Environmental Research

Date palm responses to chronic, realistic ozone exposure in a FACE experiment --Manuscript Draft--

Manuscript Number:	
Article Type:	VSI:APPC 2021
Section/Category:	Environmental Chemistry and Toxicology
Keywords:	tropospheric ozone; date palm; volatile organic compounds; VOC; stomatal ozone flux; photosynthetic electron transport; chlorophyll a fluorescence
Corresponding Author:	Yasutomo Hoshika Istituto di Ricerca sugli Ecosistemi Terrestri Consiglio Nazionale delle Ricerche Sede secondaria di Firenze Sesto Fiorentino (FI), Firenze ITALY
First Author:	Elena Paoletti
Order of Authors:	Elena Paoletti
	Yasutomo Hoshika
	Leila Arab
	Sofia Martini
	Lorenzo Cotrozzi
	Daniel Weber
	Peter Ache
	Luisa Neri
	Rita Baraldi
	Elisa Pellegrini
	Heike Müller
	Rainer Hedrich
	Saleh Alfarraj
	Heinz Rennenberg
Abstract:	Date palms are highly economically important species in hot arid regions, which may suffer ozone (O 3) pollution equivalently to heat and water stress. However, little is known about date palm sensitivity to O 3. Therefore, to identify their resistance mechanisms against elevated O 3, physiological parameters (leaf gas exchange, chlorophyll fluorescence and leaf pigments) and biomass growth responses to realistic O 3 exposure were tested in an isoprene-emitting date palm (Phoenix dactylifera L. cv. Nabut Saif) by a Free-Air Controlled Exposure (FACE) facility with three levels of O 3 (ambient [AA, 45 ppb as 24-h average], 1.5 x AA and 2 x AA). We found a reduction of photosynthesis only at 2 x AA although some foliar traits known as early indicators of O 3 stress responded already at 1.5 x AA, such as increased dark respiration, reduced leaf pigment content, reduced maximum quantum yield of PSII, inactivation of the oxygen evolving complex of PSII and reduced performance index PI TOT . As a result, O 3 did not affect most of the growth parameters although significant declines of root biomass occurred only at 2 x AA, suggesting that this date palm cultivar showed an intermediate susceptibility to O 3 . The major mechanism in date palm for reducing the severity of O 3 impacts was a restriction of stomatal O 3 uptake due to low stomatal conductance and O 3 -induced stomatal closure. In addition, an increased respiration in elevated O 3 may indicate a raised capacity of catabolizing metabolites for detoxification and repair. Interestingly, date palm produced low amounts of monoterpenes, whose emission was stimulated in 2 x AA, although isoprene emission declined at both 1.5 and 2 x AA. Our results warrant more research on a biological significance of terpenoids in plant resistance against O 3 stress.

1	Date palm responses to chronic, realistic ozone exposure in a FACE experiment
1 2	
3 4 2	Elena Paoletti ¹ , Yasutomo Hoshika ¹ *, Leila Arab ² , Sofia Martini ¹ , Lorenzo Cotrozzi ³ , Daniel Weber ^{2,8} , Peter
5 6 3 7	Ache ⁴ , Luisa Neri ⁵ , Rita Baraldi ⁵ , Elisa Pellegrini ³ , Heike M. Müller ⁴ , Rainer Hedrich ^{4,6} , Saleh Alfarraj ⁶ , Heinz
8 4 9	Rennenberg ^{2,7}
10 11 12 5	
13 14 6	¹ IRET-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino Firenze, Italy.
15 16 7 17	² Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-
¹⁸ 19 8	Köhler-Allee 53, 79110 Freiburg, Germany.
20 21 9 22	³ Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa,
²³ 10 24 25	Italy
25 26 11 27	⁴ Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082
28 12 29	Würzburg, Germany.
30 13 31 32	⁵ IBE-CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
32 33 14 34	⁶ King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia.
35 15 36 37,	⁷ Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University
³⁷ 38 16 39	No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China.
40 17 41 42 18 43	⁸ Phytoprove Pflanzenanalytik, Georg-Voigt-Str. 14-16, 60325 Frankfurt am Main, Germany.
44 45 19 46 47 20 48	Running head: Date palm responses to ozone exposure
49 21 50 51 52 22 53	*Corresponding author: yasutomo.hoshika(at)cnr.it
54 23 55 56	Abstract
57 24 58 59	Date palms are highly economically important species in hot arid regions, which may suffer ozone (O_3)
60 25 61	pollution equivalently to heat and water stress. However, little is known about date palm sensitivity to O_3 .
62 63 64 65	1

26	Therefore, to identify their resistance mechanisms against elevated O_3 , physiological parameters (leaf gas
1 2 27 3	exchange, chlorophyll fluorescence and leaf pigments) and biomass growth responses to realistic O_3
45 28	exposure were tested in an isoprene-emitting date palm (Phoenix dactylifera L. cv. Nabut Saif) by a Free-Air
6 7 29 8	Controlled Exposure (FACE) facility with three levels of O_3 (ambient [AA, 45 ppb as 24-h average], 1.5 x AA
930 10	and 2 x AA). We found a reduction of photosynthesis only at 2 x AA although some foliar traits known as
12 31	early indicators of O ₃ stress responded already at 1.5 x AA, such as increased dark respiration, reduced leaf
13 14 82 15	pigment content, reduced maximum quantum yield of PSII, inactivation of the oxygen evolving complex of
¹⁶ 33 17	PSII and reduced performance index PI_{TOT} . As a result, O_3 did not affect most of the growth parameters
18 19 34	although significant declines of root biomass occurred only at 2 x AA, suggesting that this date palm cultivar
20 21 35 22	showed an intermediate susceptibility to O_3 . The major mechanism in date palm for reducing the severity
²³ 24 36	of O_3 impacts was a restriction of stomatal O_3 uptake due to low stomatal conductance and O_3 -induced
25 26 37	stomatal closure. In addition, an increased respiration in elevated O_3 may indicate a raised capacity of
27 28 38 29	catabolizing metabolites for detoxification and repair. Interestingly, date palm produced low amounts of
30 31 39	monoterpenes, whose emission was stimulated in 2 x AA, although isoprene emission declined at both 1.5
32 3 340	and 2 x AA. Our results warrant more research on a biological significance of terpenoids in plant resistance
34 35 41 36	against O₃ stress.
37 38 39 42	
40	
41 42 43 43	Keywords: tropospheric ozone; date palm; volatile organic compounds; VOC; stomatal ozone flux;
44 44 45	photosynthetic electron transport; chlorophyll <i>a</i> fluorescence
46 47 48 45	
48 49 50 46	Funding information:
51 52 47	We are grateful for financial support to the MITIMPACT project (INTERREG V A – Italy – France ALCOTRA),
53 54 55 48	Fondazione Cassa di Risparmio di Firenze for supporting the ozone FACE development. The authors extend
55 .0 56 5 749	their appreciation to the Deanship of Scientific Research at King Saud University, Saudi Arabia, for partially
58 59	then appreciation to the Deanship of Scientific Research at King Sadd Oniversity, Saddi Arabia, for partially
60 61	
62 63	2
64 65	

50	funding this work through	research group RG-1435-018.	Financial support of L.A	by a short-term travelling
----	---------------------------	-----------------------------	--------------------------	----------------------------

51	grant of the Federation of European Societies of Plant Biology (FESPB) is gratefully acknowledged.
2	

1	iu
1 2 51	gr
3 4 - 52	
4 52 6 7	
7 8	
8 9 10	
11	
12 13 14	
15	
16 17	
18 19	
20 21	
22 23	
24	
26	
28	
29 30	
31 32	
33 34	
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	
37 38	
39 40 41	
41 42	
43	
44 45 46	
47	
48 49	
50	
51 52 53 54	
54 55	
56	
57 58	
59 60	
61 62	
62 63 64	
65	

 Surface ozone (O₃) is a secondary pollutant formed via reactions from precursors, e.g. nitrogen oxides, carbon monoxide, methane and volatile organic compounds (VOC) in the presence of sunlight. It is an ubiquitous air pollutant, which at present reaches potentially phytotoxic levels in many regions of the world (Mills et al., 2018). Ozone impacts on vegetation have been largely investigated (Paoletti, 2007; Li et al., 2017; Grulke and Heath, 2020), but there is still a lack of knowledge on species from under-investigated areas of the world, e.g. on palms.

Palms are perennial flowering plants in the monocot order Arecales, mostly restricted to tropical and subtropical climates. Among the > 2600 species of palm, only date palm (*Phoenix dactylifera* L.) has been investigated for O₃ responses so far and showed relatively high sensitivity following short-term exposure (8 h) to a spike of O₃ (200 ppb) (Du et al., 2018). Date palm is appreciated both as ornamental tree and as food source, and is widely cultivated wherever the temperature is optimal for ripening of its edible sweet fruits (ab. 40 °C), especially in Northern Africa, the Middle East and South Asia. In these areas, high temperature, intense solar radiation and clear sky favour O₃ formation (Smoydzin et al., 2012; Radaideh, 2016). In fact, elevated O₃ precursor emissions and high O₃ pollution have been documented over the Middle East (Smoydzin et al., 2012) and South Asia (Fry et al., 2012), because of urban development and industrialization (Ohara et al., 2007; Radaideh, 2016) as well as long-range transport of precursors (Lelieveld et al., 2009; Kulshrestha and Kumar, 2014). Although date palm requires good soil water availability for optimal growth, it can tolerate drought (Arab et al., 2016). It presents thick leaves (Doaygei et al., 2013) and low gas exchanges (Arab et al., 2016) that are considered xeromorphic adaptations able to induce cross-tolerance to O₃ (Paoletti, 2006). Date palm sensitivity to O₃ is thus worth of further investigations.

Ozone may reduce plant growth. According to a meta-analysis by Li et al. (2017), an experimentally **79** enhanced O_3 exposure (mean concentrations = 116 ppb) reduced 14% of total biomass compared with the **80** control (mean concentrations = 21 ppb). The negative effect was highlighted in below-ground rather than above-ground growth (Agathokleous et al., 2016). A reduction in plant growth by O_3 is generally related to a **82** 10 damage to photosynthetic systems in leaves (Hoshika et al., 2020a, b). Ozone-induced negative effects on 12**83** photosynthesis may be associated with a reduced performance of chlorophyll fluorescence and a decline of photosynthetic pigments (Li et al., 2017; Cotrozzi et al., 2018a).

Elevated O_3 exposure also impacts on isoprene emission from leaves. In addition to the pivotal role of VOC on O₃ formation in the atmosphere, biogenic isoprene biosynthesis and emission is postulated to contribute 24**88** to scavenge O₃-induced reactive oxygen species (ROS) (Loreto and Velikova, 2001; Vickers et al., 2009), 26**89** maintaining photochemical efficiency and photosynthetic stability (Pollastri et al., 2019) and acting as a **90** signal molecule to alter gene expression for abiotic stress (Harvey and Sharkey, 2016; Zuo et al., 2019). 31**91** Palms usually emit isoprene from the leaves. For example, Parra (2008) and Hewitt et al. (2009) evaluated **392** the contribution of the high-isoprene-emitting oil palm in tropical plantations to the production of surface **93** 36 O_3 pollution. Arab et al. (2016) found that heat but not drought stimulated the biosynthesis of isoprene in 38**94** date palm, with photosynthesis only weakly affected by both stressors.

The aim of this study was to clarify the mechanisms of date palm sensitivity to O_3 exposure under realistic ambient conditions in a last-generation O_3 Free-Air Controlled Exposure (O_3 FACE) experiment. The questions addressed here are: (i) does O_3 affect the response of biomass and leaf gas exchange (photosynthetic parameters and VOC emission) in date palm? (ii) is date palm sensitivity explained by avoidance of O_3 stress (restriction of O_3 uptake due to stomatal closure)? (ii) is date palm sensitivity affected by isoprene emission from leaves?

- 51903 Materials and methods

1,02

95

Experimental design and conditions

The experiment was carried out from May 20th to August 20th, 2019, in a free-air controlled exposure (FACE) facility located in Mediterranean Italy (43°48′59″ N, 11°12′01″ E, 55 m a.s.l.), where ambient summer conditions allow the growth of tropical plant species (Moura et al., 2018; Fernandes et al., 2019). Three levels of O_3 were applied: ambient (AA), 1.5 times ambient (1.5 x) and twice ambient O_3 concentrations (2 x), with three replicated plots per each O_3 level. A detailed description of the ozone FACE facility is in Paoletti et al. (2017).

Environmental conditions were continuously monitored by recording hourly values of soil moisture by ECH2O EC-5 sensors (Decagon Devices, Pullman WA, USA) and of air temperature, photosynthetic active radiation, relative humidity of the air and precipitation by a Watchdog station (Mod. 2000; Spectrum Technology, Inc., Aurora, IL, USA). Fig. 1 shows environmental conditions (Fig. 1a) and O₃ levels (Fig. 1b) during the experiment. AOT40 (Accumulated dose of ozone Over a Threshold of 40 ppb) values at the end of the 92 days of the experiment were 20,071 ppb·h in AA, 46,297 ppb·h in 1.5 x AA and 61,959 ppb·h in 2 x AA. POD1 (Phytotoxic Ozone Dose above a threshold of 1 nmol m⁻² s⁻¹) values were 2.43 mmol m⁻² in AA, 3.93 mmol m⁻² in 1.5 x AA and 4.64 mmol m⁻² in 2 x AA. The details of POD1 calculation are described in Suppl. Fig. S1 and Table S1.

Fourty-five micro-propagated 1-year-old plants of date palm (ab. 1 m high) of the cultivar Nabut Saif, raised in a soil-less peat-based potting mix in a plastic "torpedo" pot, were transferred into 4.5 l pots filled with 70% gravel (diameter 3-6 mm) and 30% commercial planting peat-rich soil in December 2018. Pots were kept to overwinter in a phytotron on plastic tablets continuously filled with tap water at 1-2 cm height and watered daily with 50 ml tap water per pot. Conditions included artificial illumination at ca. 200 μ mol m⁻² s⁻¹ 1, 25°C temperature, with a 16/8h light/dark cycle. Plants were transferred to 20 l pots and to shaded

tunnels in the open on 1st May, 2019, and moved to full light after one week. Each pot was fertilized once a
month with NPK 20:10:20 with micronutrients (Soluplant 20.10.20, Haifa, Israel). Five potted plants were
placed in each plot, for a total of 45 plants. Each pot was watered daily by a drip irrigation system with 800
ml of tap water, i.e. 90% of field capacity.

5 Measurements of gas exchange

Daily profiles of net photosynthesis (A) and stomatal conductance (g_s) were measured in clear sky days at 8-9 CET (morning) and 14-15 CET (afternoon) by a portable infrared gas analyser (Li-Cor 6400 instruments, Lincoln, NE, USA) on July 23rd and July 30th in 2019. The concentration of CO₂ in the chamber (Ca) was set to 400 ppm. According to Hoshika et al. (2020a), the leaf cuvette was positioned so as to be fully exposed to the direct solar irradiance (mean photosynthetic photon flux density [PPFD], morning: 1282 and 1277 µmol $m^{-2} s^{-1}$ on 23rd and 30th July, respectively; afternoon: 2122 and 2037 µmol $m^{-2} s^{-1}$ on 23rd and 30th July, respectively). Temperature and relative humidity (RH) in the cuvette were manually set in order to track the ambient values (leaf temperature: 25 and 38 °C in the morning and afternoon, respectively, on July 23rd, 28 and 35 °C in the morning and afternoon, respectively, on July 30th; RH: 46 and 35% in the morning and afternoon, respectively, on July 23rd, 45 and 38% in the morning and afternoon, respectively, on July 30th). In addition, on July 30th, dark respiration (R_n) was measured by switching off the LED light source after plants were kept in the dark for 30 min. All gas exchange measurements were carried out on one fullyexpanded leaf per plant (2nd fully expanded leaves), on 1-2 plants in each replicated plot.

Measurements of the kinetics of chlorophyll (Chl) a fluorescence

On 20th August, Chl *a* fluorescence was measured on attached leaves dark adapted with Hansatech leaf clips (30 min) (from all the 5 plants per plot) with three leaves per plant, by a Plant Efficiency Analyser

(Pocket PEA fluorimeter, Hansatech Instruments Ltd., King's Lynn, UK). The emitter wavelength of a non-£57 modulated light source was 625 nm for the actinic light LED. High quality optical band pass filters were used 1<u>5</u>8 for the detector (Chl a fluorescence 730±15 nm). Measurements were performed on circular areas of the leaves of 2 mm diameter, using Hansatech leaf clips homogeneously illuminated by actinic light LEDs set to **160** a saturating light intensity of 3500 μ mol photons m⁻² s⁻¹. Chl *a* fluorescence was recorded within five time 1**161** intervals; every 10 μ s for the initial fluorescence (0 - 300 μ s), every 100 μ s (0.3 - 3 ms), 1 ms (3 – 30 ms), 10 **1⁄62** ms (0.03 - 0.3 s), 100 ms (0.3 - 1 s). Raw data were transferred and processed using PEA Plus software **163** (Hansatech Instruments Ltd.). The primary photochemistry of PSII was further evaluated using well 1**164** established parameters described in Suppl. Table S2, Suppl. Fig. S2 and Suppl. Fig. S3a-c, according to formulations previously published (Papageorgiou and Govindjee, 2004; Strasser et al., 2010; Bussotti et al., 2**166** 2011; Chen et al., 2016). The changes in these parameters are associated with various stressors as well as 2**1667** overall plant vitality (Kalaji et al., 2017). All parameters were optimized for a high throughput workflow of **168** 29 Chl a fluorescence raw data using the open source software "Libre Office 6" (The Document Foundation, 3**169** Berlin, Germany). The data were plotted graphically and statistically analyzed by using "Prism 8.4 for Mac OS-X" software (GraphPad Software Inc., La Jolla, USA).

3**1₈72** Measurement of synthesis and emission of volatile organic compounds

⁴274 On August 1st-2nd, from 10 to 12 CET, one leaf (2nd fully expanded leaves) from two plants per replicated 4**1575** plot was sampled for emission of VOC following the methodology by Yuan et al. (2016). In detail, the **176** 48 central part of the leaf was included into the 6 cm² cuvette of a LI-6400 system (Li-Cor 6400 instruments, 5**177** Lincoln, NE, USA). Measurements were performed at standard conditions of 30°C and 1000 µmol m⁻² s⁻¹ 5**1278** PPFD. When photosynthesis reached a steady state, 2-l air samples were collected through a purified **179** 55 Tenax-TA glass tube (Thermal Desorption Tubes, filled with 100 mg Tenax-TA adsorbent (Mesh 60/80), 5**1,80** Gerstel, Germany) with a vacuum sampler pump (VSS-1, AP Buck, USA). Blank (no leaf) samples were collected at the beginning and end of each day of sampling. The traps were sealed with Teflon-coated brass

³1571

caps immediately after collection and stored at -20°C until analysis to avoid any chemical alteration and/or
 artefacts. Then, the samples were processed and analyzed with a thermal-desorber (Markes International,
 Series 2 Unity) connected to a 7890 A gas chromatograph coupled with a 5975C mass detector (GC–MS,
 Agilent Technologies, Wilmington, USA) as described in Baraldi et al. (2019). Identification and
 quantification of the sampled isoprenoids were carried out according to Rapparini et al. (2004).

11 1**187**

61 62

63 64 65

13 1**1⁄88** All pinnae of the 2nd fully expanded leaf of each plant were cut into small pieces, shock frozen in liquid 15 ¹**1**89 nitrogen and ground to fine powder. RNA was isolated using the NucleoSpin RNA Plant Kit (Macherey-18 1**1**90 Nagel) according to the manufacturers advice with the following exceptions. Leaf tissues were frozen in 20 2**1**91 liquid nitrogen and ground to powder. For each sample, 50 mg of leaf tissue powder were first mixed with 22 ²,3 2**192** 500 µl Fruit-mate[™] (Taraka Bio Inc.) and centrifuged for 5 min at 4 °C and 12000 g to remove 25 2**1693** polysaccharides and polyphenols. The supernatant was mixed with 500 μ l RA1 buffer (containing 1:1000 27 2**1994** 29 TCEP) from the NucleoSpin RNA Plant Kit. The mixture was transferred to the filter columns in two steps 30 3**195** and the filtrate was collected in a new collection tube and mixed well with the same volume of 70% 32 31396 ethanol. The mixture was added again in two steps to the NucleoSpin RNA plant Colum and centrifuged for 34 ³1597 1 min at 11,000 g. The washing steps were performed following the manufacturer's instructions. RNA was 37 3**1,98** eluted in 33 µL RNase free water that was incubated twice on the membrane for 1 min. The concentration 39 41099 was determined using a Nanodrop ND-1000 spectrophotometer (Thermo Fisher Scientific, Wilmington, DE, 41 42 200 U.S.A.). Removal of contaminating DNA, cDNA synthesis and qPCR was performed as described previously 44 4**2**01 (Böhm et al., 2018). The following primers were used for qPCR and transcript numbers were normalized to 46 42**7**02 10,000 transcripts of the housekeeping gene, the growth elongation factor EF1a (Patankar et al., 2016): 48 49 5**203** PdEF1afwd (5'-CTGTTGCAACAAGATGGA-3'), PdEF1arev (5'-CCGAAGGTGACAACCATA-3'), Pd ISPSfwd (5'-51 5204 (5'-GATGGATGTTGGAGTATC-3'), CGTCCTATTAGTCCATGCT-3'), Pd ISPSrev PdMTPS1fwd (5'-53 5**205** 55 TTCCCAAGAATCATAAAGGCTA-3'), PdMTPS1rev (5'-AGTCATATTAAGACACTC-3'), Pd-LevSynfwd (5'-56 5**2/06** TGCCTTCCCATATTCAAGCAT-3'), Pd-LevSynrev (5'-AGGTACATGAAGCGTGAG-3'), where PdEF1 is growth 58 52907 elongation factor EF1a (NCBI accession XM_008785500.3), Pd_ISPS is a putative isoprene synthase (NCBI 60

accession XM_008781287.2) and Pd_MTPS1 is a putative monoterpene synthase (NCBI accession 1
 XM_026807289.1). Pd_ISPS primers were designed for the putative date palm isoprene synthase
 (TRINITY_GG_87144_c19_g1_i1.p1 from Helmholz II experiment, unpublished). ISPS transcripts were normalized to 10000 molecules of HKG EF1α using standard curves calculated for individual PCR products.

Measurement of foliar traits and pigments

After the leaf gas exchange measurements, five leaf discs of 0.8 cm diameter per the same target leaf (one leaf, 2nd fully expanded leaves, one to two plants per plot) were collected by using a leaf punch (Fujiwara Scientific Company Co., Ltd., Tokyo, Japan), and weighted by a scale (Model Bp110, Sartorius weighing technology, Germany) in order to calculate fresh weight of the samples (FW). They were then dried at 70°C for at least 72 h in the oven. Leaf mass per area (LMA) was calculated as a ratio of dry mass (DW) and area (LA) of each leaf. Leaf water content was calculated as LWC (%) = (FW–DW)/FW×100.

Other leaf samples (ca. 3 g) of each target leaf (one leaf, 2nd fully expanded leaves, one plant per plot) were
harvested, immediately flash-frozen with liquid nitrogen and stored at -80°C until leaf pigment analysis.
Leaf pigments were determined by ultra high performance liquid chromatography (UHPLC) using a Dionex
UltiMate 3000 system equipped with an Acclaim 120 C18 column (5-µm particle size, 4.6-mm internal
diameter × 150-mm length) maintained into a Dionex TCC-100 column oven at 30 °C, and a Dionex UVD
170U detector (Thermo Scientific, Waltham MA, USA; Cotrozzi et al., 2018b). Leaf material (50 mg fresh
weight, FW) was homogenized in 1 mL of 100% HPLC-grade methanol and incubated overnight at 5 °C in
the dark. The sample supernatants were filtered through 0.2 µm Minisart® SRT 15 aseptic filters. The
pigments were eluted using 100% solvent A (acetonitrile/methanol, 75/25, v/v) for the first 14 min to elute
xanthophylls (neoxanthin, Neo; violaxanthin, Vio; antheraxanthin, Ant; lutein, Lut; zeaxanthin, Zea; in order
of elution), followed by a 1.5-min linear gradient to 100% solvent B (methanol/ethylacetate, 68/32, v/v),
which was pumped for 14.5 min to elute chlorophyll b (Chl b) and chlorophyll a (Chl a) and β-carotene (β-

car), followed by 2-min linear gradient to 100% solvent A. The flow rate was 1 ml min⁻¹. The column was 2³5 allowed to re-equilibrate in 100% solvent A for 1 min before the next injection. The pigments were 2<u>4</u>36 detected by their absorbance at 445 nm. To quantify the pigment content, known amounts of pure 2/37 standards were injected into the UHPLC system and an equation correlating the peak area to pigment **238** concentration was formulated. The data were processed using the Thermo Scientific Dionex Chromeleon 7 1**2**39 Chromatography Data System software. Total chlorophyll content (Chl_{TOT}) was calculated as Chl a + Chl b. **2440** Total carotenoid content (Car_{TOT}) was calculated as Neo + Vio + Ant + Lut + Zea + β -car, while the **2**41 xanthophyll cycle pigment content (VAZ) was calculated as Vaz + Ant + Zea. The de-epoxidation state (DEPS) 1**242** was calculated as (Ant + Zea)/VAZ. ²3 244 Assessment of growth and biomass 2**2;45 246** 29 Plant height, number of leaves and base diameter were recorded at the beginning and the end of the 3**2**1**47** experiment with a ruler and a caliper with 1-mm accuracy. Total above- and below-ground biomass of all plants was harvested at the end of the experiment and put in the oven at 70 °C until constant weight was **2549** reached (ab. 72 hours). After that, DW of each plant organ was determined by a scale (Model Bp110, 3**250** Sartorius weighing technology, Germany). **2**52

Statistical analysis

2754 48 Data from the plants in each plot were averaged and the average was used as statistical unit, i.e. N = 3 5**255** plots. Data were tested for normal distribution and homogeneity of variance by Smirnoff and Levene tests, 5**256** respectively. The effects of O₃ on the linear relationship between g_s and VPD were tested by an analysis of **257** 55 covariance (ANCOVA). To assess the effect of O₃ and measurement time on A and g_s, we applied a two-way 5**258** analysis of variance (ANOVA). For the other parameters, the effect of O₃ was tested by one-way ANOVA

4**253**

259 1	followed by Tukey's multiple comparison test. All statistical tests were carried out by R software (R 3.5.1: R
260 3	Core Team, 2018).
2 61	
6 262 8 263 10	Results
10 11 1 264	Foliar traits and pigments
13 1 265 15	
1 266 17	Date palms showed LMA values in the range of 119 to 133 g m ^{-2} (Tab. 1). There were no significant effects
18 1 267 20	of O_3 on LMA, while LWC was increased by O_3 . In fact, LWC values were significantly higher in 2 × AA than in
2 2168 22	AA plants (+19%).
23 2 469 25	
2 270 27	Contents of ChI_{TOT} and Car_{TOT} significantly decreased only under 1.5 × AA, compared with AA (-22 and -32%,
2 271 29	respectively), while VAZ decreased under both 1.5 \times AA and 2 \times AA (ca30%; Tab. 1). Lut values were 26%
30 3 2172 32	lower under 1.5 x AA than under 2 x AA, but there were no significant difference comparing these enriched
32 73 34 32 74 36	O_3 concentrations with AA. No significant O_3 effects were found on Chl a/b ratio, β -car, and DEPS.
37 3 275 39 4 276 41	Leaf gas exchange
42 277 43	The daily measurements of leaf gas exchange indicate a significant effect of O_3 on A and g_s (Tab. 2). Only
44 4 2578 46	the highest $2 \times AA O_3$ treatment induced a significant decline of A (-51% on July 23^{rd} and -48% on July 30^{th})
4 279 48	and g_s (-57% on July 23 rd and -59% on July 30 th) relative to AA, which occurred only in the morning, although
49 5 280	the interaction of daytime and O_3 treatment was not significant. The responses of g_s to VPD are shown in
51 5 281 53	Fig. 2. Stomatal conductance decreased with increasing VPD at AA and 1.5 x AA treatments. An ANCOVA
5 282 55	test revealed that the y-intercept of the relationship between g_{s} and VPD was lower in 1.5 x AA compared
56 5 2/83	to the control (AA). There was no statistically significant relationship between g_s and VPD at the highest
58 59 60 61 62 63 64 65	12

4 level of O₃ treatment (2.0 x AA). Dark respiration rate (R_n) was significantly lower in AA than in 1.5 AA and 2 5 × AA plants (-28% and -36%, respectively) (Fig. 3).

Parameters of the stomatal conductance model are shown in Table S1 and Fig. S1. The maximum stomatal conductance to O₃ (g_{max}) value was set to 73 mmol O₃ m⁻² PLA s⁻¹ as 95th percentile of g_{sto} measurements (Table S1, Fig. S1). The minimum stomatal conductance (f_{min}) value was set to 0.06 (fraction) corresponding to the 5th percentile values of the stomatal conductance recorded throughout the measurements. Stomatal response to light (f_{light}) showed a typical saturation curve with a light saturation point above 2000 µmol m⁻² s⁻¹ (Fig. S1a). The f_{O3} indicates that O₃ decreased stomatal conductance by 0.31% per unit O₃ concentration (ppb) in date palm leaves (Fig. S1b). The optimal temperature for stomatal opening was 27 °C (Fig. S1c). VPD higher than 2.6 kPa induced stomatal closure (Fig. S1d).

Chlorophyll a fluorescence

At ambient O₃ level, the induction curve was significantly higher than in the palm leaves exposed to elevated O₃ levels after 300 μ s (Fig. S2). The curves of leaves exposed to 1.5 x AA and 2 x AA O₃ exposure exhibited a similar pattern. The relative variable fluorescence Δ V showed marked differences between the AA controls and the two elevated O₃ treatments (Fig. S3a), with the biggest differences within the O-Jphase and the J-I-phase and a lower difference within the I-P-phase, but without a distinct peak at the Jphase and the I-Step (marked as Δ V₁ and Δ V₁). This presentation of fluorescence kinetics showed only a small difference between both groups of O₃ treated leaves at 150 μ s compared to the AA group (Fig. S3b). On the other hand, marked differences between the control group at ambient O₃ and the two groups exposed to 1.5 and 2 times enhanced O₃ concentrations were identified in Δ W_{OJ} (Fig. S3c) with a peak marked as Δ W_K at an average time of 500 μ s. At the beginning of the fluorescence kinetics after 150 μ s of illumination, values at the L-Step were similar between AA and O₃ treatments (Fig. 4a). In addition, marked differences in the extent and range of the resulting values at the K-Step (t = 300 to 600 μ s) were observed between O₃ treatments and AA, with mostly positive values indicating that the fluorescence level of O_3 treated date palm leaves at this step was higher than in AA (Fig. 4b). The variable fluorescence levels at step J (t = 2 ms) and I (t = 30 ms) also showed marked differences between O_3 treated plants and the AA group (Fig. 4c,d).

The quantum yield of photosystem II (φ_{Po}) showed statistically significant differences between AA and leaves of plants growing at 1.5 x AA and 2 x AA, but no differences were found between 1.5 x AA and 2 x AA (Fig. 5a). The same findings were observed for the performance index PI total (Fig. 5b) and for the number of reaction centers per absorption (10RC/ABS, Fig. 5d). One-way ANOVA revealed a significant difference (p< 0.05) between AA and 1.5 x AA for the energy dissipation per active reaction center chlorophyll DI₀/RC (Fig. 5c). However, there were no statistically significant differences between AA and 2 x AA as well as between 1.5 x AA and 2 x AA for this parameter.

Volatile organic compounds

Isoprene emission was significantly impaired by both elevated O₃ treatments (-58% at 1.5 x AA and -50% at 2 x AA), while the relative expression of isoprene synthase transcripts showed a large variability and no clear response to O₃ (Fig. 6a,b). Date palm emitted also small amounts of monoterpenes such as α -pinene, β -pinene, octanal, nonanal, camphor, iso-borneol (data not shown), whose emission was stimulated in 2 x AA plants, so that the emission of total VOCs decreased only at 1.5 x AA (-57% relative to AA) (Fig. 6c,e). Also the relative expression of monoterpene synthases was very variable and the increases at 2 x AA were not statistically significant (Fig. 6d). Isoprene emission was correlated positively with net photosynthesis (Fig. 7a) and negatively with intercellular CO₂ concentration (Ci) (Fig. 7b). However, such correlations were not found in monoterpene emission.

4 Growth and biomass

Plant height, number of leaves and base diameter were not affected by O_3 treatments (data not shown). However, during the 3-month experiment, the plants significantly increased in diameter from the beginning of the experiment (2.06 ± 0.31 cm) to the end (2.80 ± 0.46 cm), while plant height (107 ± 8.9 cm vs. 111 ± 9.4 cm) and number of leaves (5.5 ± 1.0 vs. 6.0 ± 0.8) were unaltered. Above- and below-ground biomass decreased with increasing O_3 treatments, but the effect was significant only for the 2 x AA roots relative to AA roots (-36%) (Fig. 8a,b).

Discussion

The growth conditions at the study site were suitable for date palm as suggested by the increase in base diameter over the experiment. For instance, the average diurnal air temperature was 19.5/27.8/29.2/30.1°C in May/June/July/August, i.e. in the range of values in Riyadh, Saudi Arabia (31.1/33.7/34.8/32.7 °C), that is one of the major area of date palm distribution and cultivation (Aleid et al., 2015). The stomatal conductance model showed that the optimal temperature for stomatal opening was 27 °C in this date palm cultivar. The O₃ levels were realistic as they well simulated the conditions in Riyadh. For instance, the O₃ peaks in May/June/July/August were 72/110/105/92 ppb at the ozone FACE and 66/95/98/90 ppb in Riyadh (Butenhof et al., 2015). Such realistic O₃ levels translated into very high values of AOT40. At the end of the experiment, in fact, the date palms were exposed to AOT40 levels that were 4 (AA), 9.2 (1.5 x AA) and 12.4 (2 x AA) times higher than the critical level recommended to protect plants from O₃ injury, i.e. 5 ppm h (CLRTAP, 2014).

7 Photosynthetic responses to ozone exposure

Elevated O_3 exposure induced significant negative effects on date palm photosynthesis in the morning, especially at the highest 2 x AA O_3 level. Stomatal resistance to CO_2 transport may be considered as a factor to limit photosynthetic activity in elevated O_3 (Kitao et al., 2009; Hoshika et al., 2020b). In fact, stomatal

closure due to elevated O₃ exposure was observed in the morning for date palm plants. However, such stomatal closure cannot be found in the afternoon, suggesting that the closing response induced by atmospheric humidity deficit may over-rule stomatal sensitivity to O₃. Interestingly, the highest O₃ treatment (2 x AA) induced a loss of stomatal response to VPD. It has been shown that O₃ exposure causes an impairment of efficient stomatal control of gas exchange, i.e. stomatal sluggishness (Paoletti, 2005; Hoshika et al., 2019, 2020a). Hoshika et al. (2019) demonstrated that the sluggish response of stomata was attributed to ethylene emission. However, the mechanisms are still under investigated.

A reduction of photosynthesis due to elevated O_3 exposure may be caused by not only stomatal but also biochemical limitation (Hoshika et al., 2020b). In fact, an impairment of the gas exchange was in accordance with the overall reduction of photosynthetic pigments (i.e. Chl_{tot} and Car_{tot}) which play a crucial role in light harvesting for photosynthesis. The degradation of chlorophyll and carotenoids was similarly found in O₃ exposed leaves due to oxidative-stress destruction (Watanabe et al., 2013; Cotrozzi et al., 2018a). Fast chlorophyll fluorescence kinetics of dark-adapted samples indicated that O₃ exposure strongly affected photosynthetic electron transport in date palm leaves. Ozone exposure decreased the maximum quantum efficiency of PSII (ϕ_{Po} ; F_V/F_M), the average performance (PI _{TOT}), and the activity of PSII RCs as reported before (Contran et al., 2009; Bussotti et al., 2011; Pellegrini et al., 2011; Salvatori et al., 2013; Zhang et al., 2018b). Recently, we developed a new spectroscopic model to predict these fluorescence parameters in date palm (Cotrozzi et al., 2020). For a detailed analysis of hyperspectral parameters see Cotrozzi et al. (2020). In addition, our results show clear differences within the OJ-phase between the control AA group and the two groups growing at elevated O₃. The differences in the functionality of PSII of date palms exposed to elevated O₃ were not caused by a lesser connectivity between PSII units, since there was no significant difference of the fast fluorescence kinetics at 150 µs between plants exposed to either elevated O_3 treatment or AA. Many studies demonstrated that inactivation of the oxygen evolving complex (OEC) is a typical reaction of plants to abiotic stress like heat stress or drought (Oukarroum et al., 2007; Oukarroum et al., 2009; Hu et al., 2020). This inactivation leads to an inhibition of electron transport by releasing the manganese cluster, the main component of OEC, thereby causing an
 imbalance between the electron flow from the OEC to the RCs (Chen et al., 2016). Studies on the effect of
 elevated O₃ on the photosynthetic performance of several woody species such as beech, oak and poplars
 showed that inactivation or breakdown of OECs represent an early response to O₃ stress (Bussotti et al.,
 2011; Desotgiu et al., 2013), as also observed in our experiment.

394 Differences were not only found within the OJ-phase, but also the JI-phase and to a lesser extent the IP-¹395 phase. The JI-phase is related to the redox state of the plastoquinone pool (Tóth et al., 2007). Its redox is 1**396** affected by oxidative stress caused by O₃, probably via the plastidic NADH-plastoquinone oxidoreductase **3**97 (Ndh) complex (Guéra et al., 2005). Thus, the present findings suggest that oxidative stress due to O_3 ²3 2**398** exposure led to disturbances in the plastoquinone pool of the photosynthetic electron transport chain. The 2**399** IP-phase of the fluorescence transient is related to photosystem-I (PSI) activity (Schansker et al. 2005), **400** 29 indicates the rate of reduction of ferredoxin (Cascio et al., 2010) and is thought to constitute a measure of 4**01** PSI electron acceptors (Tsimilli-Michael and Strasser, 2008; Živcák et al., 2014). Experiments with Quercus ilex L. and Arbutus unedo L. showed that the activity of PSI has a key role in O₃-mediated oxidative stress **403** 36 (Mereu et al., 2011). Bussotti et al. (2011) reported that the main impact of O_3 -mediated oxidative stress 3**404** was in and beyond PSI for poplar hybrids. However, our results suggest that date palms were less sensitive to O_3 in the last part of the photosynthetic electron transport chain, with only a minor effect on PSI activity.

4907 Isoprene and monoterpene responses to ozone exposure

Volatile isoprenoids such as isoprene and monoterpenes are among the most abundant and reactive biogenic VOCs produced by plants (Guenther et al., 2012). Isoprene-emitting species occur in many plant taxa across many functional types, but they are more often found in woody plant species including palms (Kesselmeier and Staudt, 1999). Our date palms emitted low amounts of isoprene (on average 8.4 ± 0.8 ng $m^{-2} s^{-1}$ in AA) relative to literature data for this species (~27 ng m⁻² s⁻¹ in Arab et al., 2016, still at 30 °C but

408

under 1200 μ mol m⁻² s⁻¹ PAR). Tree species on average emit 22-79 ng m⁻² s⁻¹ isoprene at or near standard conditions, but different leaf environments and measurement techniques may significant affect such values (Geron et al., 2001). Isoprene emission from date palm leaves declined at both 1.5 and 2 x AA relative to AA, while the relative expression of isoprene synthase transcripts did not respond to O₃. Photosynthesis and isoprene emission declined in tandem, which is supported by a meta-analysis of isoprenoid responses to abiotic factors including O₃ (Feng et al., 2019).

Interestingly, date palm also produced low amounts of total monoterpenes (on average 1.8 ± 0.3 ng m⁻² s⁻¹ in AA), whose emission was stimulated in 2 x AA leaves, although an increase in the relative expression of monoterpene synthase transcripts in 2 x AA leaves was not statistically significant. The stimulation of monoterpene emission by O₃ exposure was similarly reported mainly in evergreen species by the metaanalysis (Feng et al., 2019). The monoterpene emission from date palm leaves in elevated O₃ was not dependent on photosynthesis. The uncoupling of monoterpene emission from photosynthesis may be a hormetic response to the initial stage of stress (Agathokleous et al., 2018).

Biomass responses to ozone exposure

A leaf-level photosynthetic activity may be closely related to plant growth. As a result of O₃-induced damage to photosynthetic activity, biomass accumulations are usually limited (Li et al., 2017; Gao et al., 2017). In date palm, however, plant height, number of leaves, base diameter and above-ground biomass were not significantly affected by elevated O₃ exposure, while root biomass was reduced only at the highest 2 x AA level. It is well known that a reduction of photosynthate allocation to roots is one of the first steps of O₃ injury to plants (Carriero et al., 2015; Mrak et al., 2019). Decrease in root biomass due to O₃ was reported in approx. 40% of studies on trees according to a meta-analytic review (Agathokleous et al., 2016).

B9 Reasons of intermediate susceptibility to ozone

Ozone exposure did not significantly affect most of the growth parameters, although 2 x AA O_3 exposure reduced below-ground biomass. These results indicate that this date palm cultivar may be intermediately susceptible to O_3 . In fact, evergreen species such as date palm is more resistant to O_3 than deciduous species (Feng et al., 2018), because larger availability of cell walls implies larger apoplastic substrate for O_3 detoxification (Moldau, 1998). However, plant resistance to O₃ may depend not only on leaf habit (deciduous and evergreen) but also various physiological factors (Feng et al., 2018).

A well-known factor mitigating O₃ susceptibility of plant species is low stomatal conductance and, thus, restricted stomatal O_3 uptake (Reich, 1987). Here we present a Jarvis-type stomatal conductance model for 2**450** estimating the maximum g_s in this species and estimated a g_{max} value (73 mmol O_3 m⁻² s⁻¹) that is in line with the values of desert shrubs and in the lower range of global values found in a meta-analysis of gs in woody **452** 29 plants (Hoshika et al., 2018). Although our g_{max} value was slightly higher than previous observations of g_s in 3**453** the same species (40 to 50 mmol O₃ m⁻² s⁻¹, Du et al., 2018; Kruse et al., 2017, 2019), a previous Jarvis-type g_s modeling study on *P. dactylifera* found a much higher g_{max} in a different cultivar (ab. 200 mmol O₃ m⁻² s⁻¹ **455** 36 in cv. Medjool, Sperling et al 2014). Stomatal conductance of different date palm cultivars may differ 3**456** considerably (Al-Jabr et al., 2007), thus suggesting that further cultivar-specific studies are also needed. Such a low capacity of stomatal O_3 uptake implied an uncoupling of AOT40 and POD1 values. In fact, AOT40 values at the end of the experiment were 2.3 and 3.1 times higher than AA, while POD1 values were only 4**459** 1.6 and 1.9 times higher in 1.5 x AA and 2 x AA, respectively, which well synthesizes the elevated stomatal defense capacity of date palm from elevated atmospheric concentrations of O₃. As a matter of fact, the 5**461** function f_{03} indicates that O_3 decreased stomatal conductance by 0.31% per unit O_3 concentration (ppb) in date palm. As a result, 2 x AA O₃ exposure reduced g₅ by 46%. Ozone-induced stomatal closure may act as an avoidance response to reduce a possible O_3 damage to plants (Hoshika et al., 2020a).

Stomatal closure, however, may also cause excess light energy and production of reactive oxygen species (ROS), which raises susceptibility to photoinhibitory damage (Takagi et al., 2017; Giudi et al., 2019). It 4⁴67 seems that date palm plants adopted a major protective mechanism to reduce the absorption of excitation energy and preserve photosystems from photoinhibition through a reduction in the number of light-**469** harvesting antennae rather than in the chlorophyll antenna size (as confirmed by the unchanged values of 1**470** Chl a/b ratio; Cotrozzi et al., 2018b). Indeed, no other differential responses in leaf pigment parameters were observed between plants exposed to 1.5 and 2 x AA levels. Although a reduction of VAZ was **72** observed, other well-known photo-protective mechanisms (i.e. changing chlorophyll composition, **47**3 increasing β -car levels and DEPS; Esteban et al., 2015) were not activated, indicating that a re-organization of the photosynthetic apparatus did not occur and confirming the intermediate susceptibility to O_3 of date 24**75** palm.

477 29 The ability of increasing dark respiration under O_3 stress may have also contributed to mitigate the 3**478** susceptibility of date palm. While the respiratory CO₂ loss is a major cause for the reduction of carbon gain due to elevated O₃ (Zhang et al., 2018a; Podda et al., 2019), dark respiration is important in the 36 biosynthetic processes of growth and maintenance, which raises a metabolic capacity for repair of 3**481** damaged tissues and detoxification especially under abiotic and/or biotic stress (Weraduwage et al., 2011). In fact, no oxidative damage (assessed in terms of lipid peroxidation) was observed under both increased **83** O_3 concentrations, with a slight decrease of hydrogen peroxide reported only under 2 x AA (Arab et al. in 4**484** prep). This response was due to an ability of date palm to regulate its major enzymatic and non-enzymatic antioxidants. In particular, the decreased Cartot (only under 1.5 x AA) and VAZ values indicate that these 5**486** compounds could be consumed by the cell in order to counteract the possible reactive oxygen species generation by preventing their peroxidation action. Is it known that they are involved in non-photochemical **488** 55 quenching mechanisms, thus reducing the risk of photo-oxidative stress (Niinemets et al., 2003). Based on 5**4,89** relative physical-chemical features and intra-cellular distribution, these antioxidant compounds may serve distinct and complementary functions (Close and Beadle, 2003).

476

If isoprene emission confers protection to date palm against O_3 injury (Loreto and Velikova, 2001; Velikova et al., 2005), we may expect that synthesis and emission of isoprene increased with increasing O_3 exposure. However, our results contrasted with this hypothesis, suggesting that isoprene emission from date palm **495** leaves may have not contributed to the protection against O_3 stress. A recent review questioned the 1**496** common belief that isoprene has immediate, physical effects on plants such as changing membrane **497** properties or quenching ROS (Lantz et al., 2019), because it is highly volatile and does not dissolve into **498** cellular components in great quantity (Harvey et al., 2015). Interestingly, on the other hand, O_3 increased monoterpene emission, which may be also considered as a factor to protect plants from O₃ damage (Fares et al., 2008). While isoprene and monoterpenes share common biosynthetic pathways, monoterpenes are **501** usually stored after synthesis in special organs, such as resin ducts or glands (Kesselmeier and Staudt, 2**5:02** 1999). So far, it is unclear whether O₃ may have a direct effect on the storage pools of monoterpenes, and **503** 29 also the number of O_3 studies on monoterpene-emitting species is limited (e.g. Carriero et al., 2016; 3**5**04 Mochizuchi et al., 2017). Hadacek et al. (2011) proposed that non-linear hormetic effects regulate the responses of stored secondary metabolites to abiotic factors, and that the reduction of ROS is a key step of **506** the hormetic effects caused by these compounds. ROS are known to be stimulated by O₃ exposure 3**507** (Pellegrini et al., 2019; Podda et al., 2019) as also shown in our date palms (data not shown). Overall, our results warrant more research on the redox chemistry of terpenoids under O₃ stress. 4**5**09

45510 Conclusions

This is the first experiment on date palm responses to chronic, realistic O₃ exposure. Significant declines of several gas exchange parameters and root biomass occurred only at the highest 2 x AA O₃ level. Some variables that are usually known as early responses to O₃ stress, responded already at 1.5 x AA. Isoprene emission did not appear to contribute to date palm O₃ tolerance as it declined at both elevated O₃ levels. In contrast, monoterpene emission was stimulated at 2 x AA and its O₃ responses should be further evaluated.

The major defense mechanisms that emerged from this study were avoidance of O_3 stress (i.e. exclusion of O_3 entry by low maximum stomatal conductance to O_3 [73 mmol O_3 m⁻² s⁻¹] and O_3 -induced stomatal stomatal closure) and high capacity of catabolizing metabolites for detoxification and repair as indicated by increased dark respiration. We thus conclude that this date palm cultivar was intermediately susceptible to O_3 , but further studies with different cultivars are recommended as date palm cultivars may significantly differ in their physiological traits such as stomatal conductance. These results are needed for a proper O_3 risk assessment in the areas where *P. dactylifera* grows.

6 Acknowledgments

We acknowledge: MITIMPACT project (INTERREG V A – Italy – France ALCOTRA); Fondazione Cassa di Risparmio di Firenze for supporting the ozone FACE development; Barbara Mariotti for help during field measurements; Cesare Garosi and Alessandra Marchica for biomass assessment; Moreno Lazzara for plant cultivation; Alessandro Materassi, Francesco Sabatini and Gianni Fasano for ozone FACE maintenance. The authors extend their appreciation to the Deanship of Scientific Research at King Saud University, Saudi Arabia, for partially funding this work through research group RG-1435-018. Financial support of L.A. by a short-term travelling grant of the Federation of European Societies of Plant Biology (FESPB) is gratefully acknowledged.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author contribution

E. Paoletti, Y. Hoshika, L. Arab, and H. Rennenberg conceived the study and methodology, and Y. Hoshika, L. 5⁄44 Arab, S. Martini, L. Cotrozzi, D. Weber and P. Ache acquired data from the ozone FACE experiment; Y. ⁴ 545 Hoshika and S. Martini contributed to the analysis of leaf gas exchange and biomass data; L. Neri and R. Baraldi contributed to the analysis of BVOC emission; L. Cotrozzi and E. Pellegrini contributed to the **547** analysis of leaf pigments; D. Weber contributed to the analysis of chlorophyll fluorescence data; P. Ache, L. 1**548** Arab, H.M. Müller and R. Hedrich contributed to the analysis of RNA data; E. Paoletti, R. Hedrich, S. Alfarraj and H. Rennenberg contributed to the interpretation of data to understand the date palm defense ¹550 mechanisms to ozone stress. E. Paoletti prepared the draft of the manuscript and all authors were involved in writing the paper. **5**152 2**53** 2**554 555** 29 References 3**5**56 Agathokleous, E., Kitao, M. & Calabrese, E.J. (2018). Emission of volatile organic compounds from plants shows a biphasic pattern within an hormetic context. Environmental Pollution 239, 318-321. Agathokleous, E., Saitanis, C. J., Wang, X., Watanabe, M., & Koike, T. (2016). A review study on past 40 years of research on effects of tropospheric O_3 on belowground structure, functioning, and processes of trees: a linkage with potential ecological implications. Water, Air, & Soil Pollution, 227(1), 33. Aleid, S. M., Al-Khayri, J. M., & Al-Bahrany, A. M. (2015). Date palm status and perspective in Saudi Arabia. In Jain, S. M., & Johnson, D. V. (Eds.), Date palm genetic resources and utilization (pp. 49-95). Springer, Dordrecht. Arab, L., Cotrozzi, L., Lorenzini, G., Nali, C., Pellegrini, E., Hoshika, Y., Paoletti, E. & Rennenberg, H. **566** 52 Chronic ozone exposure modulates the foliar and root metabolome of date palm (Phoenix dactylifera) saplings. (in prep) **568** 56 Al-Jabr, A. M., Al-Khateeb, A. A., Al-Khateeb, S. A., & Al-Ayied, H. Y. (2007). Effects of Red Palm Weevil **5769** 58 Rynchophorus ferrugineus (Olivier) infestation on gas exchange capacity of two date palm Phoenix **570** 60 dactylifera L. cultivars. Journal of Biological Sciences, 7, 1270-1273

- 571 Arab, L., Kreuzwieser, J., Kruse, J., Zimmer, I., Ache, P., Alfarraj, S., Al-Rasheid, K. A., Schnitzler, J.-P., 1 5⁄72 Hedrich, R., & Rennenberg, H. (2016). Acclimation to heat and drought-Lessons to learn from the date 3 5₄**73** palm (Phoenix dactylifera). Environmental and Experimental Botany, 125, 20-30. 5 5**7**4 https://doi.org/10.1016/j.envexpbot.2016.01.003
- 575 Baraldi, R., Przybysz, A., Facini, O., Pierdonà, L., Carriero, G., Bertazza, G., & Neri, L. (2019). Impact of
 drought and salinity on sweetgum tree (*Liquidambar styraciflua* L.): understanding tree ecophysiological
 responses in the urban context. *Forests*, *10*(11), 1032. https://doi.org/10.3390/f10111032
- Böhm, J., Messerer, M., Müller, H. M., Scholz-Starke, J., Gradogna, A., Scherzer, S., ... & Ache, P. (2018).
 Understanding the molecular basis of salt sequestration in epidermal bladder cells of *Chenopodium* quinoa. Current Biology, 28(19), 3075-3085. https://doi.org/10.1016/j.cub.2018.08.004
- Bussotti, F., Desotgiu, R., Cascio, C., Pollastrini, M., Gravano, E., Gerosa, G., Marzuoli, R., Nali, C.,
 Lorenzini, G., Salvatori, E., Manes, F., Schaub, M., & Strasser, R. J. (2011). Ozone stress in woody
 plants assessed with chlorophyll a fluorescence. A critical reassessment of existing data. *Environmental*and *Experimental Botany*, 73(1), 19–30. https://doi.org/10.1016/j.envexpbot.2010.10.022
- 2**585** Butenhoff, C. L., Khalil, M. A. K., Porter, W. C., Al-Sahafi, M. S., Almazroui, M., & Al-Khalaf, A. (2015). 29 3**586** 31 Evaluation of ozone, nitrogen dioxide, and carbon monoxide at nine sites in Saudi Arabia during 2007. ³5787 Journal of the Air & Waste Management 65(7), 871-886. Association, 33 3**5488** 35 https://doi.org/10.1080/10962247.2015.1031921
- Carriero, G., Brunetti, C., Fares, S., Hayes, F., Hoshika, Y., Mills, G., ... & Paoletti, E. (2016). BVOC
 responses to realistic nitrogen fertilization and ozone exposure in silver birch. *Environmental Pollution*,
 213, 988-995. https://doi.org/10.1016/j.envpol.2015.12.047
- Cascio, C., Schaub, M., Novak, K., Desotgiu, R., Bussotti, F., & Strasser, R. J. (2010). Foliar responses to
 ozone of *Fagus sylvatica* L. seedlings grown in shaded and in full sunlight conditions. *Environmental and Experimental Botany*, *68*(2), 188–197. https://doi.org/10.1016/j.envexpbot.2009.10.003
- Chen, S., Yang, J., Zhang, M., Strasser, R., & Qiang, S. (2016). Classification and characteristics of heat tolerance in *Ageratina adenophora* populations using fast chlorophyll a fluorescence rise O-J-I-P.
 Environmental and *Experimental* Botany, 122, 126–140.
 https://doi.org/10.1016/j.envexpbot.2015.09.011
- CLRTAP (2014). Mapping Critical Levels for Vegetation. In *Manual on methodologies and criteria for modelling and mapping critical loads & levels and air pollution effects, risks and trends*. UNECE
 Convention on Long-range Transboundary Air Pollution, ICP Modelling and Mapping.

62

63

7

13

19

- 602 Close, D.C., Beadle, C.L. (2003) Alternate energy dissipation? Phenolic metabolites and the xanthophyll ¹ ⁶03 cycle. *Journal of Plant Physiology, 160*, 431-434.
- Contran, N., Paoletti, E., Manning, W. J., & Tagliaferro, F. (2009). Ozone sensitivity and ethylenediurea protection in ash trees assessed by JIP chlorophyll a fluorescence transient analysis. *Photosynthetica*, 7 606 47(1), 68–78. https://doi.org/10.1007/s11099-009-0012-9
- Cotrozzi, L., Lorenzini, G., Nali, C., Pellegrini, E., Saponaro, V., Hoshika, Y., Arab, L., Rennenberg, H., Paoletti, E. (2020). Hyperspectral reflectance of light-adapted leaves can predict both dark- and lightadapted Chl fluorescence parameters, and the effects of chronic ozone exposure on date palm (*Phoenix dactylifera*). International Journal of Molecular Sciences *21*, 6441; doi:10.3390/ijms21176441
- Cotrozzi, L., Campanella, A., Pellegrini, E., Lorenzini, G., Nali, C. & Paoletti, E. (2018a). Phenylpropanoids
 are key players in the antioxidant defense to ozone of European ash, *Fraxinus excelsior. Environmental Science and Pollution Research*, 25, 8137-8147. https://doi.org/10.1007/s11356-016-8194-8
- Cotrozzi, L., Remorini, D., Pellegrini, E., Guidi, L., Nali, C., Lorenzini, G., ... & Landi, M. (2018b). Living in a
 Mediterranean city in 2050: broadleaf or evergreen 'citizens'?. *Environmental Science and Pollution Research*, 25(9), 8161-8173. <u>https://doi.org/10.1007/s11356-017-9316-7</u>
- Desotgiu, R., Pollastrini, M., Cascio, C., Gerosa, G., Marzuoli, R., & Bussotti, F. (2013). Responses to ozone
 on Populus «Oxford» clone in an open top chamber experiment assessed before sunrise and in full
 sunlight. *Photosynthetica*, *51*(2), 267–280. https://doi.org/10.1007/s11099-012-0074-y
- ³⁶/₃C
 ³⁶/₃Doaigey, A. R., Al-Whaibi, M. H., Siddiqui, M. H., Al Sahli, A. A., & El-Zaidy, M. E. (2013). Effect of GA3 and
 ³⁸/₃C
 ³⁹/₄C
 ⁴⁰/₄C
 ⁴⁰/₄C
- ⁴²/₄₆₂₃ Du, B., Kreuzwieser, J., Winkler, J. B., Ghirardo, A., Schnitzler, J.-P., Ache, P., Alfarraj, S., Hedrich, R.,
 ⁴⁴/₄₆₂₄ White, P., & Rennenberg, H. (2018). Physiological responses of date palm (*Phoenix dactylifera*)
 ⁴⁶/₄₆₂₅ seedlings to acute ozone exposure at high temperature. *Environmental Pollution*, *242*, 905–913.
 ⁴⁸/₄₆₂₆ https://doi.org/10.1016/j.envpol.2018.07.059
- Esteban, R., Barrutia, O., Artetxe, U., Fernández-Marín, B., Hernández, A., & García-Plazaola, J. I. (2015).
 Internal and external factors affecting photosynthetic pigment composition in plants: a meta-analytical approach. *New Phytologist*, *206*(1), 268-280. https://doi.org/10.1111/nph.13186
- Fares, S., Loreto, F., Kleist, E. & Wildt, J. (2008). Stomatal uptake and stomatal deposition of ozone in isoprene and monoterpene emitting plants. *Plant Biology*, 10, 44-54. https://doi.org/10.1055/s-2007-60
 965257

62

50

Feng, Z., Yuan, X., Fares, S., Loreto, F., Li, P., Hoshika, Y., & Paoletti, E. (2019). Isoprene is more affected
 by climate drivers than monoterpenes: A meta-analytic review on plant isoprenoid emissions. *Plant, cell* & environment, 42(6), 1939-1949. https://doi.org/10.1111/pce.13535

Fernandes, F. F., Esposito, M. P., da Silva Engela, M. R. G., Cardoso-Gustavson, P., Furlan, C. M., Hoshika,
Y., Carrari, E., Magni, G., Domingos, M., & Paoletti, E. (2019). The passion fruit liana (*Passiflora edulis*Sims, Passifloraceae) is tolerant to ozone. *Science of The Total Environment*, 656, 1091–1101.
https://doi.org/10.1016/j.scitotenv.2018.11.425

- Fry, M. M., Naik, V., West, J. J., Schwarzkopf, M. D., Fiore, A. M., Collins, W. J., Dentener, F. J., Shindell, D.
 T., Atherton, C., Bergmann, D., Duncan, B. N., Hess, P., MacKenzie, I. A., Marmer, E., Schultz, M. G.,
 Szopa, S., Wild, O., & Zeng, G. (2012). The influence of ozone precursor emissions from four world
 regions on tropospheric composition and radiative climate forcing. *Journal of Geophysical Research: Atmospheres*, *117*(D7). https://doi.org/10.1029/2011JD017134
- 2645 Gao, F., Catalayud, V., Paoletti, E., Hoshika, Y., & Feng, Z. (2017). Water stress mitigates the negative 25 2646 effects of ozone on photosynthesis and biomass in poplar plants, Environmental Pollution, 230, 268-27 ²647 279. https://doi.org/10.1016/i.envpol.2017.06.044Geron, C., Harley, P. & Guenther, A. (2001). Isoprene 29 3**648** 31 emission capacity for US tree species. Atmospheric Environment 35. 3341-3352 ³649 https://doi.org/10.1016/S1352-2310(00)00407-6 33

Grulke, N. E., & Heath, R. L. (2020). Ozone effects on plants in natural ecosystems. *Plant Biology*, 22, 12 37. https://doi.org/10.1111/plb.12971

- 3652
39Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., & Wang, X. (2012).4653
41
42
43The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2. 1): an extended
and updated framework for modeling biogenic emissions. Geoscientific Model Development 5(6): 1471–
1492.4455
4551492.
- 4656 4**656** Guéra, A., Calatayud, A., Sabater, B., & Barreno, E. (2005). Involvement of the thylakoidal NADH-48 4**657** plastoquinone-oxidoreductase complex in the early responses to ozone exposure of barley (Hordeum 50 6**58** 51 Journal vulgare seedlings. of Experimental 56(409), 205-218. L.) Botany, 52 5**5**9 https://doi.org/10.1093/jxb/eri024
- 54
550Guidi, L., Lo Piccolo, E. & Landi, M. (2019) Chlorophyll fluorescence, photoinhibition and abiotic stress: Does56
5661it make any difference the fact to be a C3 or C4 species? Frontiers in Plant Science, 10, 174.58
5662https://doi.org/10.3389/fpls.2019.00174

26

60

- 61 62 63
- 64 65

- Hadacek, F., Bachmann, G., Engelmeier, D., & Chobot, V. (2011). Hormesis and a chemical raison d'ětre for
 secondary plant metabolites. *Dose-response*, 9(1), dose-response. https://doi.org/10.2203/dose response.09-028.Hadacek
- Harvey, C.M. & Sharkey, T.D. (2016). Exogenous isoprene modulates gene expression in unstressed
 Arabidopsis thaliana plants. *Plant, Cell and Environment*, 39, 1251–1263.
 https://doi.org/10.1111/pce.12660
- Harvey, C. M., Li, Z., Tjellström, H., Blanchard, G. J., & Sharkey, T. D. (2015). Concentration of isoprene in
 artificial and thylakoid membranes. *Journal of Bioenergetics and Biomembranes*, 47(5), 419-429.
 https://doi.org/10.1007/s10863-015-9625-9
- Heckathorn, S. A., Coleman, J. S., & Hallberg, R. L. (1998). Recovery of net CO₂ assimilation after heat
 stress is correlated with recovery of oxygen-evolving-complex proteins in *Zea mays* L. In
 Photosynthetica. 34, 13–20. https://doi.org/10.1023/A:1006899314677
- 2675 Hewitt, C. N., MacKenzie, A. R., Carlo, P. D., Marco, C. F. D., Dorsey, J. R., Evans, M., Fowler, D., 25 2676 Gallagher, M. W., Hopkins, J. R., Jones, C. E., Langford, B., Lee, J. D., Lewis, A. C., Lim, S. F., 27 2**6**77 McQuaid, J., Misztal, P., Moller, S. J., Monks, P. S., Nemitz, E., ... Stewart, D. J. (2009). Nitrogen 29 3**678** 31 management is essential to prevent tropical oil palm plantations from causing ground-level ozone ³679 pollution. Proceedings of the National Academy of Sciences, 106(44), 18447–18451. 33 3**680** 35 https://doi.org/10.1073/pnas.0907541106
- Hoshika, Y., De Carlo, A., Baraldi, R., Neri, L., Carrari, E., Agathokleous, E., Zhang, L., Fares, S. & Paoletti,
 E. (2019) Ozone-induced impairment of night-time stomatal closure in O₃-sensitive poplar clone is affected by nitrogen but not by phosphorus enrichment. *Science of the Total Environment*, 692, 713 722. https://doi.org/10.1016/j.scitotenv.2019.07.288
- Hoshika, Y., Fares, S., Pellegrini, E., Conte, A., & Paoletti, E. (2020a). Water use strategy affects avoidance
 of ozone stress by stomatal closure in Mediterranean trees—A modelling analysis. *Plant, Cell* &
 Environment, 43(3), 611–623. https://doi.org/10.1111/pce.13700
- Hoshika, Y., Haworth, M., Watanabe, M. & Koike, T. (2020b). Interactive effect of leaf age and ozone on
 mesophyll conductance in Siebold's beech. *Physiologia Plantarum*, 170(2), 172–186.
 https://doi.org/10.1111/ppl.13121
- Hoshika, Y., Osada, Y., De Marco, A., Penuelas, J., & Paoletti, E. (2018). Global diurnal and nocturnal
 parameters of stomatal conductance in woody plants and major crops. *Global ecology and biogeography*, 27(2), 257-275. https://doi.org/10.1111/geb.12681

62

63

56

17

694	Hu, S., Ding, Y., & Zhu, C. (2020). Sensitivity and responses of chloroplasts to heat stress in plants.
1 695	Frontiers in Plant Science, 11(April), 1–11. https://doi.org/10.3389/fpls.2020.00375
3 696	Kalaji, H. M., Schansker, G., Brestic, M., Bussotti, F., Calatayud, A., Ferroni, L., & Losciale, P. (2017).
5 6 97	Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynthesis Research,
7 698	<i>132</i> (1), 13-66. https://doi.org/10.1007/s11120-016-0318-y
9 1 699	Kesselmeier, J., & Staudt, M. (1999). Biogenic volatile organic compounds (VOC): an overview on emission,
11 1 7<u>0</u>0	physiology and ecology. Journal of atmospheric chemistry, 33(1), 23-88.
13 1 7401	Kitao, M., Löw, M., Heerdt, C., Grams, T.E.E., Häberle, KH. & Matyssek, R. (2009). Effects of chronic
15 1 7:02 17	elevated ozone exposure on gas exchange responses of adult beech trees (Fagus sylvatica) as related
17 1 7:03 19	to the within-canopy light gradient. Environmental Pollution, 157, 537-544.
2 704 21	https://doi.org/10.1016/j.envpol.2008.09.016
22 2 7305	Kruse, J., Adams, M. A., Kadinov, G., Arab, L., Kreuzwieser, J., Alfarraj, S., & Rennenberg, H. (2017).
24 2 7:06	Characterization of photosynthetic acclimation in <i>Phoenix dactylifera</i> by a modified Arrhenius equation
26 2 707	originally developed for leaf respiration. <i>Trees</i> , <i>31</i> (2), 623-644. https://doi.org/10.1111/nph.15923
28 2 7908	Kruse, J., Adams, M., Winkler, B., Ghirardo, A., Alfarraj, S., Kreuzwieser, J., & Rennenberg, H. (2019).
30 3 7109	Optimization of photosynthesis and stomatal conductance in the date palm <i>Phoenix dactylifera</i> during
32 3 7310	acclimation to heat and drought. <i>New Phytologist</i> , 223(4), 1973-1988.
34 3 7511	Kulshrestha, U., & Kumar, B. (2014). Airmass Trajectories and Long Range Transport of Pollutants: Review
36 3 7/12	of Wet Deposition Scenario in South Asia. Advances in Meteorology; Hindawi.
38 3 7913	https://doi.org/10.1155/2014/596041
40 4 7/14	Lantz, A. T., Allman, J., Weraduwage, S. M., & Sharkey, T. D. (2019). Isoprene: New insights into the control
42 4 7/15	of emission and mediation of stress tolerance by gene expression. <i>Plant, Cell & Environment</i> , 42(10),
44 4 7516 46	2808-2826. https://doi.org/10.1111/pce.13629
46 4 7717 48	Lelieveld, J., Hoor, P., Jockel, P., Pozzer, A., & Hadjinicolaou, P. (2009). Severe ozone air pollution in the
48 4 7/18 50	Persian Gulf region. Atmos. Chem. Phys., 14.
50 5 719 52	Li, P., Feng, Z., Catalayud, V., Yuan, X., Xu, Y., & Paoletti, E. (2017). A meta-analysis on growth,
52 5 720 54	physiological, and biochemical responses of woody species to ground-level ozone highlights the role of
54 5 721 56	plant functional types. Plant, Cell & Environment, 40(10), 2369–2380. https://doi.org/10.1111/pce.13043
57	
58 59	
60 61 62	
62 63	28
64 65	

- Loreto, F., & Velikova, V. (2001). Isoprene produced by leaves protects the photosynthetic apparatus against
 ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. *Plant Physiology*, *127*(4), 1781–1787. https://doi.org/10.1104/pp.010497
- 5 7**25** Matsubara, S., & Chow, W. S. (2004). Populations of photoinactivated photosystem II reaction centers 7 7**326** characterized by chlorophyll a fluorescence lifetime in vivo. Proceedings of the National Academy of 9 1**7/27** Sciences of the United States of America, 101(52), 18234-18239. 11 17/28 https://doi.org/10.1073/pnas.0403857102
- 1**7429** Mereu, S., Gerosa, G., Marzuoli, R., Fusaro, L., Salvatori, E., Finco, A., Spano, D., & Manes, F. (2011). Gas 15 1**730** exchange and JIP-test parameters of two Mediterranean maguis species are affected by sea spray and 17 1781 ozone interaction. Environmental 73. 80-88. and Experimental Botany, 19 2**7.82** https://doi.org/10.1016/j.envexpbot.2011.02.004
- Mills, G., Pleijel, H., Malley, C. S., Sinha, B., Cooper, O. R., Schultz, M. G., ... & Gerosa, G. (2018).
 Tropospheric Ozone Assessment Report: Present-day tropospheric ozone distribution and trends
 relevant to vegetation. *Elem Sci Anth*, 6(1)
- Mochizuki, T., Watanabe, M., Koike, T., Tani, A. (2017). Monoterpene emissions from needles of hybrid larch
 F₁ (*Larix gmelinii* var. *japonica* × *Larix kaempferi*) grown under elevated carbon dioxide and ozone.
 Atmospheric Environment 148, 197-202
- 3/39
 Moldau, H. (1998). Hierarchy of ozone scavenging reactions in the plant cell wall. *Physiologia Plantarum*,

 3/5
 3/40

 3/7
 104(4), 617-622. https://doi.org/10.1034/j.1399-3054.1998.1040414.x
- 3741
39Moura, B. B., Hoshika, Y., Silveira, N. M., Marcos, F. C. C., Machado, E. C., Paoletti, E., & Ribeiro, R. V.4742
41
41(2018). Physiological and biochemical responses of two sugarcane genotypes growing under free-air4743
43
43ozone exposure. Environmental and Experimental Botany, 153, 72–79.4744
45https://doi.org/10.1016/j.envexpbot.2018.05.004
- Mrak, T., Štraus, I., Grebenc, T., Gričar, J., Hoshika, Y., Carriero, G., ... & Kraigher, H. (2019). Different
 belowground responses to elevated ozone and soil water deficit in three European oak species
 (*Quercus ilex, Q. pubescens* and *Q. robur*). Science of the total environment, 651, 1310-1320.
 https://doi.org/10.1016/j.scitotenv.2018.09.246
- Niinemets, Ü., Kollist, H., García-Plazaola, J.I., Hernández, A., Becerril, J.M. (2003). Do the capacity and kinetics for modification of xanthophyll cycle pool size depend on growth irradiance in temperature trees? *Plant, Cell & Environment, 26,* 1787-1802.

63 64 65

60 61 62

13

- 752 Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., & Hayasaka, T. (2007). An Asian 7,53 emission inventory of anthropogenic emission sources for the period 1980-2020. Atmospheric 3 7₄54 Chemistry and Physics Discussions, 7(3), 6843–6902.
- 5 **755** Oukarroum, A., El Madidi, S., Schansker, G., & Strasser, R. J. (2007). Probing the responses of barley 7 7,56 cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-9 1**7**57 watering. Environmental Experimental Botany. 60(3), 438-446. and 11 1**7⁄58** https://doi.org/10.1016/j.envexpbot.2007.01.002
- 1**7459** Oukarroum, A., Schansker, G., & Strasser, R. J. (2009). Drought stress effects on photosystem I content and 15 1760 photosystem II thermotolerance analyzed using ChI a fluorescence kinetics in barley varieties differing 17 1761 in their drought tolerance. Physiologia Plantarum, 137(2), 188-199. https://doi.org/10.1111/j.1399-19 2762 3054.2009.01273.x

27263 Paoletti, E. (2005) Ozone slows stomatal response to light and leaf wounding in a Mediterranean evergreen 27464 broadleaf, Arbutus unedo. Environmental Pollution, 134, 439-445.

2765 https://doi.org/10.1016/j.envpol.2004.09.011

13

21

23

25

27 28

36

42

61 62

63 64 65

27966 Paoletti, E. (2006). Impact of ozone on Mediterranean forests: A review. Environmental Pollution, 144(2), 30 37167 463-474. https://doi.org/10.1016/j.envpol.2005.12.051 32

3768 Paoletti, E. (2007). Ozone impacts on forests. CAB Reviews: Perspectives in Agriculture, Veterinary Science, 34 3769 Nutrition and Natural Resources, 2(068). https://www.cabdirect.org/cabdirect/abstract/20083055513

3770 Paoletti, E., Materassi, A., Fasano, G., Hoshika, Y., Carriero, G., Silaghi, D., & Badea, O. (2017). A new-38 37971 generation 3D ozone FACE (Free Air Controlled Exposure). Science of The Total Environment, 575, 40 47/72 1407–1414. https://doi.org/10.1016/j.scitotenv.2016.09.217

4773 Papageorgiou, G. C., & Govindjee, G. C. (2004). Chlorophyll a fluorescence: a signature of photosynthesis 44 ⁴/774 (advances in photosynthesis and respiration). In Adv Photosynth Respir (Vol. 19, p. 818). Springer 46 4**775** 48 Dordrecht, The Netherlands.

4**776** 50 Parra, R. (2008). Contribution of oil palm isoprene emissions to tropospheric ozone levels in the Distrito 5**777** 52 Metropolitano de Quito (Ecuador). In Air Pollution. Sixteen International Conference on Modeling, 57**778** 54 Monitoring and Management of Air Pollution (pp. 95-104).

5**579** 56 Patankar, H., M. Assaha, D. V., Al-Yahyai, R., Sunkar, R., & Yaish, M. W. (2016). Identification of reference 5**780** genes for quantitative real-time PCR in date palm (Phoenix dactylifera L.) subjected to drought and 57**81** salinity. PloS one, 11(11), e0166216. https://doi.org/10.1371/journal.pone.0166216

Pellegrini, E., Francini, A., Lorenzini, G. & Nali, C. (2011). PSII photochemistry and carboxylation efficiency
 in *Liriodendron tulipifera* under ozone exposure. Environmental and Experimental Botany, 70, 217-226.
 https://doi.org/10.1016/j.envexpbot.2010.09.012

Pellegrini, E., Hoshika, Y., Dusart, N., Cotrozzi, L., Gérard, J., Nali, C., ... & Paoletti, E. (2019). Antioxidative
 responses of three oak species under ozone and water stress conditions. *Science of the total environment*, 647, 390-399. https://doi.org/10.1016/j.scitotenv.2018.07.413

Podda, A., Pisuttu, C., Hoshika, Y., Pellegrini, E., Carrari, E., Lorenzini, G., ... & Neri, L. (2019). Can nutrient
 fertilization mitigate the effects of ozone exposure on an ozone-sensitive poplar clone?. *Science of the Total Environment*, 657, 340-350. https://doi.org/10.1016/j.scitotenv.2018.11.459

1791 Pollastri, S., Jorba, I., Hawkins, T.J., Llusiá, J., Michelozzi, M., Navajas, D., Peñuelas, J., Hussey, P.J.,

Knight, M.R. & Loreto, F. (2019). Leaves of isoprene-emitting tobacco plants maintain PSII stability at
 high temperatures. *New Phytologist*, 223, 1307–1318. https://doi.org/10.1111/nph.15847

- 2794 R Core Team (2018) R: A language and environment for statistical computing. Vienna, Austria: R Foundation
 2795 for Statistical Computing. Retrieved from https://www.R-project.org/
 28
- Radaideh, J. A. (2016). Industrial air pollution in Saudi Arabia and the influence of meteorological variables.
 The Invironmental Science and Technology, *1*, 334.
- Rapparini, F., Baraldi, R., Miglietta, F., & Loreto, F. (2004). Isoprenoid emission in trees of *Quercus pubescens* and *Quercus ilex* with lifetime exposure to naturally high CO₂ environment. *Plant, Cell* &
 Environment, 27(4), 381-391. https://doi.org/10.1111/j.1365-3040.2003.01151.x
- Reich, P. B. (1987). Quantifying plant response to ozone: a unifying theory. *Tree physiology*, *3*(1), 63-91.
- Salvatori, E., Fusaro, L., Mereu, S., Bernardini, A., Puppi, G., & Manes, F. (2013). Different O3 response of sensitive and resistant snap bean genotypes (*Phaseolus vulgaris* L.): The key role of growth stage, stomatal conductance, and PSI activity. *Environmental and Experimental Botany*, *87*, 79–91.
 https://doi.org/10.1016/j.envexpbot.2012.09.008
- Schansker, G., Tóth, S. Z., & Strasser, R. J. (2005). Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the ChI a fluorescence rise OJIP. *Biochimica et Biophysica Acta Bioenergetics*, *1706*(3), 250–261. https://doi.org/10.1016/j.bbabio.2004.11.006

Schansker, G., Tóth, S. Z., & Strasser, R. J. (2006). Dark recovery of the Chl a fluorescence transient (OJIP)
 after light adaptation: The qT-component of non-photochemical quenching is related to an activated

31

59

17

19

24

32

- 60 61
- 62

13

21

photosystem I acceptor side. *Biochimica et Biophysica Acta - Bioenergetics*, 1757(7), 787–797. https://doi.org/10.1016/j.bbabio.2006.04.019

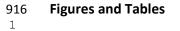
- Smoydzin, L., Fnais, M., & Lelieveld, J. (2012). Ozone pollution over the Arabian Gulf—Role of
 meteorological conditions. *Atmospheric Chemistry & Physics Discussions*, *12*, 6331–6361.
 https://doi.org/10.5194/acpd-12-6331-2012
- 9
 1816 Sperling, O., Shapira, O., Tripler, E., Schwartz, A., & Lazarovitch, N. (2014). A model for computing date
 palm water requirements as affected by salinity. *Irrigation science*, 32(5), 341-350.
- Strasser, R. J., Tsimilli-Michael, M., Qiang, S., & Goltsev, V. (2010). Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant *Haberlea rhodopensis*. *Biochimica et Biophysica Acta*, 1797(6–7), 1313–1326.
 https://doi.org/10.1016/j.bbabio.2010.03.008
- Takagi, D., Ishizaki, K., Hanawa, H., Mabuchi, T., Shimakawa, G., Yamamoto, H. & Miyake, C. (2017).
 Diversity of strategies for escaping reactive oxygen species production within photosystem I among land
 plants: P700 oxidation system is prerequisite for alleviating photoinhibition in photosystem I. *Phisiologia Plantarum*, 161, 56–74. https://doi.org/10.1111/ppl.12562
- 3826 Tóth, S. Z., Schansker, G., & Strasser, R. J. (2007). A non-invasive assay of the plastoquinone pool redox 31 3827 state based the OJIP-transient. Photosynthesis 93(1-3), 193–203. on Research, 33 ³8⁴28 https://doi.org/10.1007/s11120-007-9179-8 35
- 3629
37Tsimilli-Michael, M., & Strasser, R. (2008). In vivo Assessment of Stress Impact on Plant's Vitality:
Applications in Detecting and Evaluating the Beneficial Role of Mycorrhization on Host Plants. In Varma3830
39
49
41A. (Eds.), Mycorrhiza (pp. 679-703). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-
4832
43324831
43378826-3_32
- Van Heerden, P. D. R., Strasser, R. J., & Krüger, G. H. J. (2004). Reduction of dark chilling stress in N2 fixing soybean by nitrate as indicated by chlorophyll a fluorescence kinetics. *Physiologia Plantarum*, 121(2), 239–249. https://doi.org/10.1111/j.0031-9317.2004.0312.x
- 50 8**36** 51 Velikova, V., Tsonev, T., Pinelli, P., Alessio, G. A., & Loreto, F. (2005). Localized ozone fumigation system 52 837 for studying ozone effects on photosynthesis, respiration, electron transport rate and isoprene emission 54 2**838** field-grown Mediterranean species. Physiology. 25(12), 1523-1532. in oak Tree 56 5**8,39** https://doi.org/10.1093/treephys/25.12.1523
- 62 63 64

- Vickers, C.E., Possell, M., Velkova, V.B., Laothawornkitkul, J., Ryan, A., Mullineaux, P.M. & Hewitt, C.N.
 (2009). Isoprene synthesis protects transgenic tobacco plants from oxidative stress. *Plant, Cell and Environment*, 32, 520–531. https://doi.org/10.1111/j.1365-3040.2009.01946.x
- Watanabe, M., Hoshika, Y., Inada, N., Wang, X., Mao, Q. & Koike, T. (2013). Photosynthetic traits of Siebold's beech and oak saplings grown under free air ozone exposure. *Environmental Pollution*, 174, 50-56. https://doi.org/10.1016/j.envpol.2012.11.006
- Weraduwage, S. M., Micallef, B. J., Grodzinski, B., Taylor, D. C., & Marillia, E. F. (2011). Roles of dark
 respiration in plant growth and productivity. In Moo-Young M. (Eds.), *Comprehensive biotechnology 2rd Ed.*, pp. 191-207. Elsevier
- Yuan, X., Calatayud, V., Gao, F., Fares, S., Paoletti, E., Tian, Y., & Feng, Z. (2016). Interaction of drought
 and ozone exposure on isoprene emission from extensively cultivated poplar. *Plant, Cell* &
 Environment, 39(10), 2276-2287. https://doi.org/10.1111/pce.12798
- Zhang, L., Hoshika, Y., Carrari, E., Cotrozzi, L., Pellegrini, E. & Paoletti, E. (2018a). Effects of nitrogen and phosphorus imbalance on photosynthetic traits of poplar Oxford clone under ozone pollution. *Journal of Plant Research*, 131, 915-924. https://doi.org/10.1007/s10265-018-1071-4
- Zhang, L., Hoshika, Y., Carrari, E., Burkey, K. O., & Paoletti, E. (2018b). Protecting the photosynthetic performance of snap bean under free air ozone exposure. *Journal of Environmental Sciences*, *66*, 31 40. https://doi.org/10.1016/j.jes.2017.05.009
- Živčák, M., Olšovská, K., Slamka, P., Galambošová, J., Rataj, V., Shao, H. B., & Brestič, M. (2014).
 Application of chlorophyll fluorescence performance indices to assess the wheat photosynthetic functions influenced by nitrogen deficiency. *Plant, Soil and Environment*, 60(5), 210–215.
 https://doi.org/10.17221/73/2014-pse
- 4862
45Zuo, Z., Weraduwage, S.M., Lantz, A.T., Sanchez, L.M., Weise, S.E., Wang, J., Childs, K.L. & Sharkey, T.D.45
45
47(2019). Isoprene acts as a signaling molecule in gene networks important for stress responses and46
47
4864plant growth. *Plant Physiology*, 180, 124–152. https://doi.org/10.1104/pp.18.01391

5 Figure and table legends

Fig. 1. Environmental conditions over the experimental period (from May 20th to August 20th, 2019 = 92
days of exposure). a) Daily averages of temperature (Temp), vapor pressure deficit (VPD), photosynthetic
active solar radiation (PAR), and precipitation. b) Daily ozone averages and AOT40 and POD1 values in the
three ozone treatments, i.e. ambient air (AA), 1.5 x AA and 2 x AA.

Fig. 2. Relationship between stomatal conductance (g_s) and leaf-to-air vapor pressure deficit (VPD) in date palm leaves grown under different O₃ concentrations (AA, ambient, 1.5 x AA, 2 x AA). Data were obtained under a PPFD > 1000 µmol m⁻² s⁻¹. Simple linear regression analyses were applied: *** p < 0.001, ** p < 0.01, ns denotes not significant. Since the regressions were statistically significant for AA and 1.5 x AA, we applied the ANCOVA; * p < 0.05, ns denotes not significant.


Fig. 3. Average (± standard error) of dark respiration rate (R_n) on July 30th. Different letters show significant effects of the ozone treatments (AA, ambient, 1.5 x AA, 2 x AA) (Tukey test, p < 0.05, N = 3 plots).

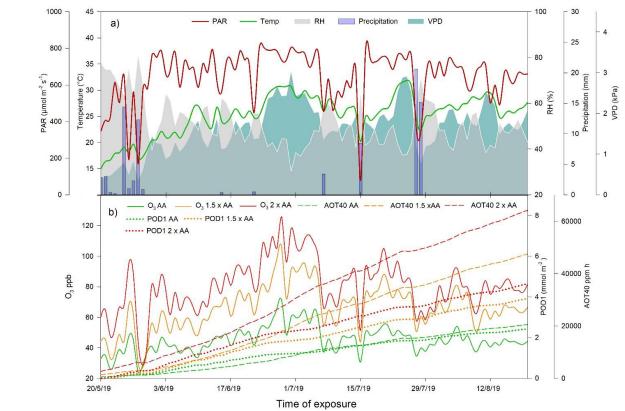
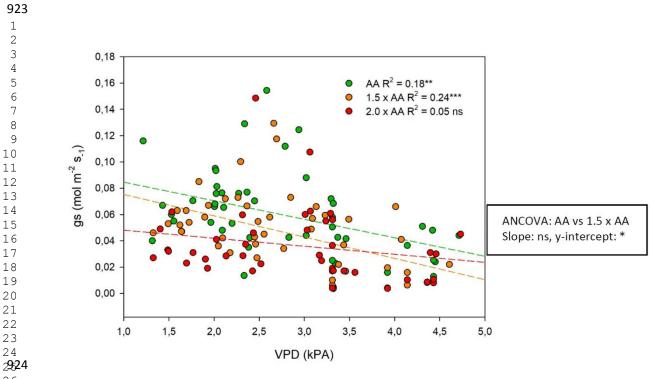

2**878** 29 Fig. 4. Effect of different ozone levels on date palms, assessed with Chlorophyll-a fluorescence 30 3**879** measurements in vivo. Boxplots show differences between elevated ozone levels compared to ambient 32 3**880** ozone level (AA). Orange boxes, 1.5 x AA; red boxes, 2 x AA. Whiskers: 1,5 x IQR, dots: outliers, cross: 34 3**581** 36 average, line: median; green dotted line at y = 0: reference value at ambient ozone level; n = 3 plots. (a) 37 3**882** ΔW_{L} difference of variable fluorescence ΔW_{OK} , at the L-Step at t = 150 μ s. (b) difference of variable 39 4883 fluorescence ΔW_{oJ} , at the K-Step t = 300-600 μ s. (c) difference of variable fluorescence ΔV , at the J-Step t = 41 42 **8**84 2 ms. (d) difference of variable fluorescence ΔV , at the I-Step t = 30 ms.

Fig. 5. Effect of different ozone levels on date palms on (a) maximum quantum yield for primary photochemistry φ_{Po} (b) the performance index PI_{TOT} , (c) energy dissipation per active reaction centres DI₀/RC, (d) reaction centres per absorption 10RC/ABS. Boxplots show: Green boxes, ambient ozone level (AA); orange boxes, 1.5 x AA; red boxes, 2 x AA. Whiskers: 1,5 x IQR, dots: outliers, cross: average, line: median. Different letters show significant differences among treatments (Tukey test, p<0.05, N = 3 plots).


Fig. 6. Average (± standard error) of isoprene emission (a), relative expression of isoprene synthase
 transcripts (b), monoterpene emission (c), relative expression of monoterpene synthases (d) and total

volatile organic compounds (VOC) emission (e) in date palm leaves on 1-2 August. Different letters show significant effects of the ozone treatments (AA, ambient, 1.5 x AA, 2 x AA) (Tukey test, p<0.05, N=3 plots). 8⁴94 Fig. 7. Relationships between BVOC emission and net photosynthesis (a, isoprene; c, monoterpene), 8⁄95 intercellular CO₂ concentration (b, isoprene; d, monoterpene) in date palm leaves grown under different O₃ **896** concentrations (AA, ambient, 1.5 x AA, 2 x AA). Simple linear regression analyses: ** p < 0.01, * p < 0.05, ns 1**897** denotes not significant. Fig. 8 Above- (a) and below-ground (b) biomass of date palms on August 20th, i.e. at the end of 92 days of ¹899 exposure to ambient ozone (AA), 1.5 x AA and 2 x AA. Different letters show significant differences among 1**9,00** treatments (Tukey test, p<0.05, N = 3 plots). ²3 2902 2**903** Tab. 1. Mass per area (LMA), water content (LWC), total chlorophyll content (Chl_{TOT}), chlorophyll a/b ratio **904** 29 (Chl a/b), total carotenoid content (Car_{TOT}), β -carotene (β -car), lutein (Lut), xanthophyll cycle pigment 3**905** content (VAZ) and de-epoxidation state (DEPS) in the leaves of date palm plants grown under three levels of O₃ concentration (AA, ambient O₃ concentration, $1.5 \times AA$, $2 \times AA$). Each value is the mean ± standard **957** error (N = 3 plots). Asterisks show the significance of ANOVA: ** p < 0.01, * p < 0.05, ns denotes not 3**908** significant. Different letters show significant differences among treatments (p<0.05, Tukey test). Tab 2. Average (± standard error) of the daily profiles of net photosynthesis (A) and stomatal conductance **910** 4 4 (q_s) of date palm leaves on July 23rd and 30th 2019. Asterisks show the significance of two-way ANOVA: ** p 4**911** < 0.01; * p < 0.05; ns, not significant. Different capital letters show results of a one-way ANOVA with daytime as a factor, while different lower-case letters show results of a one-way ANOVA with O3 **913** treatments (AA, ambient, $1.5 \times AA$, $2 \times AA$) within each daytime as a factor (Tukey test, p<0.05, N=3 plots). 5**9314**

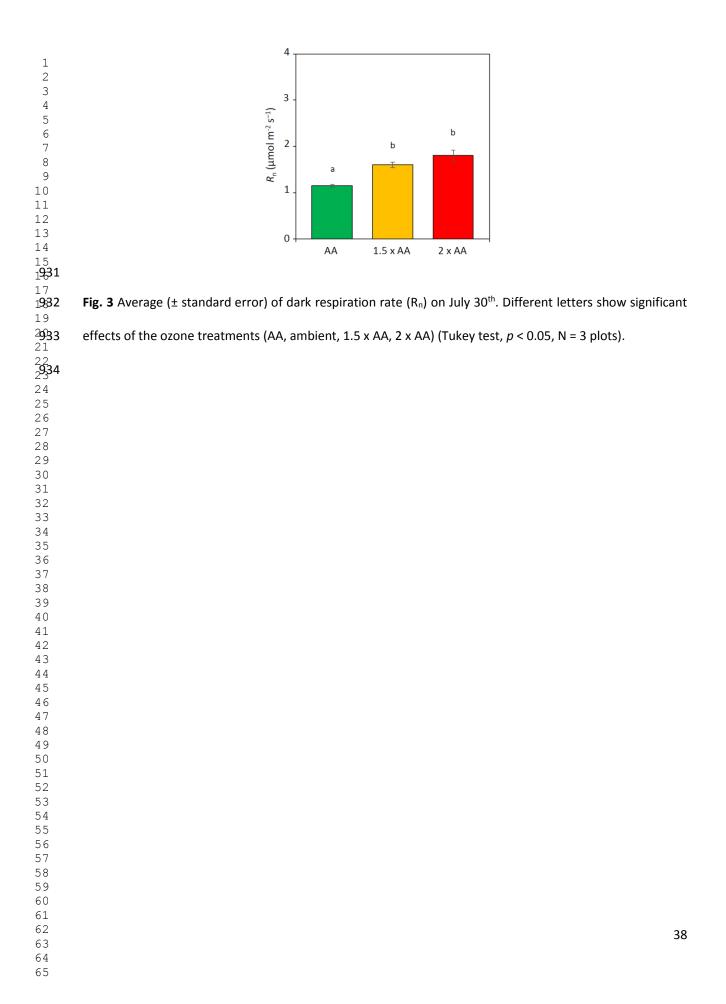
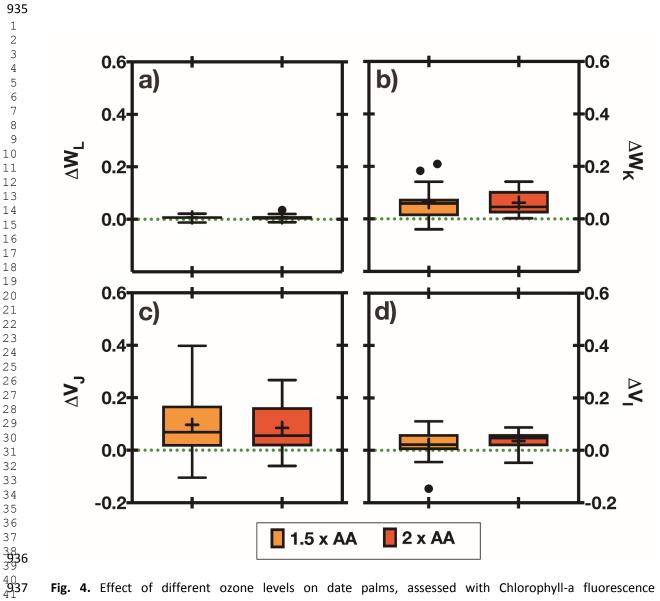
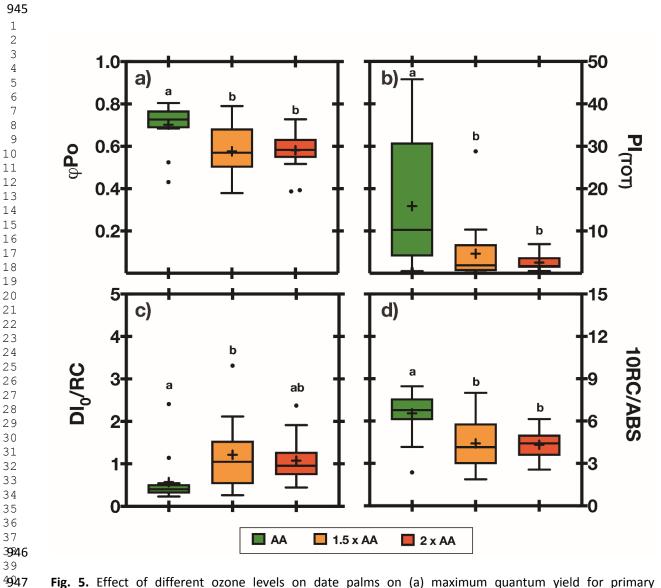
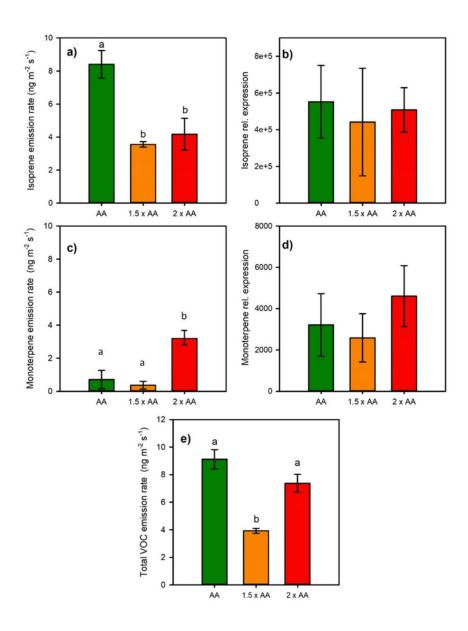
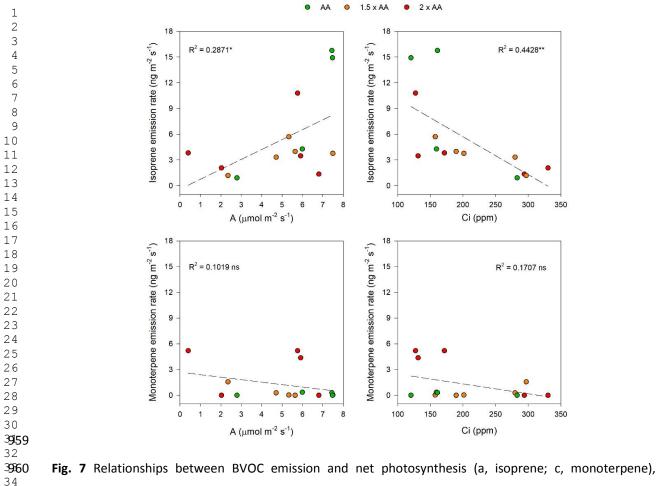


Fig. 1 Environmental conditions over the experimental period (from May 20th to August 20th, 2019 = 92 days of exposure). a) Daily averages of temperature (Temp), vapor pressure deficit (VPD), photosynthetic active solar radiation (PAR), and precipitation. b) Daily ozone averages and AOT40 and POD1 values in the three ozone treatments, i.e. ambient air (AA), 1.5 x AA and 2 x AA.

Fig. 2. Relationship between stomatal conductance (g_s) and leaf-to-air vapor pressure deficit (VPD) in date palm leaves grown under different O₃ concentrations (AA, ambient, 1.5 x AA, 2 x AA). Data were obtained under a PPFD > 1000 µmol m⁻² s⁻¹. Simple linear regression analyses were applied: *** p < 0.001, ** p < 0.01, ns denotes not significant. Since the regressions were statistically significant for AA and 1.5 x AA, we applied the ANCOVA; * p < 0.05, ns denotes not significant.


Fig. 4. Effect of different ozone levels on date palms, assessed with Chlorophyll-a fluorescence 4**9388** measurements in vivo. Boxplots show differences between elevated ozone levels compared to ambient **539** 46 47 4**940** ozone level (AA). Orange boxes, 1.5 x AA; red boxes, 2 x AA. Whiskers: 1,5 x IQR, dots: outliers, cross: average, line: median; green dotted line at y = 0: reference value at ambient ozone level; n = 3 plots. (a) ΔW_L difference of variable fluorescence ΔW_{OK} , at the L-Step at t = 150 μ s. (b) difference of variable fluorescence ΔW_{oJ} , at the K-Step t = 300-600 μ s. (c) difference of variable fluorescence ΔV , at the J-Step t = 2 ms. (d) difference of variable fluorescence ΔV , at the I-Step t = 30 ms.


Fig. 5. Effect of different ozone levels on date palms on (a) maximum quantum yield for primary photochemistry φ_{Po} (b) the performance index PI_{TOT} , (c) energy dissipation per active reaction centres DI_0/RC , (d) reaction centres per absorption 10RC/ABS. Boxplots show: Green boxes, ambient ozone level (AA); orange boxes, 1.5 x AA; red boxes, 2 x AA. Whiskers: 1,5 x IQR, dots: outliers, cross: average, line: median. Different letters show significant differences among treatments (Tukey test, p<0.05, N = 3 plots).

948

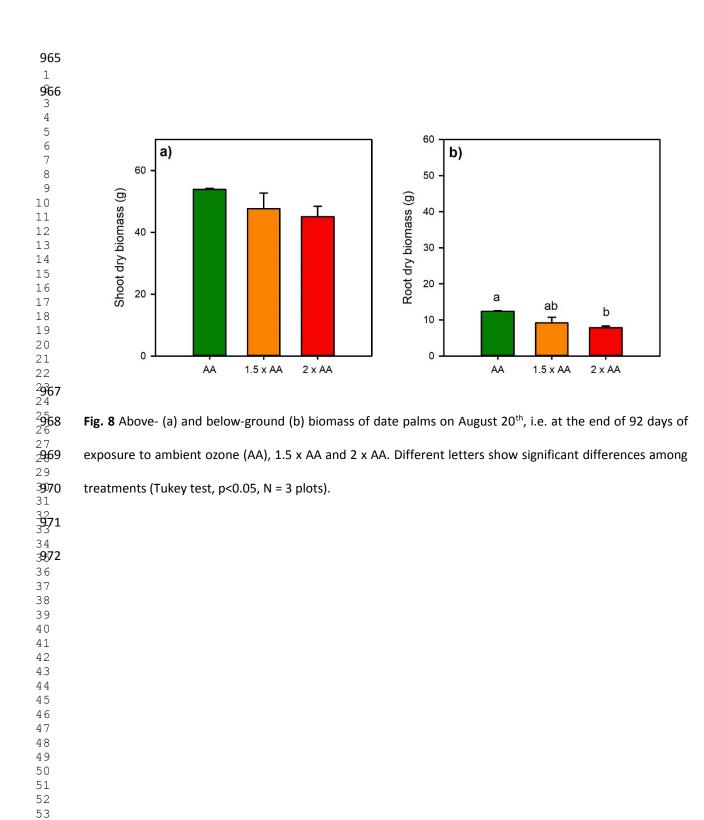
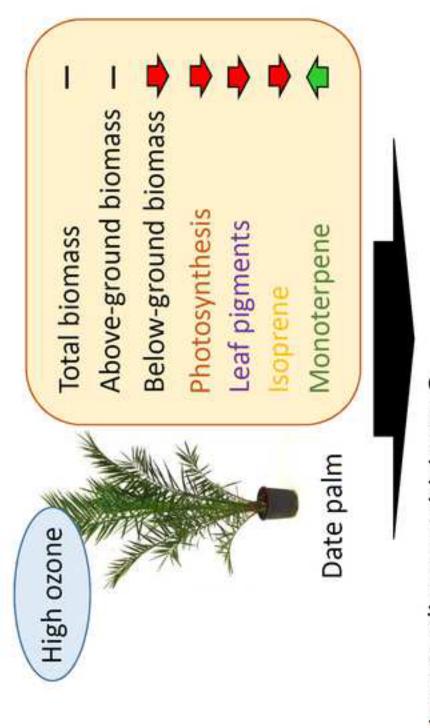

9549

Fig. 6 Average (± standard error) of isoprene emission (a), relative expression of isoprene synthase transcripts (b), monoterpene emission (c), relative expression of monoterpene synthases (d) and total volatile organic compounds (VOC) emission (e) in date palm leaves on 1-2 August. Different letters show significant effects of the ozone treatments (AA, ambient, 1.5 x AA, 2 x AA) (Tukey test, p<0.05, N=3 plots).

Fig. 7 Relationships between BVOC emission and net photosynthesis (a, isoprene; c, monoterpene), intercellular CO₂ concentration (b, isoprene; d, monoterpene) in date palm leaves grown under different O₃ concentrations (AA, ambient, 1.5 x AA, 2 x AA). Simple linear regression analyses: ** p < 0.01, * p < 0.05, ns denotes not significant.



		LWC	Chl _{tor}	4/ c P4 J	Car _{ToT}	β -car /ol a ⁻¹	Lut (µmol	VAZ	
	(g m ⁻²)	(%)				FW)	g ⁻¹ FW)	FW)	DEF3 (/0)
~	133.4	45.8	2.7	3.5	136	2.1	0.99	78	46
AA	± 9.8 a	± 2.8 a	± 0.1 a	± 0.2 a	± 8 a	± 0.3 a	±0.02 ab	± 3 a	±3 a
< < : : : : :	118.8	52.2	2.1	3.7	92	1.6	0.82	51	52
AA X C.L	± 3.3 a	± 0.4 ab	± 0.1 b	± 0.1 a	± 14 b	± 0.1 a	± 0.08 b	4 9 ±	± 2 a
	122.1	54.5	2.3	3.3	114	1.8	1.11	60	48
AA × 2	± 4.8 a	± 1.6 b	± 0.3 ab	± 0.1 a	± 8 ab	± 0.1 a	± 0.09 a	± 7 b	±7a
ANOVA results	0.329	0.040	0.016	0.110	0.006	0.078	0.007	0.007	0.335
(p-values) U3 effect	su	*	*	su	*	su	*	*	ns

Tab 2. Average (± standard error) of the daily profiles of net photosynthesis (A) and stomatal conductance 3 (g_s) of date palm leaves on July 23rd and 30th 2019. Asterisks show the significance of two-way ANOVA: ** p < 0.01; * p < 0.05; ns, not significant. Different capital letters show results of a one-way ANOVA with daytime as a factor, while different lower-case letters show results of a one-way ANOVA with O3 **983** treatments (AA, ambient, 1.5 x AA, 2 x AA) within each daytime as a factor (Tukey test, p<0.05, N=3 plots).

L L Dord						
July 23 rd	Morning					
	AA		6.3 ± 0.8 a		0.07 ± 0.01 a	
	1.5 × AA		5.0 ± 0.3 ab	А	0.06 ± 0.00 a	ŀ
	$2 \times AA$		3.1 ± 0.3 b		0.03 ± 0.00 b	
	Afternoon					
	AA		2.8 ± 0.4		0.04 ± 0.01	
	1.5 × AA		2.6 ± 1.0	В	0.04 ± 0.01	E
2 × AA			2.6 ± 0.4		0.04 ± 0.01	
ANOVA results (p-values)		<i>O</i> ₃ :	0.048 *		0.036 *	
		Time:	0.001 **		0.041 *	
		O₃ x Time:	0.081 ns		0.125 ns	
July 30 th	Morning					
	AA		7.4 ± 0.8 a		0.06 ± 0.01 a	
	1.5 × AA		5.1 ± 0.7 ab	А	0.05 ± 0.00 a	A
2 × AA			3.8 ± 0.5 b		0.03 ± 0.00 b	
	Afternoon					
	AA		4.3 ± 1.2		0.04 ± 0.01	
	1.5 × AA		3.9 ± 0.9	В	0.04 ± 0.01	ļ
	2 × AA		2.7 ± 0.2		0.03 ± 0.00	
		-				
ANC	OVA results	<i>O</i> 3:	0.022 *		0.037 *	
(p-values)		Time:	0.016 *		0.248 ns	
		O₃ x Time:	0.383 ns		0.206 ns	

Graphical abstract.tif

Intermediate sensitivity to O₃

Raised capacity of catabolizing metabolites

Supplementary Material

Click here to access/download Supplementary Material Supplementary Palm paper Paoletti et al.FINAL.docx

conflict of Interest Statement

Conflict of interest

The authors declare that they have no conflicts of interest.

Declaration of interests

 \boxtimes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: