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ILL POSEDNESS FOR THE FULL EULER SYSTEM DRIVEN BY

MULTIPLICATIVE WHITE NOISE

ELISABETTA CHIODAROLI, EDUARD FEIREISL, AND FRANCO FLANDOLI

Abstract. We consider the Euler system describing the motion of a compressible
fluid driven by a multiplicative white noise. We identify a large class of initial data
for which the problem is ill posed - there exist infinitely many global in time weak
solutions. The solutions are adapted to the noise and satisfy the entropy admissibility
criterion.

1. Introduction

Problems in continuum fluid mechanics involving perfect (inviscid) fluids are in gen-
eral ill posed in the class of weak solutions. The adaptation of the method of convex
integration, developed in the pioneering work of De Lellis and Székelyhidi [5] that cul-
minated by the final proof of Onsager’s conjecture for the incompressible Euler system,
see Isett [12], Buckmaster et al. [2], produced a number of examples of non–uniqueness
even in the context of compressible fluids, see [3], [4], [8], and Markfelder, Klingenberg
[15], among others. In accordance with the results, the initial–value problem for the
Euler system is ill posed even in the class of weak solutions satisfying various kinds of
admissibility criteria as the energy and/or entropy inequality.
There is a piece of evidence that stochastic perturbations may provide a regularizing

effect on deterministically ill–posed problems, in particular those involving transport,
see e.g. [7], [10], [11]. On the other hand, as shown in [1], the isentropic Euler system
driven by a general additive/multiplicative white noise is ill posed in the class of weak
solutions. More specifically, there is a large class of initial data giving rise to infinitely
many solutions defined up to a positive stopping time. These solutions, however, may
experience an initial energy jump and as such can be discarded as physically irrelevant.
Our goal in the present paper is to show the existence of infinitely many global–in–

time weak solutions to a stochastically driven Euler system that are physically admis-
sible – they conserve the total energy and satisfy the differential version of the entropy
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inequality. Specifically, we consider the full Euler system:

d̺+ divxm dt = 0

dm+ divx

(

m⊗m

̺

)

dt +∇xp dt = −
1

2
m ◦ dW

dE + divx

(

(E + p)
m

̺

)

dt = −E ◦ dW,

(1.1)

where

E =
1

2

|m|2

̺
+ ̺e, p = (γ − 1)̺e, γ > 1.

Introducing the temperature ϑ via Boyle–Mariotte law,

(1.2) p = ̺ϑ, e =
1

γ − 1
ϑ ≡ cvϑ,

we obtain the entropy inequality

(1.3) d(̺s) + divx(sm) dt ≥ −cv̺ ◦ dW.

For definiteness, we impose the impermeability condition

(1.4) m · n|∂Q = 0.

Here, W denotes the standard scalar valued Wiener process while the symbol ◦ indicates
that the stochastic integral in the weak formulation of the problem is interpreted in the
Stratonovich sense.
We show the existence of infinitely many solutions following the strategy of Luo, Xie,

Xin [14] used also in [9]. Specifically, we choose arbitrary piece–wise constant initial
distributions of the density and the absolute temperature and we transform the problem
into a family of partial differential equations with random parameters. Then we apply
the result of De Lellis and Székelyhidi [5] for the incompressible Euler system with
constant pressure on each domain where the initial data are constant. Finally, we pass
back to the original system “pasting” together the solutions previously obtained. The
issue of progressive measurability of the oscillatory solutions, that was absolutely crucial
for the analysis in [1], is handled here by introducing a new stochastically rescaled time
variable.
The paper is organized as follows. In Section 2, we introduce the necessary prelim-

inary material and state our main result. The main ideas of the proof are described
in Section 3.1, where the transformation into a system with random coefficients is per-
formed. In Section 3.2, we apply the nowadays standard tools of convex integration to
the transformed problem. In Section 3.4, we introduce a new “random” time variable.
The existence proof is completed in Section 3.5.
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2. Main result

Let {Ω,F,P} be a probability basis, with a right continuous complete filtration
{Ft}t≥0, and a Wiener process W .

Definition 2.1. We say that [̺,m, E] is a weak solution of the Euler system (1.1),
with the boundary condition (1.4), and the initial condition

(2.1) ̺(0, ·) = ̺0, m(0, ·) = m0, E(0, ·) = E0,

if:

• ̺ ≥ 0 P−a.s., the functions

t 7→

∫

Q

̺(t, ·)ϕ dx, t 7→

∫

Q

m(t, ·) · ϕ dx

are continuous {Ft}t≥0–adapted semimartingales for any ϕ ∈ C1(Q), ϕ ∈
C1(Q;RN), respectively,

(2.2)

∫

Q

̺(τ, ·)ϕ dx =

∫

Q

̺0ϕ dx+

∫ τ

0

∫

Q

m · ∇xϕ dx

for any τ ≥ 0 and any ϕ ∈ C1(Q);

• E − 1
2
|m|2

̺
≥ 0 P-a.s., the function

t 7→

∫

Q

E(t, ·)ϕ dx

is a continuous {Ft}t≥0–adapted semimartingale for any ϕ ∈ C1(Q);

∫

Q

m(τ, ·) · ϕ dx

=

∫

Q

m0 · ϕ dx+

∫ τ

0

∫

Q

[

m⊗m

̺
: ∇xϕ+ pdivxϕ

]

dx−
1

2

∫ τ

0

(
∫

Q

m · ϕ dx

)

◦ dW

(2.3)

for any τ ≥ 0 and any ϕ ∈ C1(Q;RN), ϕ·n|∂Q = 0, where p = (γ − 1)
[

E − 1
2
|m|2

̺

]

;

• the energy equality
(2.4)
∫

Q

E(τ, ·)ϕ dx =

∫

Q

E0ϕ dx+

∫ τ

0

∫

Q

(E + p)
m

̺
·∇xϕ dx dt−

∫ τ

0

(
∫

Q

Eϕ dx

)

◦dW

holds for any τ ≥ 0 and any ϕ ∈ C1(Q);



4 ELISABETTA CHIODAROLI, EDUARD FEIREISL, AND FRANCO FLANDOLI

• the entropy inequality
(2.5)
∫

Q

̺s(τ, ·)ϕ dx ≥

∫

Q

̺0s(̺0, E0)ϕ dx+

∫ τ

0

∫

Q

sm ·∇xϕ dx−

∫ τ

0

(
∫

Q

cv̺ϕ dx

)

◦dW

holds for any τ ≥ 0 and any ϕ ∈ C1(Q), ϕ ≥ 0.

It is worth noting that the solutions introduced above are weak in the PDE sense
- partial derivatives are interpreted in the sense of distributions - but strong in the
stochastic sense - stochastic integral is considered on the original probability space.
Our goal is to show the following result.

Theorem 2.2. Let Q ⊂ RN , N = 2, 3 be a bounded domain,

Q = ∪∞
i=1Qi, Qi domains, Qi ∩Qj = ∅ for i 6= j.

Suppose that ̺0, ϑ0 ∈ L1(Q) are F0-adapted random variables satisfying

0 < ̺ ≤ ̺0 ≤ ̺, 0 < ϑ ≤ ϑ0 ≤ ϑ P − a.s.

for some deterministic constants ̺, ̺, ϑ, ϑ and such that

̺0|Qi
= ̺0,i, ϑ0|Qi

= ϑ0,i i = 1, 2, . . . , where ̺0,i, ϑ0,i are constant.

Then there exists a deterministic constant E0 such that for any E > E0 there exists
an F0−adapted random field m0 ∈ L∞(Q;RN), such that

∫

Ω

[

1

2

|m0|
2

̺0
+ cv̺0ϑ0

]

dx ≥ E P − a.s.,

and the problem (1.1), (1.4), (2.1) admits infinitely many weak solutions in (0,∞)×Q

with the initial data

̺0, m0, E0 =
1

2

|m0|
2

̺0
+ cv̺0ϑ0.

The rest of the paper is devoted to the proof of Theorem 2.2.

3. Proof of Theorem 2.2

3.1. Constant initial data. We first assume that ̺0, ϑ0 are positive (random) con-
stants admitting deterministic lower and upper bounds as in Theorem 2.2. Later we
extend the result to piecewise constant data by “pasting” solutions together.
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3.1.1. Solenoidal fields. We look for solenoidal momentum fields m with vanishing nor-
mal trace, meaning

(3.1)

∫

Q

m · ∇xϕ dx = 0 for any ϕ ∈ C1(Q).

If we then set ̺(t, ·) = ̺0 for any t ≥ 0, in particular, the equation of continuity (2.2)
is automatically satisfied and

∫

Q
̺(t, ·) dx is a semimartingale.

3.1.2. Temperature field. Writing the internal energy equation as

d(̺e) + divx(em) dt = −(̺e) ◦ dW − pdivx

(

m

̺

)

dt

we realize that, since divxm = 0 and ̺ = ̺0 constant, then the unique solution is given
by

(3.2) e = ̺ϑ, ϑ = ϑ0 exp(−W (t)),

where ϑ0 is the constant initial temperature. Obviously both ̺ and ϑ are continuous
{Ft}t≥0-adapted semimartingales. When we have established that

∫

Q
|m|2ϕ dx is a

semimartingale, then also
∫

Q
E(t, ·)ϕ dx is a semimartingale.

3.1.3. Momentum equation. The computations of this subsection have to computed
rigouroulsy in the reversed order, using the rules of Stratonovich calculus and start-
ing from the F0-measurable process v(t, ·). We first present them in this order for
convenience of intuition.
In view of (3.2), the momentum equation reads

dm+
1

2
m ◦ dW + divx

(

m⊗m

̺0

)

dt +∇x

(

̺0ϑ0 exp
(

−W (t)
))

dt = 0.

Using the chain rule for the Stratonovich integral, we obtain

d

[

m exp

(

1

2
W (t)

)]

+ exp

(

1

2
W (t)

)

divx

(

m⊗m

̺0

)

dt

+∇x

(

̺0ϑ0 exp

(

−
1

2
W (t)

))

dt = 0.

In order to apply the convex integration argument, we need to recast the equation in a
suitable way. Thanks to the computations above based on Stratonovih calculus, it easy
to observe that by introducing a new variable w,

w = m exp

(

1

2
W (t)

)

,
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we obtain the following PDE with random coefficients

∂tw + exp

(

−
1

2
W (t)

)[

divx

(

w ⊗w

̺0

)

+∇x (̺0ϑ0)

]

= 0.

Moreover, introducing a new time variable

t ≈

∫ t

0

exp

(

−
1

2
W (s)

)

ds

we obtain the system

(3.3) ∂tv + divx

(

v⊗ v

̺0
+ ̺0ϑ0I

)

= 0, divxv = 0, v(0, ·) = v0,

which can be now treated in the “convex integration framework”. To allow the “pasting”
of piecewise constant solutions, the problem (3.3) should be supplemented with “do
nothing” boundary conditions, specifically, its weak formulation reads:

(3.4)

∫ ∞

0

∫

Q

[

v · ∂tϕ+

(

v ⊗ v

̺0
+ ̺0ϑ0I

)

: ∇xϕ

]

dx dt = −

∫

Ω

v0 · ϕ(0, ·) dx

for any ϕ ∈ C1
c ([0,∞)×Q;RN)). As shown in the forthcoming section, problem (3.4)

admits infinitely many solutions for suitable initial data provided by the method of
convex integration.

3.2. Convex integration. To finally apply the method of convex integration, we re-
formulate the problem (3.4). Specifically, we replace (3.4) by

(3.5)

∫ ∞

0

∫

Q

[

v · ∂tϕ+

(

v ⊗ v

̺0
−

1

N

|v|2

̺0
I

)

: ∇xϕ

]

dx dt = −

∫

Q

v0 ·ϕ(0, ·) dx

for any ϕ ∈ C∞
c ([0,∞)× RN ;RN)). In addition, we prescribe the energy

1

2

|v|2

̺0
= K0,

where K0 > 0 is a positive random variable adapted to F0.
If ̺0, K0 were deterministic quantities, the nowadays standard method developed

by De Lellis and Székelyhidi in [6] would yield the existence of an initial datum v0 ∈
L∞(Ω;RN) such that:

•

divxv0 = 0, v0 · n|∂Ω = 0;
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• the problem (3.5) admits infinitely many solutions v satisfying

(3.6)

∫ ∞

0

∫

Q

v · ∇xϕ dx dt = 0

for all ϕ ∈ C1
c ([0,∞)×Q;RN);

•

(3.7)
1

2

|v0|
2

̺0
=

1

2

|v(t, ·)|2

̺0
= K0 a.a. in Ω for any t ≥ 0.

This result has been extended to the random setting in [1]. Indeed, if ̺0, ϑ0, and
K0 are F0−adapted random variables, the stochastic version of the oscillatory lemma
proved in [1, Lemma 5.7] can be applied to deduce that the solutions v, obtained
through process described in [5], are F0 adapted as random variables considered in the
space Cweak([0,∞);L2(Q;RN)). More specifically, the random variable

t 7→

∫

Q

v(t, ·) · ϕ dx ∈ C[0,∞) is F0 − adapted

for any ϕ ∈ C1(Q;RN). Note that the present situation is much simpler than in [1] as
the σ-field F0 is independent of time.
Finally, we fix K0 in such a way that

(3.8)
N

2
K0 = Λ0 − ̺0ϑ0 > 0

where Λ0 is a (random) constant. Note that, in view of our hypotheses imposed on the
data ̺0, ϑ0, the quantity Λ0 can be chosen in a deterministic way.
Summarizing we obtain the following result.

Proposition 3.1. Let Q ⊂ RN , N = 2, 3 be a bounded domain. Suppose that ̺0, ϑ0,
Λ0 are given (real valued) random variables that are F0-adapted and satisfy

̺0, ϑ0, Λ0 − ̺0ϑ0 > 0 P − a.s.

Then there exists a random variable v0 ∈ L∞
weak(∗)(Q;RN) and infinitely many

v ∈ Cweak([0,∞);L2(Q;RN ))

satisfying:

•

(3.9) t 7→

∫

Q

v(t, ·) · ϕ dx ∈ C[0,∞) are F0 − adapted

for any ϕ ∈ C1(Q;RN);
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•

(3.10)

∫ ∞

0

∫

Q

v · ∇xϕ dx dt = 0

for all ϕ ∈ C1
c ([0,∞)×Q;RN);

•

(3.11)
1

2

|v0|
2

̺0
=

1

2

|v(t, ·)|2

̺0
=

2

N
(Λ0 − ̺0ϑ0) a.a. in Q for any t ≥ 0;

•
(3.12)

∫ ∞

0

∫

Q

[

v · ∂tϕ+

(

v ⊗ v

̺0
+
(

̺0ϑ0 − Λ0

)

I

)

: ∇xϕ

]

dx dt = −

∫

Q

v0 · ϕ(0, ·) dx

for any ϕ ∈ C1
c ([0,∞)×Q;RN)).

Remark 3.2. Note that the original result of De Lellis and Székelyhidi [5] would apply
without modification should the initial data ̺0, ϑ0 be deterministic.

The conclusion of Proposition 3.1 should be seen as a starting point of the existence of
infinitely many solutions claimed in Theorem 2.2. Note that, at this level, the density ̺,

as well as the kinetic energy |m|2

̺
are in fact constants independent of the time variable.

3.3. Piecewise constant data. We claim that the conclusion of Proposition 3.1 re-
mains valid if the quantities ̺0, ϑ0, and Λ0 are piecewise constant random variables as
required in Theorem 2.2. Specifically, we suppose that

Q = ∪∞
i=1Qi, Qi ∩Qj = ∅ if i 6= j,

and

̺0 = ̺0,i, ϑ0 = ϑ0,i, Λ0 = Λ0,i in Qi, i = 1, . . . .

Indeed such a generalization is possible as the integrals in (3.10), (3.12) are additive,
and the test functions need not vanish on ∂Qi. We simply apply Proposition 3.1 on
each Qi and take the sum of the corresponding integrals in (3.10), (3.12).
In addition, if ̺0, ϑ0 are bounded by deterministic constants as in Theorem 2.2, we

can choose the constants Λ0,i = Λ0 the same on each Qi. In particular, equation (3.12)
gives rise to

(3.13)

∫ ∞

0

∫

Q

[

v · ∂tϕ+
v ⊗ v

̺0
: ∇xϕ+ ̺0ϑ0divxϕ

]

dx dt = −

∫

Q

v0 · ϕ(0, ·) dx

for any ϕ ∈ C∞
c ([0,∞)×Q;RN)) as long as ϕ · n|∂Q = 0.
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Next, we derive from (3.6) that

(3.14)

∫ ∞

0

∫

Q

v · ∇xϕ dx dt = 0

for any ϕ ∈ C1
c ([0,∞)×Q).

Finally, the kinetic energy is piecewise constant and independent of time,

(3.15)
1

2

|v(t, ·)|2

̺
=

1

2

|v0|
2

̺0
=

2

N
(Λ0 − ̺0ϑ0) a.a. in Q for any t ≥ 0.

Thus Proposition 3.1 can be extended to piece–wise constant data as follows.

Proposition 3.3. Let Q ⊂ RN , N = 2, 3 be a bounded domain,

Q = ∪∞
i=1Qi, Qi ∩Qj = ∅ if i 6= j.

Suppose that ̺0, ϑ0 ∈ L1(Q), Λ0 ∈ R are given random variables that are F0-adapted,
with ̺0, ϑ0 piecewise constant, meaning

̺0 = ̺0,i > 0, ϑ0 = ϑ0,i > 0 in Qi, Λ0 − ̺0ϑ0 > 0 P − a.s.

Then there exists an F0−measurable random variable v0 ∈ L∞
weak(∗)(Q;RN) and in-

finitely many
v ∈ Cweak([0,∞);L2(Q;RN ))

satisfying:

•

(3.16) t 7→

∫

Q

v(t, ·) · ϕ dx ∈ C[0,∞) are F0 − adapted

for any ϕ ∈ C1(Q;RN);
•

(3.17)

∫ ∞

0

∫

Q

v · ∇xϕ dx dt = 0,

∫ ∞

0

∫

Qi

v · ∇xϕ dx dt = 0, i = 1, . . .

for all ϕ ∈ C1
c ([0,∞)×Q;RN);

•

(3.18)
1

2

|v0|
2

̺0
=

1

2

|v(t, ·)|2

̺0
=

2

N
(Λ0 − ̺0ϑ0) a.a. in Q for any t ≥ 0;

•

(3.19)

∫ ∞

0

∫

Q

[

v · ∂tϕ+

(

v ⊗ v

̺0
+ ̺0ϑ0I

)

: ∇xϕ

]

dx dt = −

∫

Q

v0 ·ϕ(0, ·) dx

for any ϕ ∈ C1
c ([0,∞)×Q;RN)), ϕ · n|∂Q = 0.
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3.4. Rescaling time. In this last part of the proof, we show how to go back from the
“convex integration constructed v” to solutions m of the original system (1.1). This
can be done by computing and justifying formally the reversed transformations of the
ones performes in Section 3.1.3 to obtain the system for v. As a first step, we need to
rescale time. Consider the function of time,

〈v, φ〉 ≡ t 7→

∫

Q

v(t, ·) · φ dx, t ∈ [0,∞), φ ∈ C1(Q,RN), φ · n|∂Q = 0.

It follows from (3.19) that 〈v, φ〉 is globally Lipschitz on [0,∞) with the time derivative

d

dt
〈v, φ〉 =

∫

Q

[

v ⊗ v

̺0
: ∇xφ+ ̺0ϑ0divxφ

]

dx for a.a. t ∈ (0,∞).

We introduce a new function w ∈ Cweak([0,∞);L2(Ω;RN )),

〈w, φ〉 ≡

∫

Q

w(t, ·) · φ dx =

∫

Q

v

(
∫ t

0

exp

(

−
1

2
W (s)

)

ds, x

)

φ(x) dx,

φ ∈ C1(Q;RN), φ · n|∂Q = 0.

Note carefully thatw is (F)t≥0-adapted for any φ, where (F)t≥ is the filtration associated
to the noise W .
Since 〈v;ϕ〉 is Lipschitz function of time, we can use the abstract chain rule (see e.g.

Ziemer [17]) to deduce that, P−a.s.,

(3.20)
d

dt

∫

Q

w · ϕ dx = exp

(

−
1

2
W (t)

)
∫

Q

[

w ⊗w

̺0
: ∇xϕ+ ̺0ϑ0divxϕ

]

dx

for any ϕ ∈ C1(Q;RN), ϕ · n|∂Q = 0, w(0) ≡ w0 = v0.
Finally, we observe that the relations (3.14), (3.15) remain valid for w, specifically,

(3.21)

∫ ∞

0

∫

Qi

w · ∇xϕ dx dt = 0, i = 1, . . .

for any ϕ ∈ C1
c ([0,∞)×Q), and

(3.22)
1

2

|w(t, ·)|2

̺
=

1

2

|w0|
2

̺0
=

2

N
(Λ0 − ̺0ϑ0) a.a. in Q for any t ≥ 0.

3.5. Chain rule for Stratonovich integral. Finally, we can introduce the momen-
tum m in terms of the rescaled v (i.e. of w), so to get solutions to system (1.1). To
this aim it is essential the use of Stratonovich calculus. We introduce the momentum

m = w exp

(

−
1

2
W (t)

)
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noting that
m(0, ·) ≡ m0 = w0 = v0.

Obviously, the relation (3.21) applies to m,

(3.23)

∫ ∞

0

∫

Qi

m · ∇xϕ dx dt = 0, i = 1, . . .

for any ϕ ∈ C1
c ([0,∞)×Q).

Using the basic properties of Stratonovich integral, we obtain

(3.24) d (b exp(W )) = exp(W )db+ b exp(W ) ◦ dW

whenever b is a Lipschitz function.
At this stage, we are ready to finish the proof of Theorem 2.2.

3.5.1. Equation of continuity. Setting ̺ = ̺0 and using (3.23) we easily deduce the
equation of continuity

(3.25) d

∫

Q

̺ϕ dx =

∫

Q

m · ∇xϕ dx dt,

∫

Ω

̺(0, ·)ϕ dx =

∫

Q

̺0ϕ dx

for any ϕ ∈ C1(Q).

3.5.2. Internal energy, entropy, total energy. We define

ϑ = ϑ0 exp(−W (t))

and, using the relation (3.23), (3.24), we easily deduce the internal energy equation

d

∫

Q

cv̺ϑϕ dx =

∫

Q

cv̺ϑ
m

̺
· ∇xϕ dx dt−

∫

Q

cv̺ϑϕ dx ◦ dW

∫

Q

̺ϑ(0, ·)ϕ dx =

∫

Q

̺0ϑ0ϕ dx

(3.26)

for any ϕ ∈ C1(Q).
Similarly, seeing that the entropy is

s(̺, ϑ) = cv log(ϑ)− log(̺) = cv log(ϑ0)− log(̺0)− cvW,

we obtain the entropy equation

d

∫

Q

̺s(̺, ϑ)ϕ dx =

∫

Q

s(̺, ϑ)m · ∇xϕ dx dt−

∫

Q

cv̺ϕ dx ◦ dW

∫

Q

̺s(̺, ϑ)(0, ·)ϕ dx =

∫

Q

̺0s(̺0, ϑ0)ϕ dx

(3.27)

for any ϕ ∈ C1(Q).
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Remark 3.4. Note that we have shown the existence of infinitely many solutions that
satisfy the entropy equation instead of the mere inequality required in Definition 2.1.

Finally, by virtue of (3.22), the total energy reads

E =
1

2

|m|2

̺
+ cv̺ϑ = exp(−W (t))

(

1

2

|w|2

̺
+ cv̺0ϑ0

)

= exp(−W (t))

(

2

N
(Λ0 − ̺0ϑ0) + cv̺0ϑ0

)

.

Thus, similarly to the above, we deduce the total energy balance

d

∫

Q

Eϕ dx =

∫

Q

(E + ̺ϑ)
m

̺
· ∇xϕ dx dt−

∫

Q

Eϕ dx ◦ dW

∫

Ω

E(0, ·)ϕ dx =

∫

Q

(

1

2

|m0|
2

̺0
+ cv̺0ϑ0

)

ϕ dx

(3.28)

for any ϕ ∈ C1(Q).

3.5.3. Momentum equation. We multiply (3.20) on exp
(

−1
2
W

)

obtaining

exp

(

−
1

2
W (t)

)

d

dt

[

exp

(

1

2
W (t)

)
∫

Q

m · ϕ dx

]

=

∫

Q

[

m⊗m

̺
: ∇xφ+ ̺ϑdivxϕ

]

dx,

which, in view of (3.24), gives rise to the desired conclusion

d

∫

Ω

m · ϕ dx =

∫

Q

[

m⊗m

̺
: ∇xϕ+ ̺ϑdivxϕ

]

dx dt−
1

2

∫

Q

m ·ϕ dx ◦ dW(3.29)

for any ϕ ∈ C1(Q;RN), ϕ · n|∂Q = 0.

We have shown Theorem 2.2.

4. Appendix

Since the use of Stratonovich integrals and calculus is an essential tool of this work,
we summarize some definitions and rules; everything can be found in details in Kunita
[13]. Given a probability basis (Ω,F , P ) with a right-continuous complete filtration
(Ft)t≥0, the general concept of continuous semimartingale can be found in many books,
see e.g. Kunita [13], Revuz and Yor [16]. Examples of continuous semimartingales

are the Brownian motion (βt)t≥0, the deterministic (Riemann type) integrals
∫ t

0
Xsds

of continuous semimartingales (Xt)t≥0 and three objects we now define. Given two
continuous semimartingales (Xt)t≥0 and (Yt)t≥0, the following limits of finite Riemann
type sums exist, understood as limits in probability. Given t > 0, let (πn)n∈N be a
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sequence of partitions of [0, t] and denote points of πn generically by ti. When we write
∑

ti∈πn
we understand that the sum is extended to all indexes that are admissible in

the expression (since also ti+1 appears). Then we set:
∫ t

0

XsdYt := lim
n→∞

∑

ti∈πn

Xti

(

Yti+1
− Yti

)

∫ t

0

Xs ◦ dYt := lim
n→∞

∑

ti∈πn

Xti +Xti+1

2

(

Yti+1
− Yti

)

[X, Y ]t := lim
n→∞

∑

ti∈πn

(

Xti+1
−Xti

) (

Yti+1
− Yti

)

.

We call them Itô integral, Stratonovich integral and covariation, respectively. These
limit, always in probability, can be also understood uniformly in time on finite intervals,
with due modification of the notations, so that the partitions are not adapted to a single
interval [0, t]. The class of continuous semimartingales is closed also under the previous
three operations; and under sum, product and in general composition by functions
f ∈ C1,2

(

[0, T ]× R
d
)

.

When (Yt)t≥0 is a Brownian motion (βt)t≥0, the integral
∫ t

0
Xsdβt is the classical

Itô integral. It exists also when X is just a continuous adapted process; and with an
alternative definition it is well defined also in more general cases; in the framework of
Itô calculus, functions f of class C1,2

(

[0, T ]× R
d
)

suffice to write a chain rule. On

the contrary, the two objects
∫ t

0
Xs ◦ dYt and [X, Y ]t are quite restrictive from the

viewpoint of existence and the class of continuous semimartingales looks the right one
for a general theory; and manipulations require functions f of class C1,3

(

[0, T ]× R
d
)

.
This is the price to work with them. The advantage are the rules of calculus. These
rules (summarized by the multidimensional chain rule) based on Itô integrals are well
known to be modified by the presence of a correction term. When Stratonovich integral
is used, the rules are the same as deterministic calculus. For instance, in this work we
use the fact that, for two continuous semimartingales (Xt)t≥0 and (Yt)t≥0,

XtYt = X0Y0 +

∫ t

0

Xs ◦ dYs +

∫ t

0

Ys ◦ dXs

which is the rigorous formulation of the identity commonly written as

d (XtYt) = Xt ◦ dYt + Yt ◦ dXt.

The analogous result with Itô integrals is

XtYt = X0Y0 +

∫ t

0

XsdYs +

∫ t

0

YsdXs + [X, Y ]t .
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More generally, if f ∈ C1,2
(

[0, T ]× R
d
)

and Xt = (X1
t , ..., X

n
t ) is a vector of continuous

semimartingales, then

df (t, Xt) = (∂tf) (t, Xt) dt+
n

∑

i=1

(∂xi
f) (t, Xt) ◦ dX

i
t

opposite to Itô formula

df (t, Xt) = (∂tf) (t, Xt) dt+
n

∑

i=1

(∂xi
f) (t, Xt) dX

i
t

+
1

2

n
∑

i,j=1

(

∂xi
∂xj

f
)

(t, Xt) d
[

X i, Xj
]

t
.

A technical remark: when Itô interpretation of integrals is given, the integrand is just
required to be continuous adapted hence (∂xi

f) (t, Xt),
(

∂xi
∂xj

f
)

(t, Xt) are admissible
integrands. When Stratonovich interpretation of integrals is chosen, the integrand must
be a continuous semimartingale. Hence (∂xi

f) (t, Xt) must have such property and, by
Itô calculus, we know it is true when ∂xi

f ∈ C1,2
(

[0, T ]× R
d
)

. This is why the property

f ∈ C1,3
(

[0, T ]× R
d
)

is required in Stratonovich calculus.
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[5] C. De Lellis and L. Székelyhidi, Jr. On admissibility criteria for weak solutions of the Euler
equations. Arch. Ration. Mech. Anal., 195(1):225–260, 2010.
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