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Abstract: For a given family of smooth closed curves y!,...,y* C R? we consider the problem of
finding an elastic connected compact surface M with boundary y = y! U ... U y°. This is realized by
minimizing the Willmore energy ‘W on a suitable class of competitors. While the direct minimization
of the Area functional may lead to limits that are disconnected, we prove that, if the infimum of the
problem is < 4, there exists a connected compact minimizer of ‘W in the class of integer rectifiable
curvature varifolds with the assigned boundary conditions. This is done by proving that varifold
convergence of bounded varifolds with boundary with uniformly bounded Willmore energy implies the
convergence of their supports in Hausdorff distance. Hence, in the cases in which a small perturbation
of the boundary conditions causes the non-existence of Area-minimizing connected surfaces, our
minimization process models the existence of optimal elastic connected compact generalized surfaces
with such boundary data. We also study the asymptotic regime in which the diameter of the optimal
connected surfaces is arbitrarily large. Under suitable boundedness assumptions, we show that
rescalings of such surfaces converge to round spheres. The study of both the perturbative and the
asymptotic regime is motivated by the remarkable case of elastic surfaces connecting two parallel
circles located at any possible distance one from the other. The main tool we use is the monotonicity
formula for curvature varifolds ( [15,31]) that we extend to varifolds with boundary, together with its
consequences on the structure of varifolds with bounded Willmore energy.
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1. Introduction

1.1. The Willmore energy

Let ¢ : ¥ — R? be an immersion of a 2-dimensional manifold X with boundary 9% in the Euclidean
space R3. We say that an immersion is smooth if it is of class C2. In such a case we define the second
fundamental form of ¢ in local coordinates as

II;;(p) = (5ij90(P))L,

for any p € X\ dZ, where (-)* denotes the orthogonal projection onto (de(7,X))*. Denoting by
gij = (0ip, d;) the induced metric tensor on ¥ and by g" the components of its inverse, we define the
mean curvature vector by

- 1 ..
H(p) = 58" (p)Li(p),

for any p € X\ 0%, where sum over repeated indices is understood. The normalization of H is such
that the mean curvature vector of the unit sphere points inside the ball and it has norm equal to one.
Denoting by u, the volume measure on X, we define the Willmore energy of ¢ by

W)= | 1F d.
b

For an immersion ¢ : £ — R3 we will denote by co, : 0¥ — R3 the conormal field, i.e., the unit vector
field along 6 belonging to de(TX) N (delsz(TAX))* and pointing outside of ¢(T).

The study of variational problems involving the Willmore energy has begun with the works of
T. Willmore ( [32, 33]), in which he proved that round spheres minimize W among every possible
immersed compact surface without boundary. The Willmore energy of a sphere is 4r. In [32] the
author proposed his celebrated conjecture, claiming that the infimum of ‘W among immersed smooth
tori was 27°. Such conjecture (eventually proved in [19]) motivated the variational study of ‘W in
the setting of smooth surfaces without boundary. In such setting many fundamental results have been
achieved, and some of them (in particular [15,26,31]) developed a very useful variational approach,
that today goes under the name of Simon’s ambient approach. Such method relies on the measure
theoretic notion of varifold as a generalization of the concept of immersed submanifold. We remark
that, more recently, an alternative and very powerful variational method based on a weak notion of
immersions has been developed in [23-25].

Following Simon’s approach, the concept of curvature varifold with boundary ( [14,18]), considered
as a good generalization of smooth immersed surfaces, will be fundamental in this work. Such notion is
recalled in Appendix A. We will always consider integer rectifiable curvature varifolds with boundary,
that we will usually call simply varifolds. Roughly speaking a rectifiable varifold is identified by a
couple v(M, 8y), where M C R? is 2-rectifiable and 6y : M — N, is locally H>-integrable on M, and
we think at it as a 2-dimensional object in R? whose points p come with a weight 6y(p). We recall
here that a 2-dimensional varifold V = v(M, 6y) has weight measure py = 6yH>L M, that is a Radon
measure on R?; moreover it has (generalized) mean curvature vector He L}Oc(uv; R?) and generalized
boundary oy if

/ divyyX duy = -2 / (H,X)duy + / Xdoy  YXeC(R%;RY,
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where oy is a Radon R?*-valued measure on R? of the form oy = vyo, with |vy| = 1 o-ae and o is
singular with respect to uy; also divyy X(p) = tr(PT o VX(p)) where P is the matrix corresponding to
the projection onto T, M, that is defined H*-ae on M.

By analogy with the case of sooth surfaces, we define the Willmore energy of a varifold V =
v(M, 6y) by setting

W) = / \HP duy € [0, +c0],

if V has generalized mean curvature H , and W(V) = +oo otherwise.

A rectifiable varifold V = v(M, fy) defines a Radon measure on G»(R?) := R® x G, 3, where G 3 is
the Grassmannian of 2-subspaces of R?, identified with the metric space of matrices corresponding to
the orthogonal projection on such subspaces. More precisely for any f € C%(G,(R?)) we define

V= [ e Pave.r = [ e T dup)
Gy(R3) R3

In this way a good notion of convergence in the sense of varifolds is defined, i.e., we say that a sequence

V. = v(M,, 6y,) converges to V = v(M, 6y) as varifolds if

Va(f) = V()

for any f € C%(G,(R?)).

More recently, varifolds with boundary and Simon’s method have been used also in the study of
variational problems in the presence of boundary conditions. A seminal work is [26], in which the
author constructs branched surfaces with boundary that are critical points of the Willmore energy with
imposed clamped boundary conditions, i.e., with fixed boundary curve and conormal field. Another
remarkable work is [11], in which an analogous result is achieved in the minimization of the Helfich
energy. We also mention [22], in which the minimization problem of the Willmore energy of surfaces
with boundary with fixed topology is considered, and the only constraint is the boundary curve, while
the conormal is free, yielding the so-called natural Navier boundary condition. A couple of previous
works in which Simon’s method is applied in the study of closed surfaces are [21] and [28].

1.2. Elastic surfaces with boundary

If y = y' U...Uy"is a finite disjoint union of smooth closed compact embedded curves, a classical
formulation of the Plateau’s problem with datum y may be to solve the minimization problem

min {,uw(E) lo: 2 >R @lgs 1 0T -y embedding} , (1.1)

that is one wants to look for the surface of least area having the given boundary. From a physical
point of view, solutions of the Plateau’s problem are good models of soap elastic films having the
given boundary [20]. Critical points of the Plateau’s problem are called minimal surfaces and they are
characterized by having zero mean curvature (this is true also in the non-smooth context of varifolds
in the appropriate sense, see [30]). In particular, minimal surfaces or varifolds with vanishing mean
curvature have zero Willmore energy. However, as we are going to discuss, the Plateau’s problem, and
more generally the minimization of the Area functional, may be incompatible with some constraints,
such as a connectedness constraint.
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In this paper we want to study the minimization of the Willmore energy of varifolds V with given
boundary conditions, i.e., both conditions of clamped or natural type on the generalized boundary oy,
adding the constraint that the support of the varifold must connect the assigned curves y', ..., ¥*. Hence
the minimization problems we will study have the form

P = min{WV) | V=v(M0y): oy=0y suppV Uy compact, connected }, (1.2)
for some assigned vector valued Radon measure o, or
Q = min{WV) | V=v(M0y): |oyl<u, suppV Uy compact, connected }, (1.3)

for some assigned positive Radon measure u with suppu = .
Let us introduce a remarkable particular case that motivates our study. Let € = [0, 1]?/. be a cylinder.
Let R > 1 and & > 0. We define

Trp =+ =1Lz=hU{x¥*+y* =R* z=—h}, R>1, h>0,

that is a disjoint union of two parallel circles of possibly different radii. We consider the class of
immersions

TRy = {go : € — R*| ¢ smooth immersion, ¢|ys : 6 — T, smooth embedding} .

By Corollary 3 in [27], if a minimal surface has ' as boundary, then it necessarily is a catenoid or
a pair of planar disks. Moreover there exists a threshold value 4y > 0O such that 'z, is the boundary
of a catenoid if and only if & < hg. For example, in the case of R = 1 one has hy = (min,>0 Costh(’))_l.
In particular for any & > hj there are no minimal surfaces (and thus no solutions of the Plateau’s
problem) connecting the two components of I'g;, even in a perturbative setting h =~ hy + &. This
rigidity in the behavior of minimal surfaces suggests that in some cases an energy different from the
Area functional may be a good model for connected soap films, like for describing the optimal elastic
surface connecting 'z, in the perturbative case h =~ hy + &. Since surfaces with zero Willmore energy
recover critical points of the Plateau’s problem, we expect the minimization of ‘W to be a good process
for describing optimal elastic surfaces under constraints, like connectedness ones, that do not match
with the Area functional.

Also, from the modeling point of view, we remark the importance of Willmore-type energies, like
the Helfrich energy, in the physical study of biological membranes ( [12,29]), and in the theory of
elasticity in engineering (see [13] and references therein).

We have to mention some remarkable results about critical points of the Willmore energy (called
Willmore surfaces) with boundary. Apart from the above cited [26], Willmore surfaces with a boundary
also of the form I'g, have been studied together with the rotational symmetry of the surface in [3,4,6—
10]; a new result about symmetry breaking is [17]. Also, interesting results about Willmore surfaces in
a free boundary setting is contained in [1]. A relation between Willmore surfaces and minimal surfaces
is investigated in [5].

1.3. Main results

Let us collect here the main results of the paper. If y = y! U ... Uy is a disjoint union of smooth
embedded compact 1-dimensional manifolds, we give a sufficient condition guaranteeing existence in
minimization problems of the form (1.2) or (1.3). We obtain the following two Existence Theorems.
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Theorem 4.1. Let y = y' U ... U y® be a disjoint union of smooth embedded compact 1-dimensional
manifolds with @ € N,.
Let

oo =vomH'Ly

be a vector valued Radon measure, where m : ¥y — Ny, and vy : v — (Ty)* are H'-measurable
functions with m € L*(H'Ly) and |vo| = 1 H'-ae.
Let # be the minimization problem

P = min{WV) | V=v(M,0)): oy=0y suppV Uy compact,connected }. (1.4)

If inf P < 4x, then P has minimizers.

Theorem 4.2. Lety = y' U ... U »“ be a disjoint union of smooth embedded compact 1-dimensional
manifolds with a € N,.

Let m : y — Ny by H'-measurable with m € L*(H'Ly).

Let Q be the minimization problem

Q = min{W(V) | V=v(M6y): |ovl<mH! Ly, suppV Uy compact, connected } (1.5)

If inf Q < 4, then Q has minimizers.

Both Existence Theorems are obtained by applying a direct method in the context of varifolds.
The technical assumption on the fact that the infimum of the considered problem is strictly less than 47
guarantees compactness of minimizing sequences; we mention that it is an open problem to understand
whether a uniform bound possibly greater than 47 on the Willmore energy of a sequence of varifolds
with boundary implies precompactness of the sequence, even in presence of boundary conditions. In
both cases the connectedness constraint passes to the limit by means of the following theorem, that
relates varifolds convergence with convergence in Hausdorff distance of the supports of the varifolds.

Theorem 3.4. Let V, = v(M,,0y,) # 0 be a sequence of curvature varifolds with boundary with
uniformly bounded Willmore energy converging to V = v(M,6y) # 0. Suppose that the M,’s are
connected and uniformly bounded.

Suppose that suppoy, = ¥ U ... Uy? where the y’s are disjoint compact embedded 1-dimensional
manifolds, ¥', ..., * with 8 < « are disjoint compact embedded 1-dimensional manifolds, and assume
thaty) — ' indy fori=1,...,4 and that H'(y') > Ofori =g+ 1, ..., .

Then M, — M U %' U ... U %? in Hausdorff distance dy (up to subsequence) and M U ¥' U ... U ¥#
is connected. Moreover 7; — {p;} indy forany i = 8 + 1, ..., @ for some points {p;}, each p; € M, and

suppoy € 7' U ... U U {pgi1s ... Bal-

The paper is organized as follows. In Section 2 we recall the monotonicity formula for curvature
varifolds with boundary and its consequences on the structure of varifolds with bounded Willmore
energy. Such properties are proved in Appendix B. In Section 3 we prove some properties of the
Hausdorff distance and we prove Theorem 3.4. Section 4 is devoted to the proof of the Existence
Theorems 4.1 and 4.2; we also describe remarkable cases in which such theorems apply, such as in the
above discussed perturbative setting. Theorem 3.4 and the monotonicity formula give us results also
about the asymptotic behavior of connected varifolds with suitable boundedness assumptions; more
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precisely we prove that rescalings of a sequence of varifolds V,, with diam(suppV,) — oo converge to
a sphere both as varifolds and in Hausdorff distance (Corollary 5.2). Finally in Section 6 we apply all
the previous results to the motivating case of varifolds with boundary conditions on curves of the type
of I'r,. We prove that for any R and / the minimization problem of type Q has minimizers and their
rescalings asymptotically approach a sphere (Corollary 6.2). Appendix A recalls the definitions about
curvature varifolds with boundary and a useful compactness theorem.

1.4. Notation

We adopt the following notation.

The symbol B,(p) denotes the open ball of radius r and center p in R3.

The symbol (-, -) denotes the Euclidean inner product.

The symbol H* denotes the k-dimensional Hausdorff measure in R,

The symbol dy; denotes the Hausdorft distance.

If ¢ : £ — R?is a smooth immersion of a 2-dimensional manifold with boundary, then in local

coordinates we denote by II;; the second fundamental form, by H the mean curvature vector, by

gi; the metric tensor, by g" its inverse, by i, the volume measure on X induced by ¢, and by co,,
the conormal field.

e If visa vector and M is 2-rectifiable in R?, the symbol (v)* denotes the projection of v onto T, M*;
hence v* is defined H?-ae on M and it implicitly depends on the point p € M.

e The symbol V = v(M, 6y) denotes an integer rectifiable varifold. Also uy = OyH*L M is the
weight measure. If they exist, the generalized mean curvature and boundary are usually denoted
by H (or ﬁv) and oy.

e The symbol ¥ denotes a fixed cylinder, i.e., € = [0, 1]%/..

e For given R > 1 and & > 0, the symbol I'g;, denotes an embedded 1-dimensional manifold of the

form

Trp = (X +y =1L,z=hmU{x¥*+y* =R*z=-h}, R>1, h>0,

that is a disjoint union of two parallel circles of possibly different radii. Observe that the distance
between the two circles is equal to 24.
e For a given boundary datum 'y, as above, we define the class

TR = {go ¢ - R? | ¢ smooth immersion, ¢|sy : 0 — T'g;, smooth embedding}.
2. Monotonicity formula and its consequences

Here we recall the fundamental monotonicity formula for curvature varifolds with boundary,
together with some immediate consequences on surfaces and on the structure of varifolds with finite
Willmore energy.

This classical formula is completely analogous to its version without boundary ( [15,31]), hence we
refer to Appendix B for the technicalities we need.

Let 0 < o < p and py € R3. If V is an integer rectifiable curvature varifold with boundary with
bounded Willmore energy (here the support of V is not necessarily bounded), with wy the induced
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measure in R?, and generalized boundary oy, it holds that

H (p-p)f
Alo) + / 2+ BEPO d(p) = Adp), 2.1
B,(po)\Bo(po) | 2 1P = Pol
where By 1
Hv o P0
Alp) = ———+7 / IH dyty(p) + R (2.2)
p B,(po)
and

H,p- 1 1 1
Rpop = / w duv(p) + 5 / (— —2)(19 — po)doy(p)
B P B,y(po)

., (P0) 2 lp—pol*> p 2.3)
(H,p - po)
= / —20 duy(p) + Ty, p-
By(po) P

In particular the function p — A(p) is non-decreasing.
When more than a varifold is involved, we will usually denote by Ay(-) the monotone quantity
associated to V for chosen p, € R3.

It is useful to remember that 7, , = 0 if B,(po) N suppoy = 0, and that

(H,p - po)
/ PP ()
B, (po) Y

whenever W(V) < +co and py ¢ suppoy (see (B.8) in Appendix B).

— 0 2.4)
p—0

Let us list some immediate consequences on surfaces with boundary.

Lemma 2.1. Let T C R3 be a compact connected immersed surface with boundary. Then

N B, H — o)t 12 -
Vpy € R : 4limﬂ+4/—+w :w(2)+2/<p p02,c0>. (2.5)
N0 o w12 lp = pol os \[p — pol
In particular
. [N B, (po) /H (p = po)* H'(O)
Ypo € R\ 9 : 4lim——— 44 =+ 2 | <WE)+2——. 2.6
Po € R R 2 =P A TN N

Moreover calling dy the Hausdorff distance (see Section 3) and writing dy(X,0%) = d(pg, 0X) for
some py € X\ 0%, it holds that

. [N By(po) /
4lim ———+4
0'1\0 o2 5

H (p-p)*P H'(IZ)

= (2.7)
2 lp=poP

Proof. It suffices to prove (2.5). Since X is smooth we have that

1 1
/ ( 2 —2)<p —P0,60>d7‘(1(l’)‘ < /
By P = Dol* P B,(po)
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Since X is smooth, by (2.1) we have that

2NB
M) — tim =0 Bo(po)l
[od o g

while by compactness it holds that

co),

1 1 -
A(p)—>—w<z>+—/ (2=
p—eo 4 2 Jas |p = pol

and we get (2.5). O

Let us mention that (2.6) already appears in [24].

More importantly, the monotonicity formula implies fundamental structural properties on varifolds
with bounded Willmore energy. First we remark such results in the case of varifolds without boundary,
as proved in [15].

Remark 2.2. Let V = v(M, 6y) be an integer rectifiable varifold with oy = 0 and finite Willmore
energy. Then at any point p, € R? there exists the limit

lim /Jv(Br(zpo))

r—0

= HV(pO)a (28)

and 6y is upper semicontinuous on R? (see (A.7) and (A.9) in [15]). In particular M = {p € R?
Oy(p) > %} is closed.

Recall that if suppV is also compact and non-empty, then ‘W(V) > 4x ((A.19) in [15]) and 6y is
uniformly bounded on R? by a constant depending only on W(V) ((A.16) in [15]).

In complete analogy with Remark 2.2 we prove in Appendix B (see Proposition B.1) that if V
is a 2-dimensional integer rectifiable curvature varifold with boundary, denoting by S a compact 1-
dimensional embedded manifold containing the support suppoy with |oy|(S) < +co and assuming
that

Br(0
W(V) < +00, lim supw < K < +oo,

R—
then the limit

. pv(By(p))

lim ————

oN\O P
exists at any point p € R’ \ S, the multiplicity function 6y(p) = lim, o ‘@ s upper

semicontinuous on R? \ § and bounded by a constant C(d(p, S), |ov|(S), K, W(V)) depending only on
the distance d(p,S), lovl(S), K, and W(V). Moreover V. = v(M,0y) where
M ={peR*\S|6,(p) = 3}US is closed.

Whenever a varifold v(M, 6y) satisfies the above assumptions, we will always assume that M = {p €
R\ S [6.(p) = 5} US.

These structural properties on curvature varifolds with finite Willmore energy, together with the
analogous properties recalled in Remark 2.2, should be always kept in mind in what follows.
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3. Convergence in the Hausdorff distance

The convergence of sets with respect to the Hausdorff distance will play an important role in our
study. For every sets X, Y C R* we define the Hausdorff distance dy; between X and Y by

dy(X,Y) =inf{e > 0| X Cc N,(Y), Y c N (X)} = max {sup inf |x — y|, supinf |x — yl} . (3.1
xeX Y€ yey *€X
We say that a sequence of sets X,, converges to a set X in dy if lim,, dg(X,, X) = 0.
Now we prove some useful properties of the Hausdorft distance.

Lemma 3.1. Suppose that X,, — X in dy. Then:
i) X, - Xindy.
ii) If X,, is connected for any sufficiently large n and X is bounded, then X is connected as well.

Proof. 1) Just note that if X C Ng (X,), then X ¢ N.(X,).

i1) By i) we can assume without loss of generality that X is closed, and thus compact. Suppose by
contradiction that there exist two closed sets A, B € X suchthat ANB=0,A #0,B # 0, and AUB = X.
Since X is compact, A and B are compact as well, and thus d(A, B) := inf,cayeplx —y| = € > 0. By
assumption, for any n > n(%) we have that X,, C N:(X) = N:(A) U N:(B) and N¢(A) N Ne(B) = 0.
The sets N s (AN X, and N :(B) N X, are disjoint and definitively non-empty, and open in X,. This
implies that X, is not connected for n large enough, that gives a contradiction. O

Lemma 3.2. Suppose X, is a sequence of uniformly bounded closed sets in R and let X C R? be
closed. Then X, — X in dy if and only if the following two properties hold:
a) for any subsequence of points y,, € X, such that y,, 2V we have that y € X,

b) for any x € X there exists a sequence y, € X,, converging to X.

Proof. Suppose first that dg(X,,, X) — 0. If there exists a converging subsequence y,, € X,, with limit
v ¢ X, thend(y,,,X) > & > 0, and thus X, ¢ N%o (X) for k large, that is impossible; so we have proved
a). Now let x € X be fixed. Consider a strictly decreasing sequence &,, \, O . For any g,, > 0 let n,,
be such that X ¢ N, (X,) for any n > n. . This means that B, (x) N X, # 0 for any n > n., and any
m € N. We can define the sequence

n— x, € X, N B, (x),

where
m, = sup {m € N|X, N B, (x) # 0},

understanding that x, = x if m,, = oo, in fact since X, is closed we have that x € X,, if m, = co. The
sequence &,, converges to 0 as n — oo, otherwise there exists 17 > 0 such that X,, N B,,(x) = 0 for any n
large, but this contradicts the convergence in dy. Hence x, — x and we have proved b).

Suppose now that a) and b) hold. If there is &5 > O such that X, ¢ N, (X) for n large, then a
subsequence x,, converges to a point y such that d(y, X) > gy, > 0, that is impossible. If there is gy > 0
such that X ¢ N, (X,) for n large, then there is a sequence z, € X such that d(z,, X,) > &y > 0. By b)
we have that X is bounded, then a subsequence z,, converges to z € X, and d(z, X,,,) > %" definitely in
k. But then z is not the limit of any sequence x,, € X,,. However z is the limit of a sequence X, € X,, by
b), and thus it is the limit of the subsequence X, , and this gives a contradiction. O
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Corollary 3.3. Let X,, be a sequence of uniformly bounded closed sets. Suppose that X, — X in dy
and X, — Y indy. If both X and Y are closed, then X =Y.

Proof. Both X and Y are bounded. We can apply Lemma 3.2, that immediately implies that X C Y and
Y € X using the characterization of convergence in dg; given by points a) and b). O

The above properties allow us to relate the convergence in the sense of varifolds to the convergence
of their supports in Hausdorff distance.

Theorem 3.4. Let V, = v(M,,0y,) # 0 be a sequence of curvature varifolds with boundary with
uniformly bounded Willmore energy converging to V.= v(M,8y) # 0. Suppose that the M,’s are
connected and uniformly bounded.

Suppose that suppoy, =y} U ... Uy? where the y'’s are disjoint compact embedded 1-dimensional
manifolds, ¥', ..., ¥* with B < a are disjoint compact embedded 1-dimensional manifolds, and assume
that v\ — ¥ in dy fori=1,...,8 and that H'(y') —» Ofori =B+ 1,...,a.

Then M,, — M U ¥' U ... U? in Hausdorff distance dy (up to subsequence) and M U¥' U ... U %#
is connected. Moreovery', — {p;} in dg for any i = B + 1, ..., a for some points {p;}, each p; € M, and

suppoy € 7' U ... U U {pgit, ..o Bl

Proof. Let us first observe that by the uniform boundedness of M,, we get that ¥, converges to some
compact set X' in dy up to subsequence for any i = 8 + 1,...,a. Each X; is connected by Lemma
3.1, then by Golab Theorem we know that H'(X’) < liminf, H'(y!) = 0, hence X' = {p;} for any
i =p+1,..,afor some points pg,i, ..., Po. Call X = {pgs1, ..., Pal-

By assumption we know that py, = iy as measures on R3, also M, and M can be taken to be closed.
Moreover suppoy C X U¥! U ... U#P. In fact V, are definitely varifolds without generalized boundary
on any open set of the form N,(X U ¥' U ... U %) and they converge as varifolds to V on such an open
set with equibounded Willmore energy.

We want to prove that the sets M, and M U X U ¥! U ... U 9# satisfy points a) and b) of Lemma 3.2
and that X ¢ M.

Letxe MUY ' U..Uy UX. If x € y' U...U¥? U X, then by assumption and Lemma 3.2 there is a
sequence of points in suppoy, converging to x. Solet x € M \ (¥' U ... U%# U X). We know that there
exists the limit lim, o ’% > 1, hence we can write that for any p € (0, py) with py < d(x, suppoy)
we have that uy(B,(x)) > §p2. There exists a sequence p,, \, 0 such that lim, uy, (B, (x)) = puy(B,, (X))
for any m. Hence M, N B, (x) # (0 for any m definitely in n. Arguing as in Lemma 3.2 we find a
sequence x,, € M, converging to x, and thus the property ») of Lemma 3.2 is achieved.

For any € > 0 let A, := N(X U#¥' U ... U¥P). Let us show that for any & > 0 it occurs that M, \ A,
converges to (M uxXuylu..u )‘/ﬁ) \A, = M\ A, in dy, i.e. we want to check property a) of Lemma
3.2 for such sets.

Once this convergence is established, we get that M, — M U X U %' U ... U## in dy and we can
show that the whole thesis follows. In fact we have that for any £ > 0 for any 1 > 0 it holds that

M, \ A, C N,,(MuXu«y1 uU... u«;ﬂ\Ag), (MUXLJ)‘/I u...uyﬂ)\Ag C Ny(M, \ A,),
for any n > n,,. In particular

M, =M,\A; UA, C Ny(M\ A;) UA, C Nyoe(MUX UY' U ... UYP),
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MuXu;‘/lu...u«;ﬂ:(MUXU;‘/IU...U;?”’)\AguAgcN,](Mn\Ag)uAchng(M,,),

for any n > n,,. Setting € =  we see that for any > 0 it holds that
M, C N3,,(MUXU5/1 U...U)_/B), (MuXu;‘/1 U...U)‘/ﬁ) C Nsy(M,),

for any n > ny,,. Hence M,, > M U X U¥' U ...U%” in dy. Therefore M UX U¥' U ... U ¥ is closed
and connected. Moreover we get that X C M, in fact for any p; € X for any K € N, by connectedness
of M,, we find some subsequence y,, € M, N 0B 1 (p;) converging to a point yxy € M N dB 1 (p:)- Since
M is closed, passing to the limit K — oo we see that p; € M. In particular M, - M U¥' U ...U¥? in
dgy and the proof is completed.

So we are left to prove that M, \ A, converges to (M uXuylu..u )‘/5) \A, = M\ A, in dy for
any fixed € > 0. Consider any converging sequence y,, € M,, \ A.. For simplicity, let us denote y,
such sequence. Suppose by contradiction that y, — ybuty ¢ M U A,. Since M is closed, there exist
{ > 0 such that B,(y) " M = 0 for n large. Since M, is connected and M # (0 we can write that
0B;,(y) " M,, # 0 for any o € (%, g) for n large enough. Since y, ¢ A., up to choosing a smaller ¢
we can assume that B,(y) does not intersect suppoy, for n large. Fix N € N with N > 2 and consider
points

Znk € 83(14_%)%(}7) NnM, +0,

foranyk=1,...N - 1.

The open balls
B }N—l
{ w5 @iy,
are pairwise disjoint. Passing to the limit o \, 0, setting p = %, and using Young’s inequality in

Equation (2.1) evaluated on the varifold V,, at the point py = 7z, we get that

o
My, (B% (Zn,k)) 3

3 n
Sg———+ -~ |HV|2d,UV,
2 ( 2 4 / n n
(gv) B%(Zn,k)

w, (B Gun) 1 - 1 2
PRAA R / \Fy, 2 dyay, + —— / (Hy,, p = zad dpty, (p)
B % (Znk) < B % (Znk)

(3.2)

for any n large and any k = 1, ..., N — 1. Since
lim sup uy, (B%(Zn,k)) < lim sup py, (Bg()’)) < My (ng()’)) =0,

summing over k = 1, ..., N — 1 in (3.2) and passing to the limit n — co we get that

3N—1
a(N—-1)< limsupZZ/

- 3
|Hy, > duy, < < limsup W(V,,).
k=1 B ¢ Gn) 4

Since N can be chosen arbitrarily big from the beginning, we get a contradiction with the uniform
bound on the Willmore energy of the V,’s.

Hence we have proved that M,, —» MU' U...U%? in dy. By Lemma 3.1 we get that MUy U...U5#
is connected. O
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Remark 3.5. Arguing as in the second part of the proof of Theorem 3.4, we get the following useful
statement.

Assuming V,, = v(M,, 6y,) # 0 is a sequence of curvature varifolds with boundary with uniformly
bounded Willmore energy converging to V = v(M, 6y) # 0. Suppose that the M,’s are connected and
closed and that M is closed. Suppose that suppoy, is as in Theorem 3.4. If a subsequence y,, € M,,
converges to y, theny € MUy U ... Uy~

Observe that the supports M,,, M are not necessarily bounded here.

Remark 3.6. The connectedness assumption in Theorem 3.4 is essential. Consider in fact the following
example: let M, = 0B;(0) U 83%(0) and 0y (p) = 1 for any p € M,. Hence the varifolds v(M,, 6y,)
converge to v(0B;(0), 1) as varifolds and they have uniformly bounded energy equal to 8, but clearly
M,, does not converge to 0B1(0) in dyg.

Remark 3.7. The statement of Theorem 3.4 also holds if we assume suppoy, C y! U ... Uy and
M, Uy} U ...Uy® connected. In this case, using the notation of the proof of Theorem 3.4, we have that
M, Uyl U...Uy® convergesto M UXUY' U...U¥% indy and MU X U¥' U ... U is connected.

4. Perturbative regime: Existence in the class of varifolds

Now we want to prove the two main Existence Theorems about boundary valued minimization
problems on connected varifolds.

Theorem 4.1. Let y = y' U ... Uy® be a disjoint union of smooth embedded compact 1-dimensional
manifolds with a € Ns,.
Let

oo =vomH' 'Ly
be a vector valued Radon measure, where m : y — Ns, and vy : v — (T'y)* are H'-measurable
functions with m € L*(H"'Ly) and |vo| = 1 H'-ae.
Let P be the minimization problem

P = min{WV) | V=v(M0): oy=09 suppV Uy compact, connected }. 4.1)
If inf P < 4n, then P has minimizers.

Proof. Let V,, = v(M,,6y,) be a minimizing sequence for the problem #. Call I = inf P < 4, and
suppose without loss of generality that ‘W(V,)) < 4x for any n. For any p, € M, \ y passing to the
limits o — 0 and p — oo in the monotonicity formula (2.1) we get

4 < W(V,) +2 7o)
d(po,y)
then o)
ooy
sup d(pg,y) < 2——————— < C(0o, D).
poeMlj\y (po,y) I — WV (00, 1)

Hence the sequence M, is uniformly bounded in R3. Integrating the tangential divergence of the field
X(p) = x(p) (p) where x(p) = 1 for any p € Bg,(0) D M, for any n we get that

2uy,(R?) = /diVTMnXd,UVn = -2 /(Hv,,,X> duy, + /(X, vo)dlorol < C(oro, Dy, (R + C(oro, ),
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for any n, and then uy, is uniformly bounded. By the classical compactness theorem for rectifiable
varifolds (see Section 5 of Chapter 8 in [30]) we have that V,, — V = v(M, 8y ) in the sense of varifolds
(up to subsequence), and M is compact.

By an argument analogous to the proof of Theorem 3.4 we can show that V # 0. Suppose in fact
that V = 0. Since @ > 2 and the curves y', ..., ¥® are disjoint and embedded, there exist a embedded
torus ¢ : S!' x S! — R\ v dividing R? into two connected components A;, A, such that A; > y!
and A, D y* U ... U y“. Since M, is connected and uniformly bounded, there is a sequence of points
Yo € M, N ¢(S' x S1) with a converging subsequence y,, — y. Observe that there is A > 0 such that
d(y,,7v) = A. Since V = 0 we have that y ¢ suppV. Let N > 4 be a natural number and consider the
balls {B i %(y)};v_l. Up to subsequence, for n sufficiently large there is z,; € 0B i %(y) N M,. Also the

balls N
(B G|,

are pairwise disjoint. As in (3.2) we get that

3 My, (BAN(Zn,j)) 3
=3 ( Z )2 "3 /Bﬁv@n,j) IH, " d,

4N
forany j = 1,...,N. Since limsup, uy, (Bﬁ(z,,,j)) < ,uV(B%A(y)) = 0, summing over j = 1,...,N and
passing to the limit in n we get

3
4m < Nm < 2 lim W(V,) < 3,

that gives a contradiction. Hence Theorem 3.4 implies that suppV Uy = M U v is connected. Since
W(V) < I by lower semicontinuity, we are left to show that oy = 0.
Since 7y is smooth we can write that

(P = qo)l < Cylp — qol (4.2)

as p — qo with p € vy for some constant C, depending on the curvature of y. Let 0 < o < s with
s = s(y) such that (4.2) holds for p € y N B(q) for any g € . For any g, € y the monotonicity formula
(2.1) at go on V,, gives

(Bo(g0) _ 1 i | | |
BP0 <= / (Hy,, p - o) dpy,(p) - = / ( - —2)<p ~ 4o, v0) dlorol(p) + lim Ay, (o)
o % J B0 2 Jpanp\IP=qol* o peo
1
1 B(r 2 1 C - 2 1 1 —_ s
< WV, (“—V"( 2(‘10))) o1 / S al L iy s b [P0 )
o 2 /g 1P~ qol o 2 lp = pol
1
1 (v, (Bo(q0)) \? 1 11
< WV} (‘%) + Clorol(Bo o)) + —Irol(By (o)) + 7+ 5100l (7 \ Bo(@))
B.(qo)\?
<) (uvn(gz(qo))) 4 COon.
In particular
1, (Bo(q)) < C(L,y, 7)o 4.3)
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for any gy € v, any o € (0, s), and any n.
Consider now any X € C%(B,(qo)) for fixed ¢ € y and r € (0, s). By varifold convergence we have that

lizn -2 /(Hv,,,X> duy, + /(X, vo) dlool = -2 /(HV,X> duy + /(X, vy)d|oyl, 4.4)
where we wrote oy = vy |oy|. Now let m € N be large and consider the cut off function

1—md(p,y) d(p,y)< =,

45
0 d(p,y) > = (4

Aw(p) = {

Take now X = A,,Y for some Y € C%(B,(qo)). We have that

/ Am<HVn’ Y) dﬂvn
Br(q())ﬁN% (62

< 1Yl lim sup lim W(V,)*pay, (B.(go) N N 1)

lim sup lim

m—oo n

= lim sup lim

n

/(an,X>d,Uvn

m—o0

D=

Moreover, there exists a constant C(y) such that B,(go) N N 1 (y) C Uicz(ly)mB 2 (g;) for some points g; € y

and at most C(y)m balls {B:(g;)};. Hence for % < § we can estimate

Cy)m
o, (BAao) N2 0)) < D, (B2(4)) < COMCU 3,00

i=1
Therefore
1

N =0. (4.6)

lim sup lim‘/<HVn,X) duy,

m—oo n

< Y]l lim sup C(Z, y, 070)

Hence setting X = A,,Y in (4.4) and letting m — oo we obtain

/(Y, vo) dloro| = /(K vy)dloyl,

for any Y € C%(B,(qo)). Since gy € v is arbitrary we conclude that oy = o7, and thus V is a minimizer.
O

Theorem 4.2. Let y = y' U ... Uy® be a disjoint union of smooth embedded compact 1-dimensional
manifolds with a € N,.
Letm :y — Ny by H'-measurable with m € L*(H"' L ).
Let Q be the minimization problem
Q = min{W(V) | V=v(M6y): |oy|<mH'Ly, suppV Uy compact, connected } 4.7

If inf Q < 4r, then Q has minimizers.
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Proof. We adopt the same notation used in the proof of Theorem 4.1. In this case the generalized
boundaries of the minimizing sequence V, = v(M,,6y,) are denoted by oy, = vy |oy,|, and |oy,| <
mH' L y. The very same strategy used in Theorem 4.1 shows that V, converges up to subsequence in
the sense of varifolds to a limit V = v(M, 6y) # 0 with M U y compact and connected by Theorem
3.4 and Remark 3.7, and ‘W(V) < inf Q. Hence, to see that V is a minimizer, we are left to show
that |oy| < mH'Ly. Calling u := mH'Ly, we find as in Theorem 4.1 that there exist constants
C = C(infQ,y, ) and s = s(y) such that

fv,(B+(9)) < Ca?,

for any g € v, any o € (0, 5), and any n large.
For any X € CS(Br(qO)) for fixed gy € y and r € (0, s) the convergence of the first variation of
varifolds reads

lim -2 /(Hv,,,X> duy, + /(X, vy dloy,| = =2 /(HV,X> duy + /(X, vy)dloyl, (4.8)

where we wrote oy = vy|oy|. Now we set X = A,,Y in (4.8) for Y € Cg(Br(qo)) and A,, as in (4.5).
Estimating as in (4.6) and taking the limit m — oo we obtain

im [ (o) = [ oy dio,

that is oy, A oy, and thus |oy|(A) < liminf, |oy,|(A) < u(A) for any open set A. Hence |oy| < ¢ and
V is a minimizer of Q. O

Remark 4.3. Assuming in the above existence theorems that the connected components of the
boundary datum are at least two (i.e., @ > 2) is technical, but it is also essential in order to obtain a
non-trivial minimization problem, i.e., a problem that does not necessarily reduces to a Plateau’s one.
In fact if we consider a single closed embedded smooth oriented curve y, Lemma 34.1 in [30]
guarantees the existence of a minimizing integer rectifiable current 7 = (M, 6, &) with compact
support and with boundary y. Hence by Lemma 33.2 in [30] the integer rectifiable varifold
V = v(M,0) is stationary and suppoy C y. Then we can take M = suppT, that is compact. Since
OT =y and T is minimizing, the set M U vy is connected and W (V) is trivially zero.

The Existence Theorems 4.1 and 4.2 can be applied in different perturbative regimes, as discussed
in the following corollaries and remarks.

Corollary 4.4. Let y = y' U ... U y“ be a disjoint union of smooth embedded compact 1-dimensional
manifolds with @ € Ns,. Suppose that there exists a compact connected surface * C R* with boundary
0X =v. Let e € Rand f, : R* — R? be a smooth family of diffeomorphisms with fy = id|ps. For any &
let

o = copmH' L(f:(y)),

where coy ) is the conormal field of f.(Z).
If W(Z) < 4n, there exists & > 0 such that if &y < &, the minimization problems

P, = min{WWV) | V=v(M0y): oy=0s suppVU f(y) compact, connected}, (4.9)
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Q. = min{W(V) | V=v(M6y): oyl <H'L(f.(y), suppV U fi(y) compact, connected } ,
(4.10)

have minimizers for any € € (—&, €).

Corollary 4.5. Let y = y' U ... Uy“ be a disjoint union of smooth embedded compact 1-dimensional
manifolds with a € Ns,. Suppose that there exists a compact connected minimal surface * C R? with
boundary 0% = y. Let £ € R and f, : R — R3 be a smooth family of diffeomorphisms with fy = id|gs.
For any € let

os = cormH'L(f:()),

where coy, s is the conormal field of f.(Z).
Then there exists €1 > 0 such that if €y < &, the minimization problems

P, :=min{WV) | V=v(M0)): oy=0, suppVU fy) compact, connected}, (4.11)

Q. = min{"W(V) | V=v(M6y): oyl <H'L(f.(y), suppV U fi(y) compact, connected } ,
(4.12)
have minimizers for any € € (—&, &).

Remark 4.6. Many examples in which the Existence Theorems 4.1 and 4.2 and Corollary 4.4 apply
are given by defining the following boundary data. We can consider any compact smooth surface S
without boundary such that ‘W(S) < 8x. Then the monotonicity formula (see also [15,16]) implies that
S is embedded. We remark that there exist examples of such surfaces having any given genus ( [2,31]).
Considering any suitable plane 7 that intersects S in finitely many disjoint compact embedded curves
y',...,¥%, we get that one halfspace determined by 7 contains a piece T of § with W(X) < 4r and
0% = y' U ... Uy“. Calling cos the conormal field of = we get that problems

P = min{W(V) | V=v(M,0)): oy=cosH'LAZ, suppV U compact, connected } ,

Q = min{‘W(V) | V=v(M6y): |ovl<H'LIZ, suppV U 09X compact, connected },
and suitably small perturbations P,, Q. of them have minimizers.

Remark 4.7. Suppose that y = y! U ... U y® is a disjoint union of compact smooth embedded 1-
dimensional manifolds and that y is contained in some sphere S%(c). Up to translation let ¢ = 0.
If there is a point N € S%(0) such that for any i the image ny(y’) via the stereographic projection
iy © S3(0) \ {N} - R? is homotopic to a point in R* \ UY y(y'), then the problem

Q = min{‘W(V) | V=v(M,6y): |oy|<H'Ly, suppV Uy compact, connected},

has minimizers. In fact under such assumption there exists a connected submanifold £ of S2(0) with
0X =y, thus W(X) < 4r and Theorem 4.2 applies.

Remark 4.8. For given R > 1 and /& > 0 consider the curves
Tep =+ = Lz=h U +)’ = R%z = —h}.
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Suppose that iy > 0 is the critical value for which a connected minimal surface £ with 90X = I'g, exists
if and only if 2 < hy. Let Z, be a minimal surface with 0%y = I'g ,,. Applying Corollary 4.5 we get that
for &€ > 0 sufficiently small the minimization problem

Q. = min{W(V) | V=v(M06y): |ovl<H'L Irpgres  sSUppV UT'gp4e compact, connected}

has minimizers.

Let us anticipate that in the case of boundary data of the form I'g, we will see in Corollary 6.2 that
actually existence of minimizers for the problem Q. is guaranteed for any € > 0, in fact we will see that
the hypotheses implying existence of minimizers actually hold for boundary datum I'g;, for any 4 > 0.

5. Asymptotic regime: Limits of rescalings

As we recalled in Remark 2.2, it is proved in [15] that the infimum of the Willmore energy on closed
surfaces coincide with the infimum taken over non-zero compact varifolds without boundary. First we
prove that such infima are both achieved by spheres. This result is certainly expected by experts in the
field, but up to the knowledge of the authors it has not been proved yet without appealing to highly
non-trivial regularity theorems.

Proposition 5.1. Let V = v(M, 6y) be an integer rectifiable varifold with oy = 0 and such that suppV
is compact. If W(V) = 4n, then V = v(S Ize(z), 1) for some 2-sphere S f?(z) c R

Proof. Passing to the limits o — 0 and p — oo in the monotonicity formula for varifolds we get that

2

I_‘I’ _ 1
4n0y(po) + 4 / g M duy = 4x,
m|2 lp = pol
for any p, € R®. Hence 6y(py) = 1 for any p, € M, and also
3 (p — po)*
H(p) = —2ﬁ, 5.1)
= Po

for H?-ae p € M and for every p, € M.
Fix ¢ > 0 small and two points p;, p, € M with p, ¢ Bys(p1). For H?-ae p € M we can write

H(p) = {—2% p ¢ Bs(p1),

2 p ¢ By(po).

Since M is bounded, we get that He L*(uy). Therefore, since 6y = 1 on M, by the Allard Regularity
Theorem ( [30]) we get that M is a closed surface of class C'* for any a € (0, 1).

Since M is closed, it is also compact, and thus it is connected, for otherwise W(V) > 8x.

Let p € M be any fixed point such that (5.1) holds, and call v, the unit vector such that v;; = T,M. Up
to translation let p = 0. Consider the axis generated by v, and any point py € M \ {0}. We can write
Po = g + w with g = avy and (w, vy) = 0. Writing analogously (¢ + w’) € M \ {0} another point with
the same component on the axis generated by v, (5.1) implies that

~(q, 0—g-w' - 0—gq—w) —(q,
_ <§1 Vo)";) _ _2( q V‘Z’) - H0) = _2( q Wz) _ <261 Vo)"g.
lgl* + [w] lg — wl lg — w'| lgl= + [w'|
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Hence, whenever g # 0, we have that |w| = |w’[; that is points in M of the form avy + w with @ # 0 and
w € vy lie on a circle. It follows that M is invariant under rotations about the axis {tv, | t € R}.

This argument works at 9{>-almost any point of M. Therefore we have that for any p € M, the set
M is invariant under rotations about the axis p + {tv,, | t € R}.

Still assuming 0 € M, up to rotation suppose that vy = (0,0, 1). Leta € M be such that v, = (1,0, 0).
There exists a point b € M such that b = tvy = (0,0, ¢) for some t € R \ {0}. We can write 0 = g + w
and b = g + w’ for the same g € a + {tv, | t € R} and some w,w’ € v:+. Since |w| = |w'|, it follows
that g # 0O, otherwise b = 0. Since g # 0, the rotation of the origin about the axis a + {tv, | t € R}
implies that M contains a circle C of radius r > 0 passing through the origin, and the plane containing
C is orthogonal to v;. Since M is of class C', the circle C has to be tangent at O to the subspace v;.
Thus by invariance with respect to the rotation about the axis {tvy |t € R}, we have that M contains the
sphere with positive radius given by the rotation of C about {tv( |t € R}. Since the Willmore energy of
a sphere is 4, it follows that M coincide with such sphere. O

Now we can prove the above mentioned result on the asymptotic behavior of connected varifolds.

Corollary 5.2. Let V, = v(M,,0y,) be a sequence of integer rectifiable curvature varifolds with
boundary satisfying the hypotheses of Theorem A.2. Suppose that M, is compact and connected for
any n.

If
WV, <4r+o(1) asn — oo,
diam(suppV,)) — +oo,

tim sup —Zl®)
n pdiam(supan)

’

and suppoy, is a disjoint union of uniformly finitely many compact embedded 1-dimensional manifolds,
then the sequence

Vn = -—n’ én
Y (dlam(supan) )

where 8,(x) = 8y, (diam(suppV,,) x), converges up to subsequence and translation to the varifold
V=v(,1),

where S is a sphere of diameter 1, in the sense of varifolds and in Hausdorff distance.

Proof. Up to translation let us assume that 0 € suppV,. Then suppV, is uniformly bounded with
diam(suppV,) = 1. We have that

| . 1 oy, [(R?)
2uy,RY) = / divyy, p duy,(p) < CW(TV,)? (g, ()" + CW’

and thus Theorem A.2 implies that V, converges to a limit varifold V (up to subsequence). Also
loy, I(R?)

oy = oy, and thus |oy|(R?) < liminf, [0y, |(R?) < limsup, Tamsunss

= 0; hence V has compact
support and no generalized boundary.
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Let us say that suppoy, is the disjoint union of the smooth closed curves y,, ..., ¥*. By the uniform
boundedness of suppV,,, we get that ¥’ converges to some compact set X' in dg up to subsequence. Each
X; is connected by Lemma 3.1, then by Golab Theorem we know that H'(X’) < liminf, H'(y!) = 0,
hence X' = {p;} for any i for some points py, ..., p,, and we can assume that p; # 0 foranyi = 1,..., a.

Using ideas from the proof of Theorem 3.4, we can show that V # 0. In fact suppose by
contradiction that V = 0. Fix N € N with N > 4. By connectedness of M,, since diam(suppV,) — 1,
and the boundary curves converge to a discrete sets, for j = 1,...,N there are points

Zn,j € OB & O)n supan for n large. We can also choose N so that d(z,,;, suppoy, ) > 6(N) > 0 for n
large. The open balls {B . (Zn, j)}l?/ , are pairwise disjoint. Using Young inequality as in Theorem 3.4 in
J=

the monotonicity formula (2.1) applied on V, at points z,, jwitho — Oandp = ﬁ gives

3y, (B1(zaj) 3 1 1 1
PSR A H; 2d~+—/ - —z.)doy(p). (5.2
2 (&) 4/B]<z,,,,->| Wbt o —aP (&) P i) drup) 52
4N N 4N

for any nand j = 1,...,N. Since V = 0 we have that lim Supnﬂf/n(Bﬁ(Zn,j)) < limsup,, uy, (B»(0)) = 0.
Also

1 1
|0~z oy, ()
/Ip—zn,jl2 (L)Z P~ anp GOwP
4N

Hence summing on j = 1, ..., N in (5.2) and passing to the limit n — co we get

< C(6(N), N)loy |(R*) — 0.

3 -
4 < Nm < 7 lim W(V,) < 3mn,

that gives a contradiction.
Therefore we can apply Theorem 3.4 to conclude that suppV,, converges to M in dy,. Finally, since
V is a compact varifold without generalized boundary and

4 < W(V) < liminf W(V,) = 4n,

by Proposition 5.1 we conclude that V' is a round sphere of multiplicity 1. By Lemma 3.2 the diameter
of M is the limit lim, diam(suppV,,) = 1. O

6. The double circle boundary

In this section we want to discuss how the Existence Theorems 4.1 and 4.2 and the asymptotic
behavior described in Corollary 5.2 relate with the remarkable case that motivates our study, namely
the immersions in the class Fg .

First, the monotonicity formula provides the following estimates on immersions ¢ € Fg,.

Lemma 6.1. Fix R > 1 and h > 0. It holds that:

i)
41 + R? -1
inf [ W(@) | ¢ € Fp) < dr s < 4r. 6.1)
V(@h? + R2 — 1)2 + 16h2

ii)
lim inf {W(p) | ¢ € Fra) = 4r. (6.2)
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Proof. i) We can consider as competitor in %, the truncated sphere

Z:SZ,—1 Py (z0) N {lzl < A},

where zg = (O 0,1 45 ) is the point on the z-axis located at the same distance from the two connected
components of I'z,. The surface X is contained in another truncated sphere X’ having the same center
and radius and symmetric with respect to the plane {z = —} The boundary of ¥’ is the disjoint union

of two circles of radius 1. We have
4h* + R* -1

WE)<WE) =4drn
V(@h2 + R2 - 1)2 + 1612

ii) Let ¢ € Fpy and T = ¢(%). By connectedness there is a point p € £ \ dZ lying in the plane z = 0.
Hence dy (X, 0X) > h, and by (2.7) we have

2n(1 + R
dr < W) + 2% Vs,
Then 47 < inf {W(g) | ¢ € Frp} + 2 and the thesis follows by using i) by letting h — oo. m

We already discussed in Remark 4.8 the existence of minimization problems arising by
perturbations of minimal catenoids in some %% ;. By Lemma 6.1 we can complete the picture about
existence of optimal connected elastic surfaces with boundary I'g;, for any R > 1 and 4 > 0, as well as
the asymptotic behavior of almost optimal surfaces having such boundaries.

Corollary 6.2. FixR > 1 and h > 0.
1) Then the minimization problem

Qg := min { WWV) | V=v(M6): |oy<H'L Trp,  suppV ULk, compact, connected}

has minimizers.
2) Let hy — oo be any sequence. Let T, = @i (€) for ¢ € Fryp,. Suppose that W(yp,) < 4m + o(1) as

k— co. Let Sy = di;&z .
k

Then (up to subsequence) S converges in Hausdorff distance to a sphere S of diameter 1, and the
varifolds corresponding to S converge to V = v(S, 1) in the sense of varifolds.

Proof. 1) The result follows by point i) in Lemma 6.1 by applying Corollary 4.4.
2) Identifying S, with the varifold it defines, we estimate the total variation of the boundary measure

1
by [0S 4] < gi;rmm’k Moreover, by the Gauss-Bonnet Theorem the L?-norm of the second fundamental
form of S is umformly bounded. Hence Corollary 5.2 applies and the thesis follows. O

Using the notation of point 2) in Corollary 6.2, we remark that even if we know that the rescalings
S« converge to a sphere in dg¢; and as varifolds, it remains open the question whether at a scale of order
h the sequence X; approximate a big sphere. More precisely it seems a delicate issue to understand if
diamX; ~ 2h; as k — oo.

We conclude with the following partial result: the monotonicity formula gives us some evidence in

iams,
the case we assume that dah—kk — 00
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Proposition 6.3. Let Xy = ¢i(6) for or € Fry,. Suppose that W(gpy) < 4m + o(1) as k — oo. Let
Mk = Z;k
"
Then M, converges up to subsequence to Z = v(M, 67) in the sense of varifolds.

If also
diam2;

— OO’
Iy

then M is a plane containing the z-axis and 67 = 1.

Proof. We identify M, with the varifold it defines. First we can establish the convergence up to
subsequence in the sense of varifolds by using Theorem A.2. In fact we have that H'(0M;) — 0,
| e [Ty, |* is scaling invariant and thus finite. Moreover, since d(0,dM;) > 1, by monotonicity (2.1)
we get that

i (B,(0) 1 1 1
S < —— [ (Hy p)dum(p) - 5 — — — [{p. cop,(p)) dH" (p)
o 0~ JB,(0) 2 J B, oynom, |pl o
+ lim Ay, (o)
p—)OO
1 1 dH'(p)
Sn+o(1)+—2/ |p||HMk|duMk<p)+—/ i
0" JB,0) 2 Jomp,0 1Pl

1

+ —_—
20 OMNB(0)

<7+o0(l)+ l#Mk(B(,(O))%(W(Mk)% + l7{1(0Mk) + i(Hl(aMk),
o 2 200

IpldH ' (p)

where Ay, (+) 1s the monotone quantity centered at 0 evaluated on M, and therefore uy, (B,(0)) < C(0)
for any oo > 1. Hence the hypotheses of Theorem A.2 are satisfied and we call Z = v(M, 6;) the limit
varifold of M. Observe that oz = 0 and W(Z) < +oo.

From now on assume that diamZ;/h; — oco. Arguing as in the proof of Corollary 5.2 we can prove
that Z # 0. In fact suppose by contradiction that Z = 0. Fix N € N with N > 4. By connectedness of
M, for j =1, ..., N there are points z; ; € (9B§-(O, 0,1) N My and z ; € OM, for k large. The open balls

N
{B A (zk. j)}j_l are pairwise disjoint. Hence the monotonicity formula (2.1) applied on M; at points z; ;

witho - Oand p = %v gives

3 (B (zy) 3
e / (g [ iy, 63)
Bﬁ(zu)

1)\? 4
(%)
for any k and j =1, ..., N. Since Z = 0 we have that
lim sup pag, (B 1 (2k,j)) < lim sup gy, (B2(0,0, 1)) = 0.
k k
Hence, summing on j = 1, ..., N in (6.3) and passing to the limit k — oo we get

3
4 < Nm < 7 lilfn‘W(Mk) < 3m,
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that gives a contradiction.

Also the support of Z is unbounded. In fact suppose by contradiction that suppZ cc Bg(0), and
thus M is closed by Proposition B.1. Since M is connected, there exists g; € My N dB,x(0) definitely
in k for R sufficiently big. Up to subsequence g, — ¢'. By Remark 3.5 we get that ¢’ € suppZ, that
contradicts the absurd hypothesis.

Since M is unbounded, by Corollary B.2 (or equivalently (A.22) in [15]) we know that

lim Hz(By(q)) >

By construction

lim P con ) dH (p) =0,
k IpI? ‘
B, (0)naM, \IP

hence passing to the limit £k — oo in the monotonicity formula (2.1) evaluated on M we get that

Az(o) < limk inf Ay, (0),

for ae o > 0. By monotonicity

+ H' (OM,) < 7.

W(M,)
4

Az(0) < limkinf lim Ay, (0) < lirnk inf

On the other hand, by (A.14) in [15] we can write that

ﬁgAmﬂziﬂma+gg&¥%@Dz%wapw.

. . . B .
Hence Z is stationary, lim,,_,, = Z(p‘;(q) ) — nr, and M is closed.

If py is any point in M, the monotonicity formula for Z centered at p, reads

/'M +/ |(p - pO)J_lz _ IUZ(Bp(Q))
o? By(po)\Bo(po) lp = pol* 0?

(6.4)

In particular 6;(py) = 1, and thus we can apply Allard Regularity Theorem at p,. Thus we get that M
is of class C* around p, (and analogously everywhere), and thus there exists the limit

Iw—mfF:/ (p = po)P
By (po)

lim )
lp = pol*

_ 4
70 B (po0\Bo(po) 1P~ Po

Passing to the limits p — oo and o \ 0 in (6.4), we get that

_ 12
lim I(p m)|:0

P22 J Bo(po) lp = pol*

Therefore |(p — po)*| = 0 for any p € M, where we recall that (-)* is the orthogonal projection on
T,M*. Since this is true for any py € M, we derive that M is a plane. Finally Remark 3.5 implies that
M contains the vertical axis {(0,0,¢)|t € R}. O
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Curvature varifolds with boundary

In this appendix we recall the definitions and the results about curvature varifolds with boundary

that we need throughout the whole work. This section is based on [18] (see also [14,30]).

Let Q C R¥ be an open set, and let 1 < n < k. We identify a n-dimensional vector subspace P

of R* with the k X k-matrix {P;;} associated to the orthogonal projection over the subspace P. Hence
the Grassmannian G, of n-spaces in R¥ is endowed with the Frobenius metric of the corresponding
projection matrices. Moreover given a subset A C R¥, we define G,(A) = A X G,, endowed with the
product topology. A general n-varifold V in an open set Q C R* is a non-negative Radon measure on
G,(Q). The varifold convergence is the weak* convergence of Radon measures on G,(€2), defined by
duality with C%(G,(Q)) functions.

We denote by 7 : G,(Q) — Q the natural projection, and by puy = m3(V) the push forward of a

varifold V onto Q. The measure uy is called induced (weight) measure in Q.
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Given a couple (M, 6) where M C Q is countably n-rectifiable and 6 : M — N is H"-measurable,
the symbol v(M, ) defines the (integer) rectifiable varifold given by

/ o(x, P)dv(M, 6)(x, P) = / o(x, T M) 0(x) dH" (x), (A.1)
Gn(Q) M

where T, M is the generalized tangent space of M at x (which exists H"-ae since M is rectifiable). The
function @ is called density or multiplicity of v(M, 6). Note that uy = 6H"L M in such a case.

From now on we will always understand that a varifold V is an integer rectifiable one.

We say that a function He L, (uy;RY) is the generalized mean curvature of V = v(M, 6) and oy
Radon R¥-valued measure on Q is its generalized boundary if

/ divryX duy = —n / (H,X)duy + / Xdovy, (A.2)

for any X € C!(Q;R¥), where divyy X(p) is the H"-ae defined tangential divergence of X on the tangent
space of M. Recall that oy has the form oy = vyo, where |vy| = 1 o-ae and o is singular with respect

to My .
If V has generalized mean curvature H, the Willmore energy of V is defined to be

W) = / \H” dpy . (A.3)

The operator X — o6V(X) := f divry X duy is called first variation of V. Observe that for any X €
CH(Q; R¥), the function ¢(x, P) := divp(X)(x) = tr(PVX(x)) is continuous on G,(€2). Hence, if V, » V
in the sense of varifolds, then 6V,(X) — 6V (X).

By analogy with integration formulas classically known in the context of submanifolds, we say that
avarifold V = v(M, 6) is a curvature n-varifold with boundary in Q if there exist functions A, € L}OC(V)
and a Radon R*-valued measure dV on G,(Q) such that

/ P;j0y,(x, P) + Ajj(x, P)dp,p(x, P)dV(x, P) =
el (A.4)
=n / o(x, P)Aij(x, P)dV(x, P) + / o(x, P)doVi(x, P),
Gn(Q) Gn(Q)
forany i = 1,...,k for any ¢ € C}(G,(€)). The rough idea is that the term on the left is the integral of a
tangential divergence, while on the right we have integration against a mean curvature plus a boundary
term. The measure dV is called boundary measure of V.

Theorem A.1 ([18]). Let V = v(M, 6) be a curvature varifold with boundary on Q. Then the following
hold true.

i) Ajjk = Aijp Aijj = 0, and Aij = Pj A + PrAij = PjApr + PiAjjy.

ii) P;0V(x, P) = dVi(x, P) as measures on G,(Q).

iit) PyAjx = Aiji.

iv) Hi(x, P) := %A jij(x, P) satisfies that PyH(x, P) = 0 for V-ae (x, P) € G,(Q).

v) V has generalized mean curvature H with components H;(x, T M) and generalized boundary oy =
ﬂﬁ(@V).
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We call the functions Hf.‘j(x) := P;A ji; components of the generalized second fundamental form of a
curvature varifold V. Observe that II']‘. ;=P iAji = Ajjk—PrA i = Ajj— PuAjj = nHy—nPyH; = nHy,
and Ay = I, + 117,

In concluswn we state the compactness theorem that we use in this work.

Theorem A.2 ( [18]). Let p > 1 and V, a sequence of curvature varifolds with boundary in Q. Call
Ag)k the functions A;j of V,. Suppose that A@ e LP(V)and

sup {u (W) + / |A<‘>
) v G,(W) Z

i,j,k
for any W cc G,(Q), where |0V)| is the total variation measure of dV,. Then:
i) up to subsequence V; converges to a curvature varifold with boundary V in the sense of varifolds.
Moreover Ag.)le — AV and 0V, — 0V weakly* as measures on G,(Q);

"avi+ |6V,|(G,,(W))} < C(W) < +00 (A5)

ii) for every lower semicontinuous function f : RF = [0, +oo] it holds that

f(A;)dV < liminf fAD)dV,. (A.6)
(@) e Y

It follows from the above theorem that the Willmore energy is lower semicontinuous with respect to
varifold convergence of curvature varifolds with boundary satisfying the hypotheses of Theorem A.2.

B. Monotonicity formula and structure of varifolds with bounded energy

The monotonicity formula on varifolds with locally bounded first variation is a fundamental
identity proved in [31], with important consequences on the structure of varifolds with bounded
Willmore energy, collected for example in [15]. Such consequences usually concern varifolds without
generalized boundary: oy = 0. So, in this section we are interested in extending some of these results
in the case of curvature varifold with boundary. The strategy is analogous to the one of [15] and the
following results are probably expected by the experts in the field, however we prove them here for
the convenience of the reader.

Let V = v(M, 6y) be a 2-dimensional curvature varifold with boundary with finite Willmore energy.
Denote by oy the generalized boundary. Let 0 < o < p and py € R?. Integrating the tangential
divergence of the field X(p) = ( %)Jr (p— po), where |p— pol2 = max{o?, |p — pol*}, with respect

lp-pol> P
to the measure py (see also [31] and [24]) one gets that

H (p-po)*|
Ao) + / B2z F ) = A, (B.1)
By(po)\Be(po) | 2 1P = Pol
where B0 1
M Po
Ap) 1= ——2—= + 1 / \HI* dpay(p) + Ry, ps (B.2)
P By(po)
and

(H, ) 1 1 1
Rpp = / M dpv(p) + 5 / (— - —2)(19 — po)doy(p)
,(10) p? B,(po) P

lp = pol?
B (H,p -0,
= o H dpy(p) + Tpyp-
(PO
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In particular the function p — A(p) is non-decreasing.
From now on, let us assume that the support suppoy C S, where S is compact and |oy[(S) < +co.
We also assume that

Br(0
limsupw S K < 400,
R—o0 R2
We have that
1
H B 2
( Hp—po) po) (,Uv( p(po))) ( / HP a’uv)
By (po) B,(po) (B.4)
e uv(By(po) 2 / ,
T — t - |H|” duy.
=2 P2 (P0) Y
If d(py, S) > 6 we have that
1 1 1 1
( ) <=+ =)1ovI(S N By(po)). (B.5)
B, P = Pol* p 0 p

In particular the monotone function A(p) evaluated at p, ¢ S is bounded below and there exists finite
the limit lim,\ o A(p).
Keeping po ¢ S (B.1) implies that

pv(Bs(po)) _ Hv(B (Po)) 1 5
0_2 S p2 Z p(po) |H| dMV(p) + RPO,P - RPO,O’
uv(By(po)) 1 1v(B,(po)) \? 1 1
ST A W) + [ | W) = T+ {5+ | lovl(S 0 B,(po)
p p 5" P
B,
L £Hv(Bo(py) —W(V)
2 o2
(B.6)
Letting p — oo and o < ¢ in (B.6) we get that T, , = 0 and
B,
M) o5 kW) <400 VO<o < (B.7)
Letting p — 0 in (B.4) and using (B.7) we get that
H
lim / M duy(p)| = (B.8)
P01 By(po) p*
Therefore we see that if py € R\ S, then
3 1im 2P ) < CE 10y I(S), K. WV)). (B.9)

o\,0 O’2
Moreover, consider py € R*\S and a sequence p; — po; letp € (0,d(po, S)/2) and call py = d(po, S)/2,
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then by (B.1) we have that

B B 1
#v(B,(po)) > lim sup #v(B,(po) pz(pk)) > lim sup mly(pr) — Ry p — 1 / \HI* duy

0’ k By, (pr)
. |H| 1
> lim sup 76y (py) — / — duy — 1 / \HI dpy
k Boy(po) Bop(pr)
(Bag(po)\* o (49
. Hv b2 Po
> lim sup 0y (py) — (V—’;) ( / IHP dllv] -1 / HP dy
k P Bay(po) Bap(po)
1
. 1 ?
> lim sup 76y (px) — | C(2po, lovI(S), K, W(V)) + / \HP dyy |
k 4 By(po)
and thus letting p “\, O suitably we get
Ov(po) = lim sup Oy (py), (B.11)
k

i.e., the multiplicity function 6y is upper semicontinuous on R? \ S. Since 6y is integer valued, the set
{p € R*\S |6,(p) > 1}is closed in R*\S. Therefore we can take the closed set M = {p € R*\S |6,(p) >
3} US as the support of V.

A particular case of our analysis can be summarized in the following statement.

Proposition B.1. Let V be a 2-dimensional integer rectifiable curvature varifold with boundary.
Denote by oy the generalized boundary and by S a compact set containing the support suppoy.

Assume that
My (Br(0))
p R

W) < +o0, limsu < K < 400,

R—oo

and S is a compact 1-dimensional manifold with H'(S) < +co. Then the limit
lim pv(By(p))
N0 PP

Hy( p(p))

exists at any point p € R*\ S, the multiplicity function 8y(p) = lim, o
on R3\' S and bounded by a constant C(d(p,S),|ov|(S), K, W(V)) dependmg only on the distance
d(p,S), lovl(S), K and W(V). Moreover V = v(M, 6y) where M = {p € R*>\ §16,(p) > %} Us is
closed.

is upper semicontinuous

Also, we can derive the following consequence.

Corollary B.2. Let V = v(M,60y) be a 2-dimensional integer rectifiable curvature varifold with
boundary with ‘W(V) < +co. Denote by oy the generalized boundary and by S a compact set
containing the support suppoy. Assume that S is a compact 1-dimensional manifold with
H'(S) < +0c0. Then

0
M ess. unbounded = lim su p'uV( p() >, (B.12)
0?

p—)OO

where M essentially unbounded means that for every R > 0 there is B.(x) C R\ Bg(0) such that

uy(Br(x)) > 0.

; . B.(0
Moreover, in any of the above cases the limit lim,,_,, ”—V( »(0)

> 7 exists.

Mathematics in Engineering Volume 2, Issue 3, 527-556.



555

Proof. Suppose that M is essentially unbounded. We can assume that limsup,_,,
Then

1,
/ —(H, p)duy
B,

1
< _2( / |Hl|pl duyv(p) + / |H|p| duv(p))
,(0) P P~ \JB,(0) B, (0)\Bo(0)

o H1y(B,(0))
<= / |HI* dpy \Jpv(B+(0)) + \/—Z / \HI* dpy
P B, (0) P B, (0)\B.-(0)

forany 0 < 0" < p < +oo. Passing to the limsup,_,., and then to o= — oo, we conclude that

lim =0.

p—)OO

1 5
/ —(H, p)duy
B,(0) P

Hence, assuming without loss of generality that O ¢ S, the monotone quantity A(p) evaluated on V
with base point 0 gives

1 B,(0
— La’(rv(p) + lim sup 'U—V( »O)

3 lim A(p) = W(V) + ,
p—00 2 |p|2 p—00 ,02

and thus 3 lim,_,, £ V(ﬁ’z’(o)) < K < +o0o. Also the assumptions of Proposition B.1 are satisfied and we

can assume that M is closed.

We can prove that M has at least one unbounded connected component. In fact any compact
connected component N of M defines a varifold v(&, 6y|y) with generalized mean curvature; now if
S NN = 0 then W(N) > 4nr, and thus there are finitely many compact connected components without
boundary, if instead S NN # 0, S C Bg,(0) by compactness, and 4 py € N \ B,(0) for r > Ry but N is
compact, then the monotonicity formula applied on v(, 6y|y) at point py gives

Loy|(S)

= . B.13
2 I"—Ro ( )

m< (1Ti_I)T(l)Av(N,9V|N)(0' ) < ph_)fg Avvovin () < }L(W(V(N’ Oyln)) +
Since M is essentially unbounded, if any connected component of M is compact we would find
infinitely many compact connected components N, points py € N, and r arbitrarily big in (B.13) so
that the Willmore energy of any such N is greater than 2z, implying that ‘W(V) = +oo.
As M has a connected unbounded component, for any p sufficiently large there is x, € M N B,,(0).
Applying the monotonicity formula on V at x, for p sufficiently big so that S C B,(0) we get that

B, (x 1 1
n < limA(o) < ’M + —/ \H? duy + —/ \H| duy
-0 P 4 By(x,) By(x,)

0

B3, (0 1 B
S9M+—/ |H|2dﬂv+8M+C5/ \H duy,
(3p) 4 Je38,0) P By(x,)

that implies that

B
i A1 BO) 7
poe p 9+e
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for any £ > 0.
Consider now any sequence R, — oo and the sequence of blow-in varifolds given by

M
Vn:V( aen)’
R,

1 1
My, (Br(0)) = }T%,UV(BR,,R(O)) = mﬂV(BRRn(O))RZ < K'R?

where 6,(x) = 0y(R,x). Since

is bounded for any R > 0, W(V,) = W(V), and |oy [(R*) — 0, by the classical compactness theorem
of rectifiable varifolds (Theorem 42.7 in [30]) we get that V,, converges to an integer rectifiable varifold
W (up to subsequence). Also W # 0, in fact O € suppW by the fact that

Hy(Bg,(0)) S

uw(B1(0)) > liminf py, (B;(0)) = liminf R > g

We have that W is stationary, in fact for any » > 0 we have that

/ |Hw|* duw < liminf / |Hy, |* duy, = liminf / |Hy|* duy = 0.
R R R

3\B,(0) " 3\B(0) " 3\Bg,r(0)

Also oy = 0, in fact for any X € CS(R3) the convergence of the first variation reads

lim—Z/(HVn,X)dan +/Xd0'vn = lim—Z/(HVn,X)d,an = /ngv,

and suppoy C {0}. Taking X = A,,Y for Y € CO(R?) and

An(p) = |
0 d(p,0) > -,
we see that 1
, LY
‘/(an,x)dﬂvn = / (Hy,, ApY)dpy,| < 1Yl W(V)2 (K —2) )
B, (0) m
and thus

/ Y doy = lim -2 / (Hy,, ApY)dpy, = lim lim -2 / (Hy,, AnY)dpy, =0,

for any Y € CO(RY).
Finally the monotonicity formula applied on W gives
i My (R4 (0))
im———

n

2 liminf y1y, (B1(0)) 2 uw(B1(0)) 2 lim Aw(o) 2 7.

n

O
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