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1. Introduction

Efficient numerical methods for computing the action of matrix ¢-functions are of growing interest for the application
of exponential integrators in the solution of stiff systems of differential equations (compare [24,17,18,25,14,7] and the
references given therein). The computation of the inverse of matrix ¢-functions or, equivalently, the design of fast linear
solvers for matrix ¢-functions is useful in the solution of related inverse problems. i

er—1

A fast efficient numerical method for computing ¥ (A) and v1(A)b with ¥ (2) = 1/¢1(2), ¢1(2) = , A e RN*N,

has been presented in [5,6]. The method exploits a partial fraction decomposition of the meromorphic function 1 (z) and it
is particularly suited for the application to structured matrices for which fast linear solvers exist. The same approach cannot
be extended to other functions ¥ (z) = 1/¢.(z) with £ > 1 due to the lack of explicit closed-form expressions of their poles.

Z
—1-—
The computation of ¥, (A) and 2 (A)b with ¥2(2) = 1/¢2(2), ¢2(2) = !, A € RN*N is also of relevant interest.

)
We describe hereafter two applications.

1. A nonlocal inverse problem. Consider the nonlocal inverse problem defined as follows: We seek the vector
g € R" and the function u = u(t): [0, T] — RN such that
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T

u't)=Aut)+g, u0) =up, %/u(t)dt:m
0

with A € RN*N uy, uy e RN, By imposing the integral condition we find that the vector g solves

u; =g1(TAug+ T (TA)E. (1)

2. Two-point inverse problems. The computation of the unknown parameter p in the local boundary value prob-
lem [30,35]

u'(t) = Au(t) +tp, u(0)=gq, u(l)=g, (2)

A e RN*N t €10, 1], amounts to solve a linear system with a matrix ¢-function as coefficient matrix. Indeed, it is
shown that

u)=g=e'q+¢(A)p. (3)

Abstract formulations of 1 and 2 can also be considered [20,36], where A is a differential operator which has to be
discretized numerically. In this contribution we address the computation of ¥,y1(A) and 41 (A)b, with ¥, (2) = 1/¢¢(2)
and ¢ > 0, when A is a large sparse and/or structured matrix. Our extension relies on the Newton iteration for computing
the inverse of a matrix. For review of this method see [27,28]. This tool has already been successfully applied in [4,29] for
the inversion of matrices having a displacement rank structure.
 $ (@)

¢(2)

Q. Then, we show that if the eigenvalues of A lie in €2, the Newton iteration applied for the inversion of B = ¢¢11(A),
£ > 1, with starting point Xq = y¥¢(A) = (¢¢(A))~! is quadratically converging to the inverse matrix of B. This means that
given a method to compute Xy = y¢(A) we can apply the Newton iteration for approximating Bal = Y¢+1(A). Moreover,
since the iterative scheme only requires matrix multiplications it is amendable for fast implementations using structured
representations of the matrices involved. In particular, fast adaptations for both displacement structured and quasiseparable
matrices can be devised. Approximate compression techniques in the style of [4] can also be incorporated to take under
control the growth of displacement or quasiseparable ranks.

The convergence results for the Newton iteration can also be exploited in a different perspective. It is easily seen that
the intermediate approximations of ¥,,1(A) generated by Newton’s iteration can be expressed as a polynomial of XoB =
Y¢(A)ge+1(A) thus providing the link to the development of Krylov-type methods for computing v,41(A)b. In particular,
the solution of the linear system ¢,41(A)x = b can be approximated efficiently by means of a Krylov-type method like
GMRES applied for solving the equivalent system ¥, (A)¢¢+1(A)x = ¢ (A)b. When the eigenvalues of A lie in Q then the
convergence of GMRES applied to this system follows from the results in [31] (see Proposition 6.32 and its generalizations).
The paramount advantage of such a Krylov-based approach is that matrix-by-vector multiplications are only required to find
an approximation Xib of the vector x = y,+1(A)b. In particular, for £ =1 the projection method only involves products of
the form 1 (A)v which can be computed using the methods introduced in [5,6].

In principle, the proposed schemes can be applied recursively for evaluating v¥,4+1(A) or ¥¢y1(A)b, £ > 0, provided that a
method for computing 1 (A) or 1 (A)b is available. Despite the generality of the approach, however, based on application
and numerical issues in this work we focus on the case ¢ € {0, 1}, or at least £ small in value.

The paper is organized as follows. In Section 2 we analyze theoretical and computational properties of Newton’s iteration
for the inversion of matrix ¢-functions. In Section 3 we devise a Krylov-type method for computing the action of these
inverses on a vector. In Section 4 we present the results of numerical experiments illustrating the properties of this method
whereas conclusions and future work are drawn in Section 5.

More specifically, we first identify regions 2 c C of the complex plane such that ‘1 <1,¢>1,forall ze

2. Newton iteration for the inversion of matrix ¢-functions

In this section we design an iterative method based on Newton'’s iteration for the inversion of matrix ¢-functions ¢¢(A),
AcCNxN ¢ 1.
The ¢-functions are entire functions defined for scalar arguments by the integral representation

1
-1

1
bo(2) = €%, ¢u(2) = /e“—e)ze‘f—lde, £>1,z¢C. (4)
0

The ¢-functions satisfy the recurrence relation

1
¢e(2) =2¢g11(2) + a £>0, (5)
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and have the Taylor expansion

et k

pe=3" ﬁ
k=0
This latter can be extended to a matrix argument by setting for any A € CN*N
o k
¢e<A>=kZ;m, £>0

The function v, (z), £ > 0, is a meromorphic function defined as the reciprocal of ¢;(z), that is,

V(@) =¢e”", £=0.
Explicit series expansions are only known for 1 (z). It holds [[1], formula 23.1.1]

B 71_+oo Bk L
Vi@=p2) =) —z, |z1<2m, (6)

k!
k=0

where By denotes the kth Bernoulli number. A different rational representation is derived in [6]. For any fixed n > 0 we
have

o0

n@=fu@+2000 Y (Z)" (L) e, ™

pat 27 27

where

1 n—1 ) Bois
N1 L, 2y Bty
In@=1-37 +§ 2+ 1)

The series on the rhs of (7) converges uniformly to v (z) over any compact set X C C \ £27iN. The polynomial contribu-
tion fr(z) is a partial sum of the power series expansion (6) aimed to improve the accuracy of the approximation around
the removable singularity at the origin in the complex plane. Relation (7) provides a family of mixed polynomial/rational
approximations of i (A) of the form

2(n+1) m 1 A 2
vn(A):rn,m<A>=fn<A>+2<—1>"<E) > (—) +kH7 8)

K2\ 27
k=1

Based on the computation of /1 (A), under suitable assumption on the spectrum of A the Newton method for matrix
inversion provides an effective tool for approximating v¢(A) for ¢ > 1. Newton’s iteration [27,28] for the inversion of a
nonsingular matrix B € CN*N is defined by:

Xoe CNN ' Xy =2X; — X¢BXg, k> 0. (9)

From

_ 2 _ 2k
I'=Xg1B=(1—-X(B)" = I —-XoB)" ,

we obtain that Newton's iteration (9) quadratically converges to B~! provided that all eigenvalues of R = — XoB have
modulus less than 1.

Let us first suppose that A € CN*N has real eigenvalues only, that is, A € spec(A) = A € 2 = R. Observe that for real
arguments (z € R) from the integral representation (4) it follows that ¢¢(z) > 0 and, moreover, ¢¢(z) > ¢¢+1(2) Vz € R,
¢ > 1. This means that

_ Per1 (M)
e (ri)

The next result immediately follows.

0<1 =1—=¢pr1(A)Pe(Ai) <1, VA; € spec(A).

Proposition 1. Let A € CN*N be a matrix with all real eigenvalues. Then for any £ > 0, ¢¢(A) is invertible. Moreover, the Newton
iteration (9) applied for the inversion of B = ¢¢41(A), £ > 1, with starting point Xo = ¥, (A) = (¢¢(A)) ™1 is quadratically converging
to the inverse matrix of B.
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Table 1

Values of the spectral radius p(R) of R =1 —
($1(A) " '¢o(A) with A=h""N2T, N=128, and T =
gallery(tridiag/,N, 0.5, 0, —0.5) for different val-
ues of h=1, N, N2, N4,

h 1 N N2 N*
p(R)  16852e+03 575590  0.5071  0.5000

The extension of this result for matrices with possibly complex eigenvalues requires some additional constraints. If
z=a+ib,a,beR, i>=—1, is a complex number then from the integral representation (4) it is found that for ¢ > 1

1 1
/em cos(th)(1 — o) ldt +i f et %sin(th)(1 — v)¢ ldr
0 0
pu(2) = =t

Under the auxiliary assumption b € [—m /2,7 /2] this implies that R(¢¢(z)) > 0 and, hence, ¢,;(z) # 0. In addition, the
residual r(z) = ¢¢(z) — ¢e+1(2) also satisfies

1 1
-1 -1
[em cos(tb)%(l — ) ldr +i /em sin(rb)%(l — )t ldr
0 0
re) = €

It follows that

R @) < N(@e@], ST @] < [S3(Pe(2))]
and therefore

r@ | _ ‘1 P12
ée(2) ée(2)

To sum up we arrive at the following extension of Proposition 1.

<1

Proposition 2. Let A € CN*N be a matrix with all eigenvalues lying in the strip @ =R x i[—7 /2, 7r /2] in the complex plane. Then
for any £ > 0, ¢¢(A) is invertible. Moreover, the Newton iteration (9) applied for the inversion of B = ¢¢+1(A), £ > 1, with starting
point Xo = ¢ (A) = (¢¢(A))~1 is quadratically converging to the inverse matrix of B.

Differently from the case of real spectrum some restrictions on the localization of the eigenvalues are needed for general
matrices. Let us consider the tridiagonal Toeplitz matrix T of order N having subdiagonal, diagonal and superdiagonal entries
given by 0.5, 0 and —0.5, respectively. The matrix has eigenvalues located on the imaginary axis in the interval i[—1, 1]. In
Table 1, we report the computed spectral radius of R = I — (¢1(A)) '¢2(A), where A=h"'N2T and N = 128, for different
values of h.

Computational interest in Newton’s method is especially due to the development of high-performance computing en-
vironments. The iterative scheme (9) basically requires BLAS Level 3 routines which are easily implemented in parallel
on a parallel computing system [26,37]. Moreover, it is especially suited to take advantage of the sparsity and the struc-
tural properties of the matrices involved. The case of matrices having a displacement structure has been considered in
[4,28,29]. In the next subsection, we focus on the application of Newton’s method for inverting banded and more generally
quasiseparable-type matrices arising from the discretization of partial differential equations. Recall that an N x N matrix A
is quasiseparable of quasiseparability rank s if rank(A(k+1:N,1:k)) <s and rank(A(1:k,k+1:N))<sfor1<k<N-—1.
The class of quasiseparable matrices encompasses both banded matrices and their inverses.

2.1. Fast adaptations for structured matrices

We begin by observing that for a given banded matrix A the matrix B = ¢;(A) or B = vr¢(A), £ > 1, generally inherits
the banded structure of A in some approximate way. For instance, in Fig. 1 we illustrate the “spy” plots of ¥,(A) and its
leading principal submatrix of order 95 when A is the 1D Laplacian matrix of order N = 1024. The threshold value is set
to 1.0e — 14. The exact tridiagonal structure of A results in an approximate banded structure of B. Precise mathematical
statements depend on quantities that are hard to compute and typically yield very pessimistic estimates (compare with [19]
for the matrix exponential, the review [2] for more general analytic functions and [22] for some extensions to functions
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Fig. 1. “Spy” plots of > (A) and its leading principal submatrix of order 95 for A being the 1D Laplacian matrix of order N = 1024.

with singularities). In practice, suitable approximation/compression techniques are to be employed. Our preferred option is
to look at the matrix B as a rank-structured matrix with the possibility to encode the structure by using numerical ranks.

Condensed representations for rank-structured matrices have been proposed in a variety of papers. Quasiseparable ma-
trices are introduced in [10]. A complete review of their properties is presented in [11]. A quasiseparable representation
of a matrix A is defined by two families of lower and upper generators that are computed by exploiting the low-rank
properties of the submatrices of A located in its lower and upper triangular part, respectively. Given in input a quasisep-
arable representation of Xy and B then the structured adaptation of (9) amounts to compute at each iteration one sum
and two products of quasiseparable matrices possibly complemented with a compression/approximation technique used to
take under control the growth of the quasiseparable generators. Generator-based algorithms to perform these operations are
described in Chapter 4, 5 and 17 of [11].

A more flexible format for rank-structured matrices which is amenable for divide-and-conquer oriented techniques is
called hierarchically semiseparable (HSS) representation [38]. This representation is found by combining recursive partition-
ing, compression of off-diagonal blocks and nestedness for the generators of these blocks. In order to operate with HSS
matrices efficiently, one exploits their representation with generators, demonstrated by the following 4 x 4 example:

D1 G1H; G1R1R3Q3 G1R1R4H4
A P2Q1 Dy P2R2R3Q3 P2RyR4H4
G3L1L3Q1 Gs3LliL4H; D3 G3Hy ’
P4lL3Q1 PalyL4H> P4Q3 Dy

where D; are square matrices of equal size. The representation is condensed if all the matrices L; and R; have sizes less
than a small constant k <« N. The generators G;, P;, H; and Q; are tall or skinny matrices. The value of k is related with the
maximum rank of all off-diagonal blocks at all levels of the HSS recursive splitting of A [38]. Arithmetic operations between
two matrices of order N expressed in a condensed HSS format can be performed in linear time w.r.t. N [38].

In view of the relation with the ranks of the off-diagonal blocks it is clear that any arithmetic operation (except inversion)
performed on HSS matrices can increase their ranks. In particular, if C and B are s—quasiseparable matrices then A = C % B,
* € {-, £}, is a quasiseparable matrix of quasiseparability rank at most 2s. This makes possible to bound the ranks of the
matrices generated by the Newton iteration (9) in terms of the ranks of the input matrices Xo and B. If these ranks are
quite small the quadratic convergence right from the start of the Newton process is generally sufficient to control the
growth of the generators. Otherwise, to use HSS structure efficiently under the iterative process we need some compression
algorithm. A MatLab toolbox to carry out arithmetic operations among HSS matrices in exact or approximate compressed
form is described in [23]. Using this package, for the sake of illustration we show in Fig. 2 the rank properties of the
matrices generated by Newton’s iteration applied for the computation of (¢,(A))~! starting from (¢1(A))~! for a given
rank-structured matrix A. Specifically, in our test we consider the matrix A € R4096x40% defined as follows:

M N

with
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Fig. 2. lllustration of the rank properties of HSS representations of the matrices involved in the computation of (¢2(A))~' by Newton’s iteration for the
matrix A given in (10). The compression threshold value is set to 1.0e —12.
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and M and N of size 64. The matrix is generated in the solution of 2D Laplace’s equation with Dirichlet boundary conditions
by Q1 finite elements [15]. In Fig. 2 we show the numerical ranks of the off-diagonal blocks in the HSS representations of
A, ($1(A)~1, ¢2(A) and the approximation X7 of (¢2(A))~' generated by Newton’s iteration applied for the inversion of
¢2(A) with starting point Xo = y1(A) = (¢1(A))~! stopped after 7 iterations with error || ¢2(A)X7 — I ||l2< 2.3e — 12. The
compression threshold value is set to 1.0e —12.

3. A Krylov-type method for computing the action of ¥ -functions on a vector

The above results indicate the possibility of approximating B! = v,,1(A), £ > 0, using Newton’s method with starting
point Xo = v¥¢(A) provided that the eigenvalues of A are properly localized. Under the same assumption, we can apply some
Krylov-type method like GMRES [31] for approximating v,4+1(A)b or, equivalently, for solving the linear system ¢¢41(A)x =
b. Indeed, from (9) we obtain that

X1 =2Xp — XoBXo = (2] — XoB)Xo = p1(XoB)Xo,
with p1(z) a polynomial of degree 1. Inductively, we find that for k > 0
Xk = 2pr—1(XoB)Xo — pk—1(XoB)XoBpk—1(XoB) Xo = px(XoB) Xo, (11)

for a suitable polynomial pi(z) of degree 2% — 1. This means that the approximation x; = Xb of the solution x of Bx=b
satisfies

X = pk(XOB)Xob, k > 0.
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Hence x; belongs to the m — th Krylov subspace, m = 2K,

Km = span{Xob, (XoB)Xob, ..., (XoB)™ ! Xob}.

It follows that a Krylov-type method might be used for solving the equivalent system

XoBx = Xob. (12)

For instance, GMRES [31] after m iterations returns an approximation vy such that

| Xob — XoBvi ll2=Il Xob — XoBx [l2=<Il Xo ll2Il b — Bx ||z .

In this case Xo can play the role of a preconditioner suitably determined to ensure the convergence of the projection
method. The next result immediately follows by combining Proposition 6.32 in [31] with the results of the previous section.

Proposition 3. Let A € CN*N be a diagonalizable matrix, i.e, A= SDS~!, D = diag[A1, ..., An], with all eigenvalues 1;, 1 <i <N,
lying in the strip @ = R x i[—m /2, 7w /2] in the complex plane. Let X, m > 0, be the approximate solution of (12), with B = ¢y+1(A)
and Xo = y¢(A), obtained from the m-th step of the GMRES algorithm, and let ry, = Xob — XoBXy;,. Then, we have

I ll2< k2(S)P(R)™ I To ll2, R=1—XoB, m=0,

where p(R) < 1 denotes the spectral radius of R and k»(S) is the 2-norm condition number of S.

The convergence estimates for GMRES can be extended to general matrices by replacing the spectral decomposition of A
with its Jordan canonical form [32]. The bound in Proposition 3 depends on the 2-norm condition number of the eigenvector
matrix S. This is satisfactory in the normal case but if A is far from normal, then x,(S) may have large magnitude and this
utterly invalidates the bound. Alternative GMRES convergence bounds based on the numerical range or the pseudospectra
of the coefficient matrix have been proposed in the literature (see [12] and the references given therein). However, these
bounds are not easy to compute and they present other drawbacks so that a common approach is to mitigate the impact of
k2(S) by assuming that the possible ill-conditioning is due only to a low-dimensional invariant subspace which contribution
can be deflated in same way [12,33].

The computational cost for the GMRES algorithm is dominated by the cost of matrix-vector multiplications with the
matrix XoB. It is worth noticing that from relation (5)

XoB = Ye(A)der1(A) = A~ (I — Y (A) /), (13)

which implies that the multiplication of XoB by a vector reduces to first multiply 1,(A) by the same vector, and then solve
a linear system with coefficient matrix A. This is particularly interesting for £ =1 since an efficient algorithm to evaluate
Y1 (A)b has been proposed in [5,6]. The algorithm relies upon the family of polynomial/rational expansions of 1 (z) given
in (7). Based on (13), complementing the GMRES iterative solver with the approximation (7) provides an effective method
for computing the action of vy, (A) on a vector. A basic MatLab skeleton implementation is as follows:

Algorithm 1: Given in input the matrix A € CN*N and the vector b € CV, this algorithm approximates the vector
w =1 (A)b.

1: Define funmv = @(2)A\(INy — 'n,m(A))z, where r, n(A) is given in (8) ;

2: Call w = gmres(@funmv, ry ; (A)b, tol, maxit);

3: return w

In view of (13), Algorithm 1 can be the building block of a recursive procedure for the evaluation of vy, (A)b, £ > 1. Some
explanations are, however, in order with respect to the execution of the first two steps. Specifically, the crucial point is the
selection of the approximation ry m(A) of ¥ (A).

For a general A, the choice of the approximation can be performed adaptively by means of an incremental scheme where
we add one term at a time until a fixed tolerance is reached. Specifically, for a given value of n and tol we compute the
approximation

1 A 2(n+1) 2 5 .
w =T Az=wyp+ —FF | — — ) +(m+1)%Iy)" 2 14
m+1 n,m+1( ) m (m+])2n (27[) (<27T> ( ) N) ( )
of w = 1(A)z until the stopping criterion || W11 — W |2 / || Wi ||2<tol is satisfied. The value of n should be chosen
very small. In our experiments we use n = 2. In Table 2 for A =gallery(hanowa’,128) we show the value of m and
the corresponding error err =|| w41 — W |2 / || w |2 generated with different tolerances. Here z = ones(128,1) and the
vector w = 1r1(A)z is computed by using expm and the backslash operator.
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Table 2

Convergence and error estimates for the adaptive computation
of w = vy1(A)z, with A = gallery(hanowa’,128) and z =
ones(128, 1), using the incremental approximation (14).

tol 1.0e—7 1.0e—9 1.0e—11 1.0e— 13
m 71 152 325 698
err 1.8e—6 1.4e—38 8.8e— 10 2.0e—11

<10

(a) n =2 and m = 32 over [—3,3] X i[—3, 3] (b) n =2 and m = 64 over [—3,3] X ¢[—3, 3]

i
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(c) n =2 and m = 64 over [—9,9] X i[—3, 3] (d) n =2 and m = 64 over [—3,3] X ¢[—9, 9]
Fig. 3. Surf plots of the absolute errors |1 (z) — rn,m(z)| generated for different values of n and m over different domains.

Differently, for a normal matrix A the selection of n and m in (8) might be addressed a priori by looking at the cor-
responding approximation problem depending on the localization of the spectrum of A. In Fig. 3 we show the plot of the
absolute error |y (z) — r,m(2)| for different values of n and m and for different domains.

Recall that ¥ (z) is a meromorphic function with poles +2mik, k € N, and a removable singularity at the origin. It is
remarkable that the approximation is quite accurate even close around the singular points, whereas the error increases
appreciably with the size of the domain. A widespread approach to the computation of exponential and ¢,—functions
combines polynomial or Padé approximation with a few steps of scaling-and-squaring [16]. In principle, scaling-and-squaring
may also be applied to our mixed polynomial-rational approximation, scaling the function argument by a suitable power of
2 and then making use of the squaring formulas

201(2) 2912 (15)
e?4+1  z4+2y1(2)°
The efficient implementation of (15) is an ongoing research project and this scaling-and-squaring scheme is not considered
here.

The evaluation of the function funmv at step 1 of Algorithm 1 basically amounts to compute r,, ;(A)z. In the typical
situation where n <« m this computation reduces to solve m shifted linear systems of the form

Y1(22) =

(A2 + 2rk)%IN)zi = (A + 27ikIN) (A — 27ikIy)zi=b, 1<i<m. (16)

There is an extensive literature on the solution of shifted linear systems. In the case of interest where A is quasiseparable
we make use of the backward stable algorithm proposed in [5]. This algorithm saves about half of computations in the
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solution of the shifted linear systems by reusing pieces of the structured QR factorization of the matrix A. According to [5]
for a quasiseparable matrix A of size N partitioned in blocks of size n that are represented via quasiseparable generators of
length r <« m the arithmetic cost of solving the systems (16) is of the order 4n’mN.

Some numerical tests showing the effectiveness of Algorithm 1 are presented in Section 4.

4. Numerical results

We have tested the application of Algorithm 1 for computing w = v»(A)b numerically by using MatLab. We do not
exploit the use of restarting techniques and specific selections of the initial guess in the gmres function by accepting the
default values.

Numerical experiments have been carried out for comparison with the classical approach based on the Arnoldi method
[9,21,13], where w is approximated by w; = Wjy,(Hj)e1 || b2, j>1, and W; and H; are generated in the Arnoldi
process. This scheme seems to be performing very efficiently whenever it works. The crux is that the performance is
depending on a number of issues such as the choice of the starting vector and the stopping criterion in the Arnoldi process
as well as the properties of the spectrum of the matrices H; and the quality of the polynomial approximation of v>(z) on
this spectrum. These issues can be difficult to tackle and resolve for a certain class of matrices. In order to illustrate these
difficulties, let us consider the following examples.

1. In the first test we analyze some classical models of quasiseparable matrices generated by a rank-one perturbation of
unitary and banded matrices. The matrices of size N = 128 are:

T
(@) A=Z+ceel, Z= ,el =[1,...,1];
1
|1
1
1 2
(b) A=B —eel, B=i N ;
1 N

(c) A=diag(t, —£) ® I + ceeT, where & = lambertw(—2, —exp(—1)), lambertw computes the Lambert W function
[8] and & is the first pole of v, (z) [20].

We have implemented the Arnoldi-based method in Matlab. As a stopping criterion we evaluate the relative error
between two consecutive approximations errﬁ’) =||wWjy1—wjll2/ |l wjl2. As a measure of accuracy we also determine
the relative error err;’) =l w—wj|2/| w2 where w is computed in some way (varying with the considered
example) to achieve a greater accuracy.

The matrix in (1a) is well conditioned with eigenvalues far from the poles and the removable singularity of v (z) and
thus w is found using the direct approach based on expm and the backslash operator applied to ¢, (A)w = b with
b = e;. For € =0 the matrices Hj, 1 < j <N — 1, generated by the Arnoldi scheme are lower bidiagonal matrices
with zero diagonal entries. Hence, the direct approach do not work for computing the intermediate approximations
w;. A method for dealing with singular matrices was proposed in [34]. This method determines ¢>(G) for a possibly
singular G of size m at the cost of approximating the exponential of a matrix of size 3m. The modified Arnoldi scheme
complemented with this method and the backslash operator for computing w j succeeds to find an approximation of w
with relative error erréf> of order 1.0e— 12 in 15 iterations. For a small nonzero € the construction is numerically stable
but it generates submatrices H; that are severely ill-conditioned due to the occurrence of eigenvalues clustered around
the origin. However, the modified Arnoldi scheme is still effective by reaching an approximation of w with relative
error erréf) of order 1.0e — 12 in 18 iterations for € = 1.0e — 14. For comparison in Table 3 we describe the results
obtained by Algorithm 1 applied to the matrix in (1a). We show the value of n and m in the rational approximant, the
number itgnres Of iterations of gmres, the relative residual rgures Of the approximation returned by gmres together
with the relative error err,. Since the mixed polynomial-rational approximation performs quite well on this example we
have also tested the performance of Newton’s iteration described in Section 2. The direct and the modified algorithm
can equivalently be used for computing ¢>(A). An initial guess is found by setting Xo =13 g(A). In Table 4 we illustrate
the convergence history of the Newton scheme by showing the residual res =| ¢2(A) Xy — In ||2-

The rapid convergence of the modified Arnoldi scheme on example (1a) can be explained in terms of its approximation
properties. The eigenvalues of the matrices H; are zero or clustered around zero and, therefore, the polynomial approx-
imation induced by the Arnoldi scheme behaves as the series expansion (6). The dependence on the spectral properties
of the matrices H; is the mixed blessing for the Arnoldi scheme. To see this, let us consider the matrix in example
(1b). The eigenvalues of A are located close to the imaginary axis in the interval between 1 and N = 128. The modified
Arnoldi scheme applied for solving the problem ¢,(A)w = b with b = e; returns an approximation with relative error

errgj) of order 1.0e— 12 in 20 iterations. Differently, the same algorithm applied for solving the problem ¢,(A)w =b
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Table 3

Performance of Algorithm 1 applied to the matrix in (1a)
of size N =128 with € =1.0e— 14 and the tolerance of
gmres set at tol =1.0e— 12.

(n,m) (3,8) (3,16) (3,32)

itgmres 17 17 17

Tgmres 4.8¢— 14 4.8¢— 14 4.8e— 14

erry 8.7e— 14 5.3e—14 53e— 14
Table 4

Convergence history of Newton's iteration applied for the inver-
sion of ¢(A), where A is the matrix in (1a) of size N =128 with
€ =1.0e—14.

k 1 2 3 4 5 6
res 0.3 0.1 0.01 1.7e—4 2.9e—8 8.9e— 16

102 T T T T T T 102 T T T T T T
10°
T E 100 (J\N% ]
102E k|
1072 3
104 F 1
104 K E
108 E 1
1 -6
108 F ] 0™ H 4
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20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

(a) Semilog plot of erng) for the matrix in (1c) (b) Semilog plot of erréj) for the matrix in (1c)

Fig. 4. Semilog plots of errgj) and erréj) for the matrices defined in (1a) and (1c) of size N =128 with € = 1.0e— 14, 1.0e — 8, respectively.

with b = rand(N, 1) is unable to provide an approximation with relative error less than or equal to 1.0e— 7 in N
iterations. In the first case the eigenvalues of the matrices H;j are the corresponding diagonal entries of A and the
approximation is quite effective. On the contrary, in the second case the eigenvalues of the matrices H; are scattered in
the complex plane and the approximations improve slowly. This effect combined with the simultaneous loss of orthog-
onality in the vectors of W leads to a poor accuracy. Concerning Algorithm 1, we observe that the eigenvalues A; of

if&j; > 1 for about half of the eigenvalues.

Notwithstanding that, for b = e; Algorithm 1 complemented with the adaptive computation of r ,(A) converges with
error 1.1e—9 after 15 iterations of gmres whereas for b = rand(N, 1) the convergence requires 65 iterations of gmres
with error 1.2e— 8.

To further evidence the role of the spectral properties of A and its approximations H;, we consider the matrix in (1c)
whose eigenvalues are clustered around the two points & and —& with & being a pole of ¥»(z). Here € is set to be equal
1.0e— 8, w is fixed equal to e and then b is determined by ¢2(A)w = b. The spectrum of the matrices H; accumulates
around the two points & and & and the origin. In two steps the errors reach a minimum value of order 1.0e — 8 and
after that rapidly grow and stabilize around the unit. This loss of accuracy displayed in Fig. 4 is caused by catastrophic
cancellation which determines the loss of orthogonality of the computed basis. The selection of the threshold value is
critical to obtaining a feasible approximation.

For comparison in Table 5 we show the results obtained by Algorithm 1 applied to the matrix in (1c).

2. In general, our approach can outperform the Arnoldi method when this latter exhibits a poor convergence. An example
is given by the matrix A =gallery(hanowd’,256). In Fig. 5 we show the plot of the error erré“ generated in the
computation of v(A)b with b = ones(256, 1). The process is stable and at the very end we compute an accurate
approximation using the Hessenberg reduction of A. The matrix has eigenvalues located on a straight line parallel to
the imaginary axis. The poor convergence is probably related with the periodicity of the complex exponential function
which is not easily captured by the polynomial approximation induced by the Arnoldi construction. Algorithm 1 com-
plemented with the adaptive computation of r ,(A) returns an approximation with error 1.0e — 5 after 14 iterations

A are not in a region Q of guaranteed convergence and we find that ‘] -
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Table 5
Performance of Algorithm 1 applied to the matrix in (1c) of size
N =128 with € = 1.0e— 8 and the tolerance of gmres set at tol =

1.0e—12.

(n,m) (3,16) (3,32) (3,64) (3,128)

itgmres 3 3 3 3

Tgmres 1.8e— 15 1.8e—15 1.7e—15 1.8e—15

erry 5.0e—3 4.4e—5 3.6e—7 1.8e—8
10°
10 E
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Fig. 5. Semilog plot of err(zj) generated by the Arnoldi method applied to A =gallery('hanowd’, 256).
of gmres. The value of m ranges in the interval [165, 238]. Observe that the eigenvalues of A are not lying in the strip

Q=R x i[-m/2,7/2] in the complex plane. Indeed, the preconditioned matrix has eigenvalues of modulus in the
range [0.59, 1, 59]. The preconditioning is still effective and this opens an interesting perspective for future researches.

Numerical tests have been also performed to investigate the application of Algorithm 1 in the solution of the inverse
problems described in the introduction. For the sake of illustration let us consider the following differential problem:

du(z,t) er 4 d%u(zt)
at o2  9z2
with boundary conditions u(—1,t) =u(1,t) =0, u(z,0) =0 and o = 10. The differential problem has been solved in Math-
ematica using the internal function NDSolve with extended precision. The computed solution u(z,t) evaluated at t =1 is
used to define h(z) = u(z, 1). Then the inverse problem concerns the reconstruction of f(z) from the boundary conditions
and the additional constraint u(z, 1) = h(z). Using a discretization in space by finite differences over N +2 equispaced points
in the interval [—1, 1] leads to the first order system

+tf(2), f(2)=sin2r2), (z,t) e[—1,1] x [0,1], (17)

d—“:Au(t)—Hf,

de
-2 1
N+1)\?
A= <;) diag(e?’ ™4, ..., e 1
20
1
1 -2

with conditions

u0) =0, u(l)=h,
and f =[f(z1),..., f(zN)]T, h =[h(z1),..., h(zN)]T. The unknown vector f can thus be determined by means of formula

(3). The matrix A is similar to a negative definite matrix and therefore our methods can be applied. In Fig. 6 we plot the
absolute error vector with entries |f,- — f(@z)|, 1<i<N, N € {128,512}, where f,- are generated by Algorithm 1 with n =2,
m =32, tol = 1.0e— 10 and maxit = 40. The gmres command detects convergence at iteration 7 and 8 for N = 128 and
N = 512, respectively. The finer discretization produces a small error. Similar plots are observed for the vectors generated
by using expm and the backslash operator. The condition number of the matrices involved is of order 1.0e+ 8.
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Fig. 6. Plots of the error vectors generated by Algorithm 1 for N =128 (a) and N =512 (b).

5. Conclusions and future work

In this paper we have presented two approaches based on Newton’s iteration and Krylov-type methods for the efficient
computation of the inverse of a matrix ¢-function as well as the action of this inverse matrix on a vector. In particular,
an appealing iterative procedure for computing ¥, (A)v has been devised. Numerical experiments show that the proposed
methods exhibit good robustness and convergence properties. The iterative scheme for the approximation of ¥, (A)v re-
quires at each step to compute an approximation of products of the form v (A)w by solving several linear systems whose
matrices differ from A by a complex multiple of the identity matrix. Future work is concerned with the efficient solution
of these shifted systems using the techniques introduced in [3]. Another interesting research topic would be the design
of an adaptive modification of the algorithm in [5,6] for computing v1(A) capable to determine automatically the “best”
polynomial/rational approximation formula for 1 (z).
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