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Abstract—In this paper, we devise adaptive decision schemes
to detect targets competing against clutter and smart noise-like
jammers (NLJ) which illuminate the radar system from the
sidelobes. Specifically, the considered class of NLJs generates
a pulse of noise (noise cover pulse) that is triggered by and
concurrent with the received uncompressed pulse in order to
mask the skin echo and, hence, to hide the true target range. The
detection problem is formulated as a binary hypothesis test and
two different models for the NLJ are considered. Then, ad hoc
modifications of the generalized likelihood ratio test are exploited
where the unknown parameters are estimated by means of cyclic
optimization procedures. The performance analysis is carried out
using simulated data and proves the effectiveness of the proposed
approach for both situations where the NLJ is either active or
switched off.

Index Terms—Adaptive radar detection, alternating estima-
tion, generalized likelihood ratio test, electronic countermeasure,
electronic counter-countermeasures, noise cover pulse, noise-like
jammers.

I. INTRODUCTION

Electronic countermeasures (ECMs) are active techniques

aimed at protecting a platform from being detected and

tracked by the radar [1]. This is accomplished through two

approaches: masking and deception. Noncoherent jammers or

noise-like jammers (NLJs) attempt to mask targets generating

nondeceptive interference which blends into the thermal noise

of the radar receiver. As a consequence, the radar sensitivity

is degraded due to the increase of the constant false alarm

rate threshold which adapts to the higher level of noise [1],

[2]. In addition, this increase makes more difficult to discover

that jamming is taking place [3], [4]. On the other hand,

the coherent jammers (CJs) transmit low-duty cycle signals

intended to inject false information into the radar processor.

Specifically, they are capable of receiving, modifying, ampli-

fying, and retransmitting the radar’s own signal to create false

targets maintaining radar’s range, Doppler, and angle far away

from the true position of the platform under protection [1]–[3],

[5].
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Nowadays, radar designers have developed defense strate-

gies referred to as electronic counter-countermeasures (EC-

CMs) which are aimed at countering the effects of the enemy’s

ECM and eventually succeeding in the intended mission. Such

techniques can be categorized as antenna-related, transmitter-

related, receiver-related, and signal-processing-related depend-

ing on the main radar subsystem where they take place [3]. The

reader is referred to [3, and references therein] for a detailed

description of the major ECCM techniques.

The first line of defense against jamming is represented

by the radar antenna, whose beampattern can be suitably

exploited and/or shaped to eliminate sidelobe false targets or

to attenuate the power of NLJs entering from the antenna

sidelobes. In this context, famous antenna-related techniques

capable of preventing jamming signals from entering through

the radar sidelobes are the so-called sidelobe blanking (SLB)

and sidelobe canceling (SLC) [6]. In particular, suppression of

NLJs can be accomplished via an SLC system. SLC uses an

array of auxiliary antennas to adaptively estimate the direction

of arrival and the power of the jammers and, subsequently, to

modify the receiving pattern of the radar antenna placing nulls

in the jammers’ directions. SLB and SLC can be jointly used

to face with NLJs and CJs contemporaneously impinging on

the sidelobes of the victim radar [7]. In [6] it is also shown

that a data dependent threshold, based on [8], outperforms a

cascade of SLC and SLB stages. The detector proposed in

[8] is a special case of the more general class of tunable

(possibly space-time) detectors which have been shown to be

an effective means to attack detection of mainlobe targets or

rejection of CJs notwithstanding the presence of NLJs and

clutter [8]-[20]. As a matter of fact, such solutions can be

viewed as signal-processing-related ECCMs. A way to design

tunable receivers relies on the so-called two-stage architecture;

such schemes are formed by cascading two detectors (usually

with opposite behaviors in terms of selectivity): the overall

one declares the presence of a target in the cell under test only

when data survive both detection thresholdings [9]-[12], [16]-

[20]. Such detectors can also be used as classifiers: in this case,

the first stage is less selective than the second one and it is used

to discriminate between the null hypothesis and the alternative

that a structured signal is present. In case of detection, the

second stage is aimed at discrimination between mainlobe and

sidelobe signals, as explicitly shown in [17] for the adaptive

sidelobe blanker (ASB). Adaptive detection and discrimination

between useful signals and CJs in the presence of thermal

noise, clutter, and possible NLJ has also been addressed in

[21]. Therein the CJ is assumed to belong to the orthogonal

http://arxiv.org/abs/1903.03547v1
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complement of the space spanned by the nominal steering

vector (after whitening by the true covariance matrix of the

composite disturbance). This approach, based on a modified

adaptive beamformer orthogonal rejection test (ABORT), see

also [20], [22], allows to investigate the discrimination capabil-

ities of adaptive arrays when the CJ is not necessarily confined

to the “sidelobe beam pattern,” but might also be a mainlobe

deception jammer. A network of radars can be exploited to

combat ECM signals. In this case, it is reasonable that, for a

given CUT, only a subset of the radars receives ECM signals

(CJs) as considered in [23].

Herein, we address adaptive detection in presence of noise

cover pulse (NCP) jamming. The NCP is an ECM technique

belonging to the class of noise-like jamming. Specifically, this

kind of ECM generates a pulse of noise that is triggered by

and concurrent with the received uncompressed pulse (see

Figure 1). To this end, several received radar pulses are used

to estimate the pulse width (PW) and the pulse repetition

interval (PRI) to predict the arrival time instant of the next

pulse of the victim radar. The transmitted noise power is strong

enough to mask the skin echo even after the radar performs

the pulse compression, which is used to enhance the range

resolution. It follows that, since the length of the transmitted

pulse is much higher than the duration of a range bin, the

NCP creates an extended-range return spread over many range

bins that hides the true target range. Thus, it becomes of

vital importance for a radar system to counteract the effects

of an NCP attack. An ECCM technique against NCP is

represented by the cover pulse channel (CPC) [24], which

consists in using an auxiliary physical channel to track the

NCP transmission rather than the skin return from the target.

The main drawbacks of this technique are the degradation of

the high-range resolution associated with the narrow pulses

which result from the compression process and the exploitation

of additional hardware resources. In order to overcome such

limitations, in this paper we devise a signal-processing-related

ECCM capable of detecting targets which compete against

a NCP, while satisfying the original system requirements on

range resolution. Besides, the proposed solution by its nature

can reside in the signal processing unit of the system without

the need of additional hardware. From a mathematical point

of view, we formulate the detection problem as a binary

hypothesis test where primary data (namely those containing

target returns) are formed by a set of range bins which is

representative of the uncompressed pulse length and such that

target return is located in only one bin whereas all the primary

range bins are contaminated by the NCP. As for the NCP, we

consider two models. In the first case, the NCP is represented

as a rank-one modification of the interference covariance

matrix (ICM), while in the second case the presence of the

NCP is accounted for by including a deterministic structured

component in all the range bins. Moreover, we assume that

a set of training samples are available to estimate the clutter

and noise components of the ICM. These data are collected

using a suitable number of guard cells surrounding those under

test and related to the uncompressed pulse length. Then, we

derive adaptive architectures exploiting ad hoc modifications

of the generalized likelihood ratio test (GLRT) design criterion

where the unknown parameters are estimated resorting to

an alternating procedure. Specifically, we leverage the cyclic

optimization paradigm described in [25]. Finally, we present

numerical examples which highlight the effectiveness of the

proposed solutions also in comparison with existing archi-

tectures which are somehow compatible with the considered

problem.

The remainder of the paper is organized as follows: next

section is devoted to the problem formulation and to the

description of the two different models for the NCP. Section III

contains the derivation of the detection architectures, whereas

Section IV provides the performance assessment of the detec-

tors (also in comparison to natural competitors). Concluding

remarks and future research tracks are given in Section V.

A. Notation

In the sequel, vectors and matrices are denoted by boldface

lower-case and upper-case letters, respectively. The symbols

det(·), Tr (·), etr {·}, (·)∗, (·)T , (·)† denote the determinant,

trace, exponential of the trace, complex conjugate, transpose,

and conjugate transpose, respectively. As to numerical sets, R

is the set of real numbers, RN×M is the Euclidean space of

(N ×M)-dimensional real matrices (or vectors if M = 1), C

is the set of complex numbers, and CN×M is the Euclidean

space of (N ×M)-dimensional complex matrices (or vectors

if M = 1). The symbols ℜ{z} and ℑ{z} indicate the real

and imaginary parts of the complex number z, respectively.

IN stands for the N ×N identity matrix, while 0 is the null

vector or matrix of proper dimensions. Let f(x) ∈ RN×1 be

a scalar-valued function of vector argument, then ∂f(x)/∂x
denotes the gradient of f(·) with respect to x arranged in a

column vector. The Euclidean norm of a vector is denoted

by ‖ · ‖. The (k, l)-entry (or l-entry) of a generic matrix A

(or vector a) is denoted by A(k, l) (or a(l)). The acronym

IID means independent and identically distributed while the

symbol E[·] denotes statistical expectation. Finally, we write

x ∼ CNN (m,M) if x is an N -dimensional complex normal

vector with mean m and positive definite covariance matrix

M .

II. PROBLEM STATEMENT

Assume that the radar is equipped with a linear array

formed by N antennas to sense the environment. For each

sensor, the incoming signal is downconverted to baseband

and, then, convolved with a conjugate time-reversed copy of

the transmitted waveform (matched filter). The output of this

filter is sampled to form the range bins of the area under

surveillance. Thus, each range bin is represented by an N -

dimensional complex vector. In what follows, we assume that

the signal received from the cell under test (CUT) can be

interference only, i.e., thermal noise, clutter, and a possible

NCP jamming, or a noisy version of the signal backscattered

by a coherent target.

As stated in Section I, the NCP is an ECM technique

belonging to the class of noise-like jamming. Commonly, on

the radar side, the action of the NCP jammer leads to an
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increase of the noise level over many range bins hiding the

true target range.

In order to model this situation, we denote by ī the integer

indexing the CUT and by Ω = {ī − H1, . . . , ī + H2} a set

of integers indexing the range bins contaminated by the NCP

jammer which also include the CUT. The number of range bins

after and before the CUT that are contaminated by the NCP

jammer is not necessarily the same due to possible uncertainty

in the PW and PRI estimates. Moreover, such parameters are

not known at the radar receiver, but an educated guess is

possible. Thus, in the following we do not address the problem

of determining H1 and H2, but assume that H1 and H2 and,

hence, H = H1 +H2 + 1, the number of contaminated cells,

is known. Additionally, we assume that a set of K ≥ N
secondary data, representative of thermal noise plus clutter

only, is collected by the radar using a number of guard cells

reflecting the length of the uncompressed pulse (see Figure 2).

With the above model in mind, denote by z ī ∈ CN×1,

zi ∈ CN×1 with i ∈ Ω \ {ī}, and rk ∈ CN×1 with

k = 1, . . . ,K , the vector containing the returns from the

CUT, the vectors contaminated by NCP jammer, but free

of target components, and the secondary data, respectively.

For further developments we assume that such vectors are

statistically independent. Then, the problem of detecting the

possible presence of a coherent return from a given cell is

formulated in terms of the following hypothesis test



H0 :





zī ∼ CNN

(
0,M + qq†) ,

zi ∼ CNN

(
0,M + qq†) , i ∈ Ω \ {ī},

rk ∼ CNN (0,M) , k = 1, . . . ,K,

H1 :





zī ∼ CNN

(
αv(θT ),M + qq†) ,

zi ∼ CNN

(
0,M + qq†) , i ∈ Ω \ {ī},

rk ∼ CNN (0,M) , k = 1, . . . ,K,
(1)

where

• α ∈ C is an unknown deterministic factor accounting for

target response and channel effects;

• v(θT ) = 1√
N

[
1 ejπ sin(θT ) . . . ejπ(N−1) sin(θT )

]T ∈
CN×1 is the known steering vector of the target with

θT the angle of arrival of the target1; in the following,

for brevity, we omit the dependence of v on θT .

• M ∈ CN×N is the unknown positive definite covariance

matrix of thermal noise plus clutter;

• q ∈ CN×1 is an unknown vector representing the

contribution to the noise covariance matrix of the NCP

jamming.

Some definitions that will be used in the next develop-

ments for problem (1) are now in order. Let ZΩ,̄i =
[z ī−H1

· · · zī−1 zī+1 · · ·z ī+H2
], Zα,̄i =

[
zα,̄i ZΩ,̄i

]
with

zα,̄i = z ī − αv, and Z ī =
[
z ī ZΩ,̄i

]
. Then, the probability

density functions (PDFs) of Z ī under H0 and H1 are given

by

f0(Z ī; q,M)

= 1

[πN det(M+qq†)]
H etr

{
−
(
M + qq†)−1

Z īZ
†
ī

}
(2)

1Note that the steering corresponds to a uniform linear array with half-
wavelength spacing.

and

f1(Z ī;α, q,M)

= 1

[πN det(M+qq†)]
H etr

{
−
(
M + qq†)−1

Zα,̄iZ
†
α,̄i

}
,

(3)

respectively, whereas the PDF of R = [r1 · · · rK ] under both

hypotheses has the following expression

f(R;M) =
1

[πN det (M)]
K
etr
{
−M−1RR†

}
. (4)

Finally, let us define the likelihood function of the unknown

parameters under Hi, i = 0, 1, as

L0(q,M) = f0(z ī,ZΩ,̄i; q,M), (5)

L1(α, q,M) = f1(z ī,ZΩ,̄i;α, q,M). (6)

Now, we formulate the detection problem from another per-

spective. Specifically, observe that the radar system, at each

dwell, collects a realization of the NCP. Thus, it is reasonable

to compare (1) with another detection problem formulated as





H0 :





z ī ∼ CNN (βq,M ) ,
zi ∼ CNN (βiq,M) , i ∈ Ω \ {ī},
rk ∼ CNN (0,M) , k = 1, . . . ,K,

H1 :





z ī ∼ CNN (αv + βq,M ) ,
zi ∼ CNN (βiq,M) , i ∈ Ω \ {ī},
rk ∼ CNN (0,M) , k = 1, . . . ,K,

(7)

where

• β ∈ C and βi ∈ C are unknown deterministic factors

representative of the different jammer amplitudes;

• q ∈ CN×1 is an unknown deterministic vector represent-

ing the contribution of the NCP jamming.

Again, we have that

• α ∈ C is an unknown deterministic factor accounting for

target response and channel effects;

• v ∈ CN×1 is the known steering vector of the target;

• M ∈ CN×N is the unknown positive definite covariance

matrix of thermal noise plus clutter.

Furthermore, in this case, the PDF of Z ī, under Hl, l = 0, 1,

exhibits the following expression

f(zī,ZΩ,̄i; lα, β, βi, i ∈ Ω \ {ī},M , q) =
1

[πN det(M)]
H

exp

{
−Tr

[
M−1

(
(z ī − lαv − βq)(z ī − lαv − βq)†

+
∑

i∈Ω\{ī}
(zi − βiq)(zi − βiq)

†
)]}

, (8)

while the likelihood functions under Hl, l = 0, 1, are given by

L0(β, βi, i ∈ Ω \ {ī},M , q)
= f(z ī,ZΩ,̄i; 0, β, βi, i ∈ Ω \ {ī},M , q),
L1(α, β, βi, i ∈ Ω \ {ī},M , q)
= f(z ī,ZΩ,̄i;α, β, βi, i ∈ Ω \ {ī},M , q).

(9)
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III. DETECTOR DESIGNS

In this section, we device adaptive decision schemes for

problems (1) and (7). To this end, observe that we cannot

apply the Neyman-Pearson criterion since parameters α, β,

βi, M and q are not known. For this reason, we have to

resort to ad hoc solutions. In particular, we adopt the two-

step GLRT-based design procedure: first we derive the GLRT

for known M ; then we obtain an adaptive detector replacing

the unknown matrix M with an estimate based on secondary

data. Thus, the main problem to solve is to discriminate

between the interference-only-hypothesis H0 and the signal-

plus-interference-hypothesis H1 based on z ī and ZΩ,̄i only

(for known M ).

A. An adaptive architecture for problem (1)

The GLRT for known M is given by

max
α,q

L1(α, q,M)

max
q

L0(q,M)

H1
>
<
H0

η, (10)

where η is the threshold2 to be set according to the desired

value of the probability of false alarm (Pfa).

Maximization of the PDF under H0 can be conducted using

the following identities

det
(
M + qq†)=det (M) det

(
IN +M−1/2qq†M−1/2

)

=det (M)
(
1 + u†u

)
, (11)

where u = M−1/2q and

Tr
[(
M + qq†)−1

Z īZ
†
ī

]

= Tr
[
M−1/2

(
I + uu†)−1

X īZ
†
ī

]

= Tr
[(
I + uu†)−1

X īX
†
ī

]

= Tr

[
X īX

†
ī
− uu†

1 + u†u
X īX

†
ī

]
(12)

where the last equality in equation (12) is obtained using

the matrix inversion lemma while X ī = M−1/2Z ī =
M−1/2

[
z ī ZΩ,̄i

]
= [xī XΩ,̄i]. Maximization under the H1

hypothesis is conducted using identity (11), but replacing (12)

with

Tr
[(
M + qq†)−1

Zα,̄iZ
†
α,̄i

]

= Tr

[
Xα,̄iX

†
α,̄i

− uu†

1 + u†u
Xα,̄iX

†
α,̄i

]

where Xα,̄i = M−1/2Zα,̄i = [xα,̄i XΩ,̄i] and, in particular,

xα,̄i = M−1/2 (z ī − αv). It follows that the likelihood

functions under H0 and H1 can be re-written as

L0(q,M) = 1

[πN det(M )(1+u†u)]
H

×etr

{
−X īX

†
ī
+

uu†

1 + u†u
X īX

†
ī

}
(13)

2Hereafter, η denotes any modification of the original threshold.

and

L1(α, q,M) = 1

[πN det(M)(1+u†u)]
H

×etr

{
−Xα,̄iX

†
α,̄i

+
uu†

1 + u†u
Xα,̄iX

†
α,̄i

}
,

(14)

respectively.

Now, we focus on the maximization of the PDF under H0.

To this end, observe that u can be represented as u =
√
pu0

with p = u†u = ‖u‖2 > 0 and, hence, ‖u0‖ = 1. For future

reference, we also define by S the N -sphere centered at the

origin with unit radius; thus, condition u
†
0u0 = ‖u0‖2 = 1 is

equivalent to u0 ∈ S.

It follows that

max
q

L0(q,M) =
1

[πN det (M)]
H
etr
{
−X īX

†
ī

}

× max
u0,p

1

(1 + p)
H
etr

{
pu0u

†
0

1 + p
X īX

†
ī

}
.

Thus, for known u0, maximizing L0 with respect to p is

tantamount to maximizing

g(p) =
1

(1 + p)H
exp

{
p

1 + p
u
†
0X īX

†
ī
u0

}
(15)

with respect to p ≥ 0. It can be shown that the maximum is

attained at

p̂ =





u
†
0X īX

†
ī
u0

H
− 1, if

u
†
0X īX

†
ī
u0

H
> 1,

0, otherwise,

(16)

and is given by

maxp≥0 g(p)

=





[
H

u
†
0X īX

†
ī
u0

]H
exp{u†

0X īX
†
ī
u0 −H}, ifu

†
0X īX

†
ī
u0

H
>1,

1, otherwise.
(17)

Now, we let

h(x) =





[
H

x

]H
ex−H , x ∈ (H,+∞),

1, x ∈ [0, H ],

and observe that it is a strictly increasing function of x
over [H,+∞) (and constant over [0, H ]). It follows that to

maximize L0 with respect to u it is sufficient to plug the

maximizer of u
†
0X īX

†
ī
u0 with respect to u0 into max

p≥0
g(p).

Using the Rayleigh-Ritz theorem [26], we obtain

max
u0∈S

u
†
0X īX

†
ī
u0 = λ1

(
X īX

†
ī

)
, (18)

where λ1 (·) denotes the maximum eigenvalue of the matrix

argument and a maximizer for u0 is a normalized eigenvector
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of the matrix X īX
†
ī

corresponding to λ1

(
X īX

†
ī

)
. Thus, we

can conclude that

max
q

L0(q,M) =
1

[πN det (M)]
H
etr
{
−X īX

†
ī

}

×






 H

λ1

(
X īX

†
ī

)



H

exp
{
λ1

(
X īX

†
ī

)
−H

}
, if

λ1

(
X īX

†
ī

)

H
>1,

1, otherwise.
(19)

As for the optimization problem under H1, let us compute

the logarithm of the likelihood function (14) neglecting the

terms independent of α and u to obtain

g(α, p,u0) =−H log(1 + u†u)

− Tr

[(
IN − uu†

1 + u†u

)
SΩ,̄i

]

− Tr

[(
IN − uu†

1 + u†u

)
Sα,̄i

]

=−H log(1 + u†u) +
u†SΩ,̄iu

1 + u†u

+

∣∣∣x†
α,̄i

u
∣∣∣
2

1 + u†u
− x

†
α,̄i

xα,̄i − Tr
[
SΩ,̄i

]

=−H log(1 + p) +
p

1 + p
u
†
0SΩ,̄iu0

+
p

1 + p
|x†

α,̄i
u0|2 − x

†
α,̄i

xα,̄i − Tr
[
SΩ,̄i

]
,

(20)

where SΩ,̄i = XΩ,̄iX
†
Ω,̄i

and Sα,̄i = xα,̄ix
†
α,̄i

.

It follows that maximizing L1(α, q,M) with respect to α
and q is tantamount to

max
α,p,u0

g(α, p,u0). (21)

However, this joint maximization with respect to α, p, and

u0 is not an analytically tractable problem at least to the

best of authors’ knowledge. For this reason, we resort to

a suboptimum approach relying on alternating maximization

[25]. Specifically, let us assume that u0 = u
(n)
0 and p = p(n)

are known, then it is not difficult to show that

α(n) = argmax
α

g
(
α, p(n),u

(n)
0

)

= argmin
α

x
†
α,̄i

[
IN − p(n)

1 + p(n)
u
(n)
0 (u

(n)
0 )†

]
xα,̄i

=

v
†
0

[
IN − p(n)

1 + p(n)
u
(n)
0 (u

(n)
0 )†

]
xī

v
†
0

[
IN − p(n)

1 + p(n)
u
(n)
0 (u

(n)
0 )†

]
v0

, (22)

where v0 = M−1/2v. Now, let us exploit α(n) to estimate

u0 and p, namely to solve the problem

max
p,u0∈S

g
(
α(n), p,u0

)
. (23)

To this end, following the same line of reasoning as for H0,

we obtain that
[
p(n+1)

u
(n+1)
0

]
= arg max

p,u0∈S

g
(
α(n), p,u0

)

=

[
max{λ1(SΩ,̄i + xα(n) ,̄ix

†
α(n) ,̄i

)/H − 1, 0}
b1

]
,

(24)

where we remember that λ1(·) is the maximum eigenvalue of

the matrix argument, xα(n) ,̄i is obtained replacing α with α(n)

in xα,̄i, and b1 is a normalized eigenvector corresponding to

λ1(SΩ,̄i + xα(n) ,̄ix
†
α(n) ,̄i

).
Iterating the above estimation procedure, we come up with

the following nondecreasing sequence

L1(α
(0), q(0),M) ≤ L1(α

(0), q(1),M)

≤ L1(α
(1), q(1),M) ≤ . . . ≤ L1(α

(n), q(n),M), (25)

where we start using for q(0) a normalized steering vector from

a sidelobe direction and q(i) = p(i)M1/2u
(i)
0 , i = 1, . . . , n.

Since the likelihood under H1 is bounded from the above with

respect to α, p, u0, the nondecreasing sequence (25) converges

as n diverges and, hence, a suitable stopping criterion can

be defined. For example, a possible strategy might consist in

continuing the procedure until

‖q(n) − q(n−1)‖ < ǫq and/or |α(n) − α(n−1)| < ǫα. (26)

Another approach might be that the alternating procedure ter-

minates when n > Nmax with Nmax the maximum allowable

number of iterations. We will use the latter stopping criterion

with Nmax chosen in the next section.

To prove that the likelihood is bounded from the above,

we re-write g as the sum of three (bounded above) functions,

namely as

g(α, p,u0) =−H log(1 + p) +
p

1 + p
u
†
0SΩ,̄iu0

+
p

1 + p
|x†

α,̄i
u0|2 − x

†
α,̄i

xα,̄i

=g1(p) + g2(p,u0) + g3(α, p,u0) (27)

with

g1(p) = −H log(1 + p)− Tr
[
SΩ,̄i

]
, (28)

g2(p,u0) =
p

1 + p
u
†
0SΩ,̄iu0, (29)

g3(α, p,u0) =
p

1 + p
|x†

α,̄i
u0|2 − x

†
α,̄i

xα,̄i. (30)

Then, it is sufficient to observe that

• g1(p) ≤ 0, ∀p ≥ 0;

• ∀p ≥ 0,u0 ∈ S the second term g2(p,u0) can be trivially

upperbounded as

g2(p,u0) =
p

1 + p
u
†
0SΩ,̄iu0

≤ u
†
0SΩ,̄iu0(≤ λ1(SΩ,̄i)) (31)

and the right-most hand side attains a maximum since it

is a continuous function of u0 over a compact set (u0

belongs to the N -sphere with unit radius);
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• the third term can be re-written as

g3(α, p,u0) = −x
†
α,̄i

(
IN − p

1 + p
u0u

†
0

)
xα,̄i;

since the matrix IN − p
1+pu0u

†
0 is positive definite ∀p ≥

0 and u0 ∈ S, it follows that g3(α, p,u0) ≤ 0, ∀α ∈
C, p ≥ 0,u0 ∈ S.

Finally, M can be estimated using secondary data R as

M̂ =
1

K
RR†. (32)

This decision scheme is referred to in the following as random

NCP detector (R-NCP-D).

B. An adaptive architecture for problem (7)

In this case, the GLRT for known M is given by

max
α,β,βi,i∈Ω\{ī},q

L1(α, β, βi, i ∈ Ω \ {ī},M , q)

max
β,βi,i∈Ω\{ī},q

L0(β, βi, i ∈ Ω \ {ī},M , q)

H1
>
<
H0

η. (33)

Focusing on the maximization of the PDF under H0, we

observe that maximizing L0 is tantamount to maximizing

w(β, βi, i ∈ Ω \ {ī}, q) =

etr



−M−1

[
(zī − βq)(z ī − βq)†+

∑

i∈Ω\{ī}
(zi − βiq)(zi − βiq)

†
]


(34)

Furthermore, it can be proved that

min
β

(z ī − βq)†M−1(z ī − βq)

= z
†
ī
M−1z ī −

z
†
ī
M−1qq†M−1zī

q†M−1q
(35)

and

min
βi

∑

i∈Ω\{ī}
(zi − βiq)

†M−1(zi − βiq)

=
∑

i∈Ω\{ī}

(
z
†
iM

−1zi −
z
†
iM

−1qq†M−1zi

q†M−1q

)
. (36)

Thus, the maximization of w with respect to β and βi leads

to

max
β,βi,i∈Ω\{ī},q

w(β, βi, i ∈ Ω \ {ī}, q)

=max
q

exp

[
z
†
ī
M−1qq†M−1zī

q†M−1q
− z

†
ī
M−1zī

+
∑

i∈Ω\{ī}

(
z
†
iM

−1qq†M−1zi

q†M−1q
− z

†
iM

−1zi

)


=max
q

exp





q†M−1
[
z īz

†
ī
+
∑

i∈Ω\{ī} ziz
†
i

]
M−1q

q†M−1q

−


z

†
ī
M−1z ī +

∑

i∈Ω\{ī}
z
†
iM

−1zi







=max
u

exp





u†
[
xīx

†
ī
+
∑

i∈Ω\{ī} xix
†
i

]
u

u†u

−


x

†
ī
xī +

∑

i∈Ω\{ī}
x
†
ixi







=exp {λ1(S1)− Tr (S1)} (37)

where S1 = xīx
†
ī
+
∑

i∈Ω\{ī} xix
†
i and we used the Rayleigh-

Ritz theorem [26]. We also recall that xi = M−1/2zi and

u = M−1/2q.

Thus, we conclude that the compressed likelihood under H0

is given by

max
β,βi,i∈Ω\{ī},q

L0(β, βi, i ∈ Ω \ {ī},M , q)

=
1

[πN det(M )]
H

exp {λ1 (S1)− Tr (S1)} . (38)

As far the maximization of the likelihood function under H1

is concerned, we first focus on α and observe that

min
α

(
(z ī − αv − βq)†M−1(z ī − αv − βq)

)

= (zī − βq)†M−1(z ī − βq)

− (z ī − βq)†M−1vv†M−1(z ī − βq)

v†M−1v
.

(39)

Thus, it turns out that

max
α

L1(α, β, βi, i ∈ Ω \ {ī},M , q) =
1

[πN det(M )]
H

× exp

{
(zī − βq)†M−1vv†M−1(zī − βq)

v†M−1v

−(z ī − βq)†M−1(zī − βq)

−
∑

i∈Ω\{ī}
(zi − βiq)

†M−1(zi − βiq)



 . (40)

To the best of authors’ knowledge maximization of (40) with

respect to the remaining parameters cannot be conducted in

closed form. For this reason, we exploit another alternating
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optimization procedure. To this end, we first re-write the

partially-compressed likelihood as

max
α

L1(α, β, βi, i ∈ Ω \ {ī},M , q)

=
1

[πN det(M )]
H

exp [−h (u, β, βi, i ∈ Ω \ {ī})] (41)

with

h (u, β, βi, i ∈ Ω \ {ī})
= (xī − βu)

†
P⊥
v0

(xī − βu) +
∑

i∈Ω\{ī}
(xi − βiu)

†
(xi − βiu)

(42)

where

P⊥
v0 = I − v0v

†
0

v
†
0v0

, (43)

and, for the reader ease, we recall that u = M−1/2q, xi =
M−1/2zi, xī = M−1/2z ī, and v0 = M−1/2v.

Then, assuming that β = β(n) and βi = β
(n)
i are given, we

can focus on the maximization with respect to q. To this end,

setting to zero the first derivative3 of

h
(
u, β(n), β

(n)
i , i ∈ Ω \ {ī}

)

with respect to u leads to

− β(n)∗P⊥
v0

xī +
∣∣∣β(n)

∣∣∣
2

P⊥
v0

u

−
∑

i∈Ω\{ī}
β
(n)
i

∗
xi +

∑

i∈Ω\{ī}

∣∣∣β(n)
i

∣∣∣
2

u = 0; (45)

then

u(n) =argmin
u

{
h
(
u, β(n), β

(n)
i , i ∈ Ω \ {ī}

)}

=



∣∣∣β(n)

∣∣∣
2

P⊥
v0

+
∑

i∈Ω\{ī}

∣∣∣β(n)
i

∣∣∣
2

I




−1


β(n)∗P⊥

v0
xī +

∑

i∈Ω\{ī}
β
(n)
i

∗
xi


 . (46)

On the other hand, we can estimate β(n+1) and β
(n+1)
i ,

given u(n), exploiting a standard least-squares result, i.e.,
[
β(n+1)

β
(n+1)
i

]
= argmax

β,βi

{
exp

[
−h
(
u(n), β, βi, i ∈ Ω \ {ī}

)]}

=




u(n)†P⊥
v0

xī

u(n)†P⊥
v0

u(n)

u(n)†xi

u(n)†u(n)


 . (47)

The iterative procedure starts by replacing u(0) with a nor-

malized steering vector from the sidelobes. Moreover, as for

3We make use of the following definition for the derivative of a real function
f(α) with respect to the complex argument α = αr + jαi, αr , αi ∈ R,
[27]

∂f(α)

∂α
=

1

2

[

∂f(α)

∂αr

− j
∂f(α)

∂αi

]

. (44)

R-NCP-D, we stop alternating after a preassigned number of

iterations.

Finally, replacing M with the sample covariance matrix

based upon the secondary data, we come up with an adaptive

detector referred to in the following as deterministic NCP

detector (D-NCP-D).

IV. PERFORMANCE ASSESSMENT

The aim of this section is to investigate the performance of

the proposed algorithms in terms of probability of detection

(Pd). To this end, we resort to standard Monte Carlo counting

techniques by evaluating the thresholds to ensure a preassigned

Pfa and the Pd curves over 100/Pfa and 1000 independent

trials, respectively. Data are generated according to the model

defined in problem (1), where

M = σ2
nIN + pcM c. (48)

In (48), σ2
nIN represents the thermal noise component with

power σ2
n while pcM c is the clutter component with pc the

clutter power and M c the structure of the clutter covariance

matrix; the clutter-to-noise ratio (CNR) is thus given by

CNR = pc/σ
2
n.

In the following, we set σ2
n = 1, CNR = 20 dB, and

M c(i, j) = ρ|i−j| with ρ = 0.9 (recall that M c(i, j) is

the (i, j)th entry of M c). Moreover, we suppose that the

victim radar is equipped with a uniformly-spaced linear array

(ULA) of N identical and isotropic sensors with inter-element

distance equal to λ/2, λ being the wavelength corresponding

to the carrier frequency of the NCP (modeled as a narrowband

plane wave) impinging onto the antenna array. The target

response is computed according to the signal-to-clutter-plus-

noise ratio (SCNR), whose expression is

SCNR = |α|2 v(0)†M−1v(0). (49)

As for the NCP, we assume that, when it is present, it enters the

antenna array response of the victim radar from the sidelobes

with a power pj such that the jammer-to-noise ratio (JNR),

defined as JNR = pj/σ
2
n, is 30 dB. In order to select the

amount of primary data, we consider system parameter values

of practical interest, namely we assume that the radar system

transmits a linear frequency modulated pulse of duration 3 µs

and bandwidth 5 MHz. Now, since the rate at which the range

bins are generated is 2 · 10−7 s, then the uncompressed pulse

covers 15 range bins. Using 5 additional guard cells, we set

H1 = H2 = 10. For the reader ease, all the simulation

parameters are summarized in Table I.

Finally, for comparison purposes, we also report the Pd

curves of the subspace detector proposed in [28] and the

adaptive matched filter (AMF) [29]. As a matter of fact, the

AMF raises from a suitable modification of the derivation

contained in Subsection III-B, which consists in forcing the

constraint q†M−1v = 0 as shown in the appendix4. The

curves for the likelihood ratio test with known parameters,

4Recall from Table I that the jammer is located at 35◦ with respect to the
array normal, leading to cos(θjt) = 0.07 for N = 8 and cos(θjt) = 0.03
for N = 16, where θjt is the angle between target and jammer steering
vectors in the whitened observation space.
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referred to as clairvoyant detector (CD), are also included since

they represent an upper bound to the detection performance.

In the next subsection, we focus on the stopping criterion

and provide suitable numerical examples aimed at establishing

a reasonable iteration number for both cyclic optimization

procedures.

A. Selection of the maximum number of iterations

The detection performance, assessed in Subsection IV-B,

are obtained using a preassigned number of iterations. Now,

in order to select this value, in Figures 3 and 4, we show

the average norm of the difference between the estimates at

the nth iteration and their respective values at the (n − 1)th
iteration. The averages are evaluated over 1000 independent

Monte Carlo trials assuming N = 8, K = 12, and SCNR= 20
dB. In both cases we model q as a narrowband plane wave

impinging onto the antenna array from a direction whose

azimuth, generated at random at each Monte Carlo trial, is

uniformly distributed outside the antenna mainlobe. Inspection

of the figures highlights that 10 iterations for each procedure

ensure a variation of the estimated quantities less than or

equal to 10−5 and also represent a good compromise from the

computational point of view. For this reason, in what follows

we adopt this number for the computation of the Pd curves.

B. Detection Performance

In this subsection, we investigate the behavior of the pro-

posed architectures in terms of Pd versus the SCNR for two

different scenarios, which are complementary. Specifically, the

former assumes a jammer illuminating the victim radar from

its sidelobes, whereas the latter consider a surveillance area

free of intentional interferers. It is important to underline that

the second case does not correspond to the design assumptions.

Figures 5-7 refer to the first scenario assuming N = 8
and different values for K . The common denominator of

these figures is that R-NCP-D and D-NCP-D share the same

performance, since the respective curves are overlapped, and

outperform the remaining architectures except for the CD (as

expected). The gain of the R-NCP-D and D-NCP-D over the

SD is about 10 dB at Pd = 0.9. On the other hand, the AMF

has the worst performance with a loss at Pd = 0.9 ranging

from about 7 dB for K = 12 to about 4 dB for K = 24 with

respect to the SD. Comparison of the figures also points out

that the Pd curves move towards left as K increases, which

means that the Pd is an increasing function of K given the

SCNR. Finally, the loss at Pd = 0.9 of the R-NCP-D/D-NCP-

D with respect to the CD halves when K goes from K = 12,

which corresponds to a loss of about 8 dB, to K = 24, which

results in a loss of about 4 dB.

The second scenario is accounted for in Figures 8-10,

which assume the same parameter setting as previous figures

except for the presence of the jammer. In this case, the

curves of R-NCP-D and D-NCP-D are no longer overlapped

and, more important, the latter does not achieve Pd = 1
at least for the considered parameter values. The R-NCP-D

continues to provide satisfactory performance outperforming

the other counterparts. In fact, the comparison with previous

figures highlights that the performance of R-NCP-D keeps

more or less unaltered. On the other hand, for the considered

parameter values (and the considered scenario), the SD is

completely useless since the resulting Pd values are close to

zero, while the AMF improves significantly its performance

as K increases ensuring about the same Pd values of the R-

NCP-D for K = 3N .

Finally, the comparison between Figure 11 and Figure 6

allows to appreciate the performance variations due to both N
and K when their ratio is constant. In fact, Figure 11 assumes

N = 16 and K = 32, namely twice the analogous values of

Figure 6. It can be noted that R-NCP-D, D-NCP-D, and AMF

provides higher Pd values than those of Figure 6, whereas

the performance of SD seems insensitive to the considered

parameter change.

Summarizing, the above analysis singles out the R-NCP-

D as an effective mean to face attacks of smart NLJs which

transmit noise-like signals to cover the skin echoes from the

platform under protection. As a matter of fact, the R-NCP-D

outperforms all the other competitors either in the presence or

absence of a noise cover pulse.

V. CONCLUSIONS

In this paper, two new detection architectures to account

for possible NCP attacks have been proposed and assessed.

Specifically, the first approach consists in modeling the NLJ

contribution as a covariance component, while the second

solution considers the realizations of the NLJ and handles

them as deterministic signals. Then, ad hoc modifications

of the GLRT have been devised for both scenarios where

the unknown parameters are computed through alternating

estimation procedures. The behavior of the two architectures

has been first investigated resorting to simulated data adhering

the design assumptions of the first approach and, then, they

have been tested on data where the NCP is turned off. The

analysis has singled out the R-NCP-D obtained with the first

approach as the recommended solution for adaptive detection

in the presence of clutter and NCP, since it can guarantee

satisfactory performance in both the considered situations.

Finally, future research tracks might encompass the appli-

cation of the herein presented approach to the case of range-

spread targets possibly embedded in non-Gaussian clutter.

APPENDIX A

ALTERNATIVE DERIVATION OF THE AMF

In this Appendix, we modify the derivation contained in

Subsection III-B by imposing the constraint u†v0 = 0, namely

the target steering vector and the NCP signature are orthogonal

in the whitened space. For the reader convenience, let us recall

that u = M−1/2q, S1 =
[
xīx

†
ī
+
∑

i∈Ω\{ī} xix
†
i

]
, v0 =

M−1/2v, xi = M−1/2zi, xī = M−1/2z ī.

Now, under H0, the maximization with respect to β and

βi of w (given by (34)) leads to (35) and (36), respectively.

Thus, assuming the orthogonality constraint, it is possible to

reformulate the maximization of w with respect to u as

max
u:u†v0=0

exp

{
u†S1u

u†u
− Tr [S1]

}
. (50)
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Let U ∈ CN×N−1 be a slice of unitary matrix, namely

U †U = IN−1, with columns forming a basis for the orthog-

onal complement of the subspace spanned by v0. Given the

orthogonality constraint, it follows that u can be expressed

in terms of a linear combination of the columns of U , i.e.,

u = Uγ with γ ∈ C(N−1)×1 the coordinate vector. Then,

maximization (50) can be recast as

max
u:u†v0=0

exp

{
u†S1u

u†u
− Tr [S1]

}

= exp

{
max
γ

γ†U †S1Uγ

γ†γ
− Tr [S1]

}

= exp
{
λ1

(
U †S1U

)
− Tr [S1]

}
, (51)

where the last equality is due to the Rayleigh Ritz theorem

[26]. Thus, the solution to the constrained optimization prob-

lem, under H0, is

max
β,βi,i∈Ω\{ī},q

L0(β, βi, i ∈ Ω \ {ī},M , q)

=
1

[πN det (M)]
H

exp
{
λ1

(
U †S1U

)
− Tr [S1]

}
. (52)

On the other hand, under H1, we can start from the partially-

compressed likelihood with respect to α, given by (41). In fact,

it is possible to show that, after optimization of the likelihood

function with respect to α, β, and βi, we obtain

max
α,β,βi,i∈Ω\{ī},q

L1(α, β, βi, i ∈ Ω \ {ī},M , q)

=
1

[πN det (M )]
H

exp

{
u†P⊥

v0xīx
†
ī
P⊥

v0u

u†P⊥
v0u

+
∑

i∈Ω\{ī}

x
†
iuu

†xi

u†u
−


x

†
ī
P⊥

v0xī +
∑

i∈Ω\{ī}
x
†
ixi







=
1

[πN det (M )]
H

exp




u†S1u

u†u
−


x

†
ī
P⊥

v0xī +
∑

i∈Ω\{ī}
x
†
ixi







(53)

where the last equality comes from the orthogonality condition

between u and v0. Thus, it follows that

max
u:u†v0=0

max
α,β,βi,i∈Ω\{ī},q

L1(α, β, βi, i ∈ Ω \ {ī},M , q)

=
1

[πN det (M)]
H

× exp



λ1(U

†S1U)−


x

†
ī
P⊥

v0xī +
∑

i∈Ω\{ī}
x
†
ixi






(54)

where, again, the last equality comes from [26]. The final

expression for the constrained GLRT-based architecture is

obtained combining (52) and (54). Precisely, taking the log-

likelihoods, the “constrained test (33)” is statistically equiva-

lent to

x
†
ī
P v0xī

H1
>
<
H0

η, (55)

whose decision statistic, after replacing M with the sample

covariance matrix based on secondary data, coincides with that

of the AMF.
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Received echoes in the presence of NCP

Fig. 1. Operating principle of NCP.

Fig. 2. Range bins partitioning.

TABLE I
SIMULATION PARAMETERS SETUP

Symbol Value Description

N 8,16 Number of antennas

H1 10 Number of contaminated cells
on the left of the CUT

H2 10 Number of contaminated cells
on the right of the CUT

CNR 20 dB Clutter-to-Noise Ratio

JNR 30 dB Jammer-to-Noise Ratio

θj 35◦ Angle Of Arrival (AOA) of the NCP jammer

Pfa 10−4 False Alarm probability

NMC 103 Number of independent trials
to evaluate the probability of detection Pd
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Fig. 3. Euclidean norm (or modulus) of the difference between the estimates
at the nth iteration and those at the (n− 1)th iteration versus the number of
iterations for cyclic optimization of Subsection III-A.
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Fig. 4. Euclidean norm (or modulus) of the difference between the estimates
at the nth iteration and those at the (n− 1)th iteration versus the number of
iterations for cyclic optimization of Subsection III-B.
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Fig. 5. Pd versus SCNR for the CD, R-NCP-D, AMF, D-NCP-D, and the
SD assuming N = 8, K = 12, and a jammer at 35◦ .
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Fig. 6. Pd versus SCNR for the CD, R-NCP-D, AMF, D-NCP-D, and the
SD assuming N = 8, K = 16, and a jammer at 35◦.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SCNR (dB)

P
d

 

 
CD
R−NCP−D
AMF
D−NCP−D
SD

Fig. 7. Pd versus SCNR for the CD, R-NCP-D, AMF, D-NCP-D, and the
SD assuming N = 8, K = 24, and a jammer at 35◦.
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Fig. 8. Pd versus SCNR for the CD, R-NCP-D, AMF, D-NCP-D, and the
SD assuming N = 8, K = 12, and no jammers.
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Fig. 9. Pd versus SCNR for the CD, R-NCP-D, AMF, D-NCP-D, and the
SD assuming N = 8, K = 16, and no jammers.
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Fig. 10. Pd versus SCNR for the CD, R-NCP-D, AMF, D-NCP-D, and the
SD assuming N = 8, K = 24, and no jammers.
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Fig. 11. Pd versus SCNR for the CD, R-NCP-D, AMF, D-NCP-D, and the
SD assuming N = 16, K = 32, and a jammer at 35◦.
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