symmetric generalised
Taub–NUT solutions with polynomial initial
data
Jörg Hennig

-

This content was downloaded from IP address 146.241.240.204 on 16/01/2025 at 09:20

https://doi.org/10.1088/1361-6382/ac5009
/article/10.1088/0264-9381/33/13/135005
/article/10.1088/0264-9381/33/13/135005
/article/10.1088/1361-6382/ad2cee
/article/10.1088/1361-6382/ad2cee
/article/10.1088/1361-6382/ad2cee
/article/10.1088/1361-6382/ad7dca
/article/10.1088/1361-6382/ad7dca
/article/10.1088/1361-6382/ad7dca


Classical and Quantum Gravity

Class. Quantum Grav. 39 (2022) 065007 (10pp) https://doi.org/10.1088/1361-6382/ac5009

Low regularity extensions beyond Cauchy
horizons

M Lesourd1,∗ and E Minguzzi2

1 Black Hole Initiative, Harvard University, Cambridge, MA 02138, United States of
America
2 Dipartimento di Matematica e Informatica ‘U. Dini’, Università degli Studi di
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Abstract
We prove that if in a C0 spacetime a complete partial Cauchy hypersurface has
a non-empty Cauchy horizon, then the horizon is caused by the presence of
almost closed causal curves behind it or by the influence of points at infinity.
This statement is related to strong cosmic censorship and a conjecture of Wald.
In this light, Wald’s conjecture can be formulated as a PDE problem about the
location of Cauchy horizons inside black hole interiors.

Keywords: continuous metric, Cauchy horizons, strong cosmic censorship

1. Introduction

Penrose introduced strong cosmic censorship in the seminal paper [26]. In an elegant arti-
cle appearing in the same volume, Geroch and Horowitz [12] elaborated on the differences
between the strong and weak formulations of cosmic censorship, and sketched possible
approaches one could take to prove such statements. In the context of Lorentzian geometry,
they formulated a conjecture which they deemed to be in the spirit of strong cosmic censorship.
This conjecture was picked up and sharpened by Wald in chapter 12 of his landmark book [31].

Wald’s Strong Cosmic Censorship. Let (S, h, K) be an initial data set for Einstein’s
equation, with (S, h) a complete Riemannian manifold and with the Einstein-matter
equations in which matter is described by a quasi-linear, diagonal, second order hyper-
bolic system, and where the stress–energy tensor satisfies the dominant energy condi-
tion. Then, if the maximal Cauchy development of this initial data is extendible, for
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Figure 1. The Carter–Penrose diagram of the maximal analytic extension of the non-
extremal Reissner–Nordström de Sitter spacetime. The partial Cauchy hypersurface S
admits a point p ∈ H+(S) such that J−(p) ∩ J+(S) is non-compact while J−(p) ∩ S is
compact. The double line is a singularity.

each p ∈ H+(S) in any extension, either strong causality is violated at p or J−(p) ∩ S is
non-compact.3

Wald’s conjecture seeks to pinpoint why Cauchy horizons form. That is, they are associated
with one of two things: the formation of almost closed causal curves, or the possibility that some
point on the horizon be influenced by spatial infinity. With regards to the basic examples, in
Taub-NUT it is the former, and in Reissner–Nordstrom it is the latter. As for the Kerr–Newman
family (with a �= 0), both occur.

With time, the weak and strong conjectures have been translated into PDE problems about
the Cauchy development of generic initial data.

Modern Strong Cosmic Censorship. Maximal Cauchy developments of generic initial
data are inextendible within some regularity class.

Remarkable recent work on the subject [4, 7, 16, 17, 19, 20, 30] shows that the SCC is highly
sensitive to the setting in which one poses the problem, and the specific definitions of generic
and regular at play. The SCC is now more of a theme of plausible statements (as opposed to a
fixed universal statement), each more or less natural relative to the particular setting, and each
having varying chances of being true.

In spite of the intricacies that the modern picture has unveiled, the simplicity and clarity
of Wald’s conjecture, viewed as a structure theorem for Cauchy horizons, grants it an endur-
ing significance. Moreover, with the current emphasis on low regularity extensions, a modern
version of Wald’s conjecture ought to permit for C0 extensions.

Before going further, we note that Wald’s conjecture cannot hold for positive cosmological
constant. A counterexample is provided by the non-extremal Reissner–Nordström–de Sitter
spacetime. This is a vacuum solution of Einstein’s equation with Λ > 0 which is strongly
causal but for which we can find a spacelike partial Cauchy hypersurface such that for some
p ∈ H+(S), J−(p) ∩ S is compact (cf figure 1).

It is also worth clarifying the status of Wald’s conjecture in the smooth setting. In 2012–3
Etesi posted three preprints which eventually led to a publication [8], in which Etesi claims to
prove a weaker version of Wald’s conjecture, where J−(p) ∩ S is replaced by J−(p) ∩ S. The

3 In Wald’s book J−(p) is replaced by I−(p), but the two formulations are easily shown to be equivalent.
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stronger version is clearly Wald’s, since it is easier to prove that a set is non-compact if it can
be non-closed.

In a preprint version of our paper (arXiv:2110.07388) we pointed out that these results are
not correct, for [8, lemma 2.3] contains an error which affects the main claim [8, theorem 2.1].
The fastest way to realize this is through the following example. Let (M, g) be the 1 + 1
Minkowski spacetime of coordinates (t, x), g = −dt2 + dx2 with the timelike lines x = −1
and x = +1 identified and the point r = (2, 0) removed. For S = t−1(0) and p = (2.5, 0.5) we
have p ∈ H+(S), J−(p) ∩ S is compact but neither J−(p) ∩ J+(S) nor its closure are compact.

It must be said that Etesi seems to assume that D(S) is the maximal Cauchy development of
some initial data, not any Cauchy development (notice that the above example is Cauchy-holed,
see [21] for a definition of hole-freeness). Still, the example signals that there is a problem with
the proof of [8, lemma 2.3] because that proof does not use the fact that D(S) is the maximal
Cauchy development.4

Remark 1.1. For completeness, we notice that after our preprint was posted (2110.07388v1)
Etesi posted a new version (1205.4550v4) in which J−(p) ∩ S is replaced by J−(p) ∩ S in both
statements [8, lemma 2.3] and [8, theorem 2.1]. In the new theorem 2.1 (1205.4550v4) Etesi
is claiming to prove exactly Wald’s version. This revision still contains the error pointed out
in the previous footnote. For a quicker way to see that the new theorem 2.1 is incorrect, note
that since it is identical to Wald’s version as stated above, but does not involve some specifica-
tion excludingΛ > 0, the statement claimed is manifestly false by the Reissner–Norström–de
Sitter example above (as there D(S) is the maximal Cauchy development).

Let us now discuss recent developments of non-regular spacetime geometry. In recent years
there have been numerous studies under a C0 assumption. Fathi and Siconolfi studied the exis-
tence of time functions under such regularity [9], and Chruściel and Grant [5] presented the first
investigation of causality theory under the C0 assumption. Sbierski [28, 29] studied causality
further, and proved the C0 inextendibility of Schwarzschild spacetime. Sämann [27] stud-
ied stable causality and global hyperbolicity and their characterizations. Galloway and Ling
[10, 18] proved the C0 inextendibility of AdS spacetime and showed extendibility through
the Big Bang of Milne-like hyperbolic FLRW spacetimes. Chruściel and Klinger obtained
a C0-inextendibility criterion for expanding singularities [6]. Galloway, Ling and Sbierski
[11] proved that in globally hyperbolic spacetimes timelike completeness guarantees C0 inex-
tendibility, a result improved by Minguzzi and Suhr [25] who showed that global hyperbolicity
could in fact be dropped. Bernard and Suhr [2, 3] and Minguzzi [22, 24] obtained several results
on regularity of time functions and Cauchy hypersurfaces under even weaker conditions. Grant,
Kunzinger, Sämann and Steinbauer clarified properties and pathologies of the chronological
future under low regularity [13].

In our study, we shall make repeated use of the causality theory developed by the second
author in [22]. The regularity permitted in [22] is based on the framework of closed and proper
cone structures, and the results there are valid for Lorentz–Finsler theory under upper semi-
continuity conditions on the cone distribution and Finsler fundamental function. Spacetimes

4 Indeed, the error can be more precisely identified as follows. Etesi considers a sequence of curves {λ j} : [0, aj] →
J−(x) ∩ J+(S) with past endpoints λ j(0) = pj in J−(x) ∩ S and future endpoint x. Assuming strong causality of
J−(x) ∩ J+(S), the goal is to infer the compactness of J−(x) ∩ J+(S) from that of J−(x) ∩ S. Compactness of
J−(x) ∩ S is used to obtain an accumulation point p ∈ J−(x) ∩ S for the sequence {pj}. At this point, Etesi uses
[1, proposition 3.31] to infer the existence of a limit curve {λ j}→ λ passing through p. So far this is correct. Etesi
then cites [1, proposition 3.31] to claim that the limit curve λ also passes through x, but this is not implied by the
construction in [1, proposition 3.31], which only guarantees that λ passes through at least one accumulation point, p
in this case.
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endowed with C0 metrics are special cases of proper cone structures, and so the results on
Cauchy horizons developed in that work apply in our case. In fact, it is likely that the results
of the present work could hold for the more general proper cone structures of [22], but owing
to being motivated by PDEs, we do not see the need to consider lower than C0 regularity.

Although Wald’s formulation involves conditions on the initial data (which guarantees the
existence of a unique, up to isometry, maximal Cauchy development), one can isolate the purely
Lorentzian geometric component of the statement. In particular, what we prove is the following.

Theorem 1.2. Let (M, g) be a C0 spacetime and let S be a complete Cauchy C1 spacelike
hypersurface for M. Suppose that (M, g) has a C0 extension (M′, g′) in which S is still acausal
and that H :=H+(S, M′) �= ∅. Let p be a point in H. Then there is a past inextendible geodesic
generator γ of the horizon with future endpoint p that either

(a) It is past imprisoned in a compact subset of the horizon, and so accumulates in the past
direction on a compact region where strong causality (actually distinction) is violated,

(b) It escapes every compact set in the past direction and J−(p) ∩ J+(S) is non-compact.

Note that although (a) implies that strong causality is violated somewhere on the horizon,
this need not occur at p. Rather, p is connected to the imprisoning region by way of a null
achronal generator.

As for (b), note that strong causality violation can occur without (a) happening at all. For
example, every point beyond the Cauchy horizon of maximally extended Kerr is traversed
by a closed timelike curve. This means that there cannot be arbitrarily small causally convex
neighborhoods around p ∈ H+(S). Thus strong causality violation at p can occur in (b) without
the imprisonment in (a) occurring.

Note also that we allow for the original spacetime (M, g) to be C0, whereas Wald’s formu-
lation presumes that (M, g) is at least C2. Our reason is simply because we can prove the result
in such regularity, and that we find it convenient to use the same regularity for the original and
extended spacetimes. In this way we need only to prove5.

Theorem 1.3. Let (M, g) be a C0 spacetime and let S be a complete acausal C1 spacelike
hypersurface. Let p ∈ H :=H+(S). Then there is a past inextendible geodesic generator γ of
the horizon with future endpoint p that either

(a) It is past imprisoned in a compact subset of the horizon, and so accumulates in the past
direction on a compact region where strong causality (actually distinction) is violated,

(b) It escapes every compact set in the past direction and J−(p) ∩ J+(S) is non-compact.

The proof of this statement, which largely follows from the theory developed in [22], is
given in the next section. This statement is of course consistent with the examples discussed
above, and it seems the best version one can obtain in the context of low regularity causality
theory.

Of course, some of the terms need to be clarified. For instance, on S the metric g induces a C0

Riemannian metric h. By complete we mean that the closed balls with respect to the associated
distance are compact (we do not have at our disposal the Hopf–Rinow theorem in such low
regularity). The notion of geodesic generator will also be clarified in the next section.

Finally, in the spirit of Wald’s original conjecture, we will also give necessary and suffi-
cient conditions for J−(p) ∩ S to be noncompact. We do this in the context of spacetimes to

5 The spacetime previously denoted M′ is now denoted M, that previously denoted M is now IntD(S).
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which we can associate a concept of null infinity J+. This assumption is inspired by Dafer-
mos–Luk’s recent groundbreaking study of strong cosmic censorship in vacuum. Their paper
deals with strong cosmic censorship as a problem about the stability of Cauchy horizons in a
given class of black hole spacetimes, i.e., spacetimes already possessing a future complete J+

along with an event horizon∂I−(J+) �= ∅. This allows them to sidestep the issue of global exis-
tence in the exterior region (i.e., weak cosmic censorship guaranteeing a future completeJ +).
In that setting we show the following, where the precise definitions involving J + are given
below.

Proposition 1.4. Let (M, g) be a C2 spacetime admitting a conformal embedding into the
unphysical spacetime (M̃, g̃) with null boundary J + ⊂ M̃ such that J+ ⊂ D+(S) where the
closure is taken in the unphysical spacetime (M̃, g̃). Let (M′, g′) be a C0 extension of (M, g)
with H+(S, M′) �= ∅ and p ∈ H+(S, M′). Then J−(p) ∩ S is noncompact if and only if J−(p)
intersects every neighborhood of J +.

Thus, the character of J−(p) ∩ S is really about the location of Cauchy horizons (forming
dynamically within black holes) relative to J +.

If, for example, we start with initial data S that differs from a Cauchy surface of the maximal
Schwarzschild solution only within a compact subset of the black hole interior, then, even if
a Cauchy horizon forms in the development of S, J−(p) ∩ S remains compact by domain of
dependence.

In view of this, Wald’s conjecture can be given a modern reformulation as follows.

Cauchy Horizon Conjecture. Let (S, g) be a complete Riemannian manifold, and let
(S, g, k) be generic initial data for the Einstein system, possibly with non-zero cosmo-
logical constant Λ, and possibly with matter sources (in which case we may assume
various admissibility conditions on Tab). Suppose that the maximal Cauchy development
D(S) = M produces an event horizon ∂I−(J+) �= ∅. If M admits a C0 extension M′ ⊃ M
and a Cauchy horizon H+(S, M′) �= ∅, then

J−(H+(S, M′)) ∩ ∂I−(J+) is non compact.

This conjecture can be studied by setting up characteristic initial value problems in which one
of the initial data hypersurfaces is an event horizon. This is exactly what is done in [7] (though
in [7] they study two-ended data meaning that both hypersurfaces are event horizons), and note
that the C0 extensions constructed in [7] do indeed satisfy the above statement.

Finally, we note that since it is in principle possible that portions of H+(S) differ in the
regularity of permitted extensions, the C0 qualifier widens the scope of the conjecture, and that
the above statement does not distinguish between Λ <,>,= 0, though indeed its validity may
depend on Λ.

2. Preliminaries and proof

Let us introduce some notations and conventions. The spacetime (M, g) is a smooth connected
time-oriented Lorentzian manifold (without boundary) of dimension n + 1 (working with C1

manifolds would have the same generality as every C1 manifold has a unique smooth compati-
ble structure (Whitney) [15, theorem 2.9]). The signature of g is (−,+, . . . ,+). The spacetime
is said to be Ck if g is Ck, k � 0. The symbol of inclusion is reflexive, X ⊂ X. The interior IntX
of a set X ⊂ M might be denoted X̊ for shortness. The reader is referred to [22, 24] for the C0

causality theory and to [23] for all the other conventions adopted without mention in this work.
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Two events are chronologically related if there is a piecewise C1 timelike curve connecting
them. They are causally related if they coincide or there is a continuous causal curve connecting
them. The chronological and causal relations are denoted I and J, respectively. We refer to
[22, 28] for these concepts. It must be recalled that for C0 spacetimes we have I ⊂ J̊, and the
equality holds for g locally Lipschitz [5, 22].

A set is achronal if no pair of points of it belongs to I, and acausal if no pair of points of
it belongs to J\Δ where Δ = {(x, x) : x ∈ M} ⊂ M × M is the diagonal. Lightlike geodesics
are defined as in [22, definition 2.6] as continuous causal curves for which locally no pair of
points of it belong to J̊ (this coincides with local achronality only under a locally Lipschitz
assumption on g).

Sets of the form J±(p)\I±(p) have been termed causal bubbles [5]. It is now known that
they do not exist iff the Kronheimer and Penrose’s causal space condition (push up property)
I ◦ J ∪ J ◦ I ⊂ I holds [22, theorem 2.8] (see also [13, theorem 2.12]), which is the case, for
instance, under a locally Lipschitz condition on g [5, 22].

In the C0 theory the notion of edge of an achronal hypersurface S does not differ from
that of the C2 theory [14, p 202], [23, section 2.18]. The proof that S̄\S ⊂ edge(S) ⊂ S̄, cf
[23, proposition 2.132] passes to the C0 theory as it uses just the chronological relation and its
openness.

An acausal edgeless (and hence closed) set is a partial Cauchy hypersurface. A Cauchy
hypersurface is a partial Cauchy hypersurface intersected by every inextendible continuous
causal curve.

Definition 2.1. Let (M, g) be a C0 spacetime. The future domain of dependence or future
Cauchy development D+(S) of a closed and achronal subset S ⊂ M, consists of those p ∈ M
such that every past inextendible continuous causal curve passing through p intersect S. The
future Cauchy horizon is

H+(S) = D+(S)\I−(D+(S)).

We shall need the following result proved in [22, theorem 2.32] for more general ‘proper
cone structures’. The fact that a C0 spacetime is a proper cone structure is proved in
[22, proposition 2.4] (and similarly under a locally Lipschitz assumption).

Theorem 2.2 (Cauchy horizons are generated by lightlike geodesics). Let (M, g)
be a C0 spacetime and let S be a closed and acausal hypersurface ( possibly with edge).
The set H+(S)\S is an achronal locally Lipschitz topological hypersurface and every
p ∈ H+(S) is the future endpoint of a lightlike geodesic γ contained in H+(S), either past
inextendible or starting from some point in S. No two points p, q ∈ H+(S)\S can be such
that (p, q) ∈ J̊, thus every continuous causal curve contained in H+(S)\S is a lightlike
geodesic.

Notice that this result does not state that the generators cannot intersect other generators in
their interior (as we have in the regular theory).

Now, the main strategy is to study the fate of this generator γ in the past direction. The first
step is to show that it cannot reach the edge of S as S has no edge due to the completeness
condition. This fact is non-trivial as S might be ‘lightlike’ at the edge and more generally
because, though S can be extended as an achronal hypersurface (hence, locally, a Lipschitz

6
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graph), it could be the case that no extension is C1, so that no sensible notion of space metric
could make sense over the extension.6

Lemma 2.3. Let S be a complete acausal C1 spacelike hypersurface on a C0 spacetime.
Then edge(S) = ∅, thus S is closed.

Proof. Let h denote the C0 positive definite metric induced by g on S and let ρ be the distance
of (S, h).

Assume, by contradiction, that there is p ∈ edge(S). Let {xa} be local coordinates
such that g(p) = −(dx0)2 +

∑n
i=1(dxi)2, ∂0 is future directed timelike, xa(p) = 0 for every

a = 0, 1, . . . , n. Observe that S cannot accumulate on any other point of the axis xi = 0 because
S is acausal hence achronal.

The bilinear form η := b[−a(dx0)2 +
∑n

i=1(dxi)2] evaluated at p is such that for a < 1 its
light cone is narrower than that of g(p), moreover, for b > 1 the hyperboloid {v : η(v, v) = 1}
does not intersect the corresponding unit hyperboloid for g(p). Let, for instance, b = a−1 = 2.
These properties extend by continuity to a sufficiently small coordinate cylindrical neigh-
borhood C of p. Let π : C → D be the projection on the disk D = C ∩ {x0 = 0}, and let
the disk have diameter δ > 0 in the Euclidan coordinate metric. The properties imply that
if v ∈ TC is a g-spacelike or g-lightlike vector then it is a η-spacelike vector on C and√

g(v, v) �
√
η(v, v) � |v⊥| where v⊥ = π∗(v) is the projection of v on the space orthogo-

nal to ∂0 and | · | is the coordinate Euclidean space norm. Let q, r ∈ S ∩ C. If there is curve in
S ∩ C connecting q to r then this curve has a length smaller than that of its projection to D.

Let A be a maximal achronal set containing S. Without loss of generality (take a smaller
coordinate cylinder C if necessary) we can assume that the set A ∩ C is a graph over D (because
A is an achronal boundary, so the result follows from [22, theorem 2.19]). Let q, r ∈ S ∩ C, and
let q̄ = π(q), r̄ = π(r). The Euclidean-metric-geodesic segment σ̄ : [0, 1] → D connecting q̄ to
r̄ can be lifted to a curve σ : [0, 1] → A ∩ C connecting q to r.

If this curve is not entirely contained in S then there is a maximal segment τ with starting
point q entirely contained in S and converging to some point in S̄\S. Indeed, σ−1(A\S) is a
compact subset of [0, 1] which admits a minimum value c > 0, so that σ([0, c)) ⊂ S while
σ(c) ∈ S̄\S ⊂ edgeS (clearly c > 0 because σ(0) = q ∈ S and S does not include its edge. It is
also useful to recall [23, theorem 2.147]). Let τ = σ|[0,c) and τ̄ = σ̄|[0,c).

The projection τ̄ has coordinate-Euclidean length less than that of σ̄ and hence of δ. How-
ever, by the previous bounds, this implies that τ has h-length less than δ which gives a con-
tradiction with the completeness of S, as on S the closed ball of radius δ centered at q would
be non-compact. We conclude that for every q, r ∈ S ∩ C the lift σ is actually contained in S
which proves that ρ(q, r) � δ. However, completeness of S implies that ρ(q, r) →∞ for r → p,
which is not the case as the bound δ is independent of r, that is, it is uniform over S ∩ C. The
contradiction proves that edge(S) = ∅. �

Remark 2.4. The proof would work replacing ‘acausal C1 spacelike hypersurface’ with
‘achronal hypersurface’ provided the distance ρ(p, q) on S were defined as the infimum of

6 It should be mentioned that in low regularity there are results on the extension of partial Cauchy hypersurfaces to
Cauchy hypersurfaces in globally hyperbolic spacetimes [24, theorem 2.7]. These theorems cannot be used as they
require that the hypersurface be extendible at least in a neighborhood of the edge while preserving causality and
regularity properties.

7



Class. Quantum Grav. 39 (2022) 065007 M Lesourd and E Minguzzi

lengths
∫
γ

√
g (γ̇, γ̇) dt over the Lipschitz curves γ : I → S connecting p to q (the Lipschitz reg-

ularity of S does not imply that of curves with image in it, not even under reparameterizations.
Notice also that some pairs of points can be at zero distance, particularly for a null hyper-
surface, namely ρ would be a pseudometric). The completeness property would have to be
understood as before, as compactness of ρ-closed balls. Observe that in the above proof the
curve σ is Lipschitz thanks to the regularity of the projection σ̄ and of the achronality of S.
Clearly, S would be a pseudometric space but would not be a C0 Riemannian manifold since
we would not have a C0 Riemannian metric on it, nor a C0 bundle TS. We thank a referee for
suggesting the possibility of relaxing the C1 regularity assumption on S.

We are ready to prove theorem 1.3 and hence theorem 1.2.

Proof of Theorem 1.3. Since S is a complete acausal C1 spacelike hypersurface, by lemma
2.3, it is actually closed and edge(S) = ∅. This means that S is a topological hypersurface and
so, by [22, theorem 2.33] the generators of H+(S) do not reach S in the past direction. Also
from [22, theorem 2.34] the set D+(S)\S is open and H+(S) ∩ S = ∅. By theorem 2.2 for every
p ∈ H+(S) there is a lightlike geodesic γ with future endpoint p which is past inextendible
and contained in H+(S). If J−(p) ∩ J+(S) has compact closure, then the same is true for the
set J−(p) ∩ H ⊂ J−(p) ∩ J+(S), then γ is past imprisoned in a compact set contained in the
closed set H, and by [22, theorem 2.22] it accumulates on a compact subset of H over which
future and past distinction (and hence strong causality) are violated. �
Proof of Proposition 1.4. For convenience, write

C ≡ J−(p) ∩ S. (1)

By assumption, S has an end Send ⊂ S, which we define to be that part of S contained in a
neighborhood of J+. Note then that S is a union of a compact set with Send which itself is
noncompact.

First consider ⇐. If J−(p) intersects every neighborhood of J+, then there is a sequence
of points {pi} ∈ J−(p) ∩ Send which diverges to infinity in Send; that is, pi eventually escapes
every compact set of S.

For the converse, we show that if there is a neighborhood of J+ that does not intersect
J−(p), then C is compact. If such a neighborhood exists, then we can define a closed subset of
S, C′, of the form C′ = S\Send such that C ⊂ C′. Both C and C′ are closed, so we need only
show that C′ is compact. This follows from the fact that S is composed of a compact core and
a union of ends. �
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