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Abstract: Tetrapyrazinoporphyrazine (TPysPz) ligands and metal

complexes find, generally, application as electronic materials and

catalysts. Considering the limited application of Titanium (Ti), we

prepared and characterized a family of ligands and Ti-based

complexes of tetrakis-2,3-[5,6-di-R8-pyrazino]porphyrazine (R= H, 2-

Py, Ph). UV-Vis measurements in different solvents confirmed

molecular aggregation, which resulted more pronounced in the

presence of 2-pyridil and phenyl substituents on the macrocycle edge.

Because of low solubility, solid state NMR was applied for structure

characterization. Additional IR, MALDI-TOF and SEM analyses were

carried out to complete the characterization. Cyclic voltammetry in

DMSO/Bu4NBF4 0.1 M unveiled that our Ti-complexes can take part

in up to five redox events. The first two involved quasi-reversible Ti(IV)

reduction followed by two or three reduction at the expense of the

TPysPz macrocycle. To test the applicability of our compounds as

catalytic materials, we performed a preliminary cyclic voltammetry

investigation in the solid-state, which showed typical peaks of

hydrogen redox reactions.

Introduction

Azaanalogues of phthalocyanines, tetrapyrazinoporphyrazines
(TPysPzs) ligands and metal complexes have seen a rapid
development in the last three decades. Ranging from electronic
materials to photodynamic therapy and catalysis, a plethora of
applications has been documented in the literature for these
compounds.[1-2] Interestingly, the introduction of different
substituents in the periphery of the macrocycle is able to tune its

properties, activity and solubility in organic or aqueous media. As
reported in the literature, several metals (Mg, Zn, Cu, Ni, Fe, Co,
Si) can be coordinated by TPysPzs. Among them, Titanium (Ti)
has been seldom employed in the template synthesis of
tetrapyrazinoporphrazine metal complexes,[3] despite its
abundance in the Earth’s crust and its similarity in ionic radius and
coordination chemistry with iron (FeIII).[4-6] In general, in oxidizing
atmosphere, titanium exists as Ti(IV) and it can be coordinated by
tetrapyrrole ligands as a titanyl unit (TiO2+).[7-10]

In this paper, we present the synthesis and the characterization
of a series of ligands and Ti-based complexes of tetrakis-2,3-[5,6-
di-R8-pyrazino]porphyrazine (R= H, 2-Py, Ph). For all the
compounds (2a-c and 3a-c, Scheme 1) synthesized a full
characterization from the spectroscopic and electrochemical point
of view is presented. Aggregation behavior was highlighted by
UV-Vis spectroscopy, while cyclic voltammetry was employed to
unveil the presence of differences in the redox behavior between
Ti-based complexes 3a-c, the corresponding ligands 2a-c and
similar metal complexes of TPysPzs previously described in
literature.
The interest towards compounds 3a-c arises from the potentiality
of applying these molecules as catalysts in oxygen reduction
reaction (ORR),[11-12] as dyes in dye sensitized solar cells
(DSSC),[13-15] and in the detection of hydrogen peroxide.[16] Indeed,
the increasing energy demand connected with the replacement of
fossil fuels and environmental concerns has made necessary the
development of advanced and next-generation technologies for
energy production. Among the approaches pursued to enhance
these processes, the use of catalysts revealed to be the most
effective. Although porphyrin, corrole and phtalocyanine-based
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ligands can be a valid alternative,[11-12] their synthesis is frequently
characterized by low yields, a feature which can hamper their
production on industrial scale. While the proof of concept has
been demonstrated, the potentiality of
tetrapyrazinoporphyrazines derivatives has still to be explored.

Results and Discussion

Preparative Aspects.
As reported in the Experimental section and in the Supporting
Information, ligands 2a-c and complexes 3a-c can be prepared
from the common starting-materials 1a-c (Scheme 1). The
synthesis of 1a-c was accomplished by modifying the procedure
reported by Mørkved employing diaminomaleonitrile and an α-
diketone as starting-material in glacial acetic as solvent (1a: 76%
yield; 1b: 73% yield; 1c: 85% yield).[17] The solids obtained were
purified by extraction and washing with water, brine and saturated

solutions of NaHCO3, and crystallized from water/ethanol prior to
use. Pyrazinoporphyrazine macrocycles 2a-c were prepared
according to the procedure reported by Ercolani, Kadish et al. by
autocyclotetramerization of 1a-c at high temperatures (from
175°C to 240°C according to 1a-c melting-point) in the presence
of DBU as catalyst (2a: 21% yield; 2b: 20% yield; 2c: 18%
yield).[18-19] While the ligand synthesis could be realized without
paying specific attention to the water content, the synthesis of the
complex needed the application of Schlenk technique and
stringent dry reaction conditions in the presence of an excess of
1a-c in order to avoid the formation of titanium dioxide (TiO2). The
Ti-complex was obtained by melting the starting-material 1a-c
and subsequently adding titanium (IV) butoxide against a stream
of inert gas. The reaction was kept at high temperature for 5 hours,
then the greenish/bluish solids 3a-c were purified by washing with
MeOH and/or CH2Cl2 in order to remove the contaminants. The
solids were collected each time by centrifugation and dried under
vacuum to constant weight (3a: 78% yield; 3b: 65% yield; 3c: 95%
yield).

Scheme 1. Reaction scheme for the synthesis of ligands 2a-c and Ti-based complexes of tetrakis-2,3-[5,6-di-R8-pyrazino]porphyrazine (R= H, 2-Py, Ph) 3a-c.
Numbers in blue will be useful in the assignment of the 13C-SSNMR spectra reported in Figure 6.

Solution Studies: UV-Vis Spectra.
The UV-vis spectral behavior of Titanium-based complexes 3a-c
was studied as a function of time in dimethylformamide (DMF), a
polar aprotic solvent, and in methylenchloride (CH2Cl2), a

nondonor solvent. All complexes yielded clear solution in both
solvents, and the formation of colloidal suspensions as described
by Donzello et al. for similar compounds was not observed.[18-19]

A greater solubility was obtained in DMF than in CH2Cl2.
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Furthermore, changes in the intensities of the UV-vis absorptions
could be observed as a function of time (Figure 1). This behavior
can be ascribed to molecular aggregation both in the form of
intermolecular association or dissociation upon time. Complexes
3a-c showed a different response depending on the solvent
employed. In general, in CH2Cl2 the spectra were characterized
by an increase of Q and B bands with time (Figure 1) reaching
their maximum intensities after one hour. These spectral changes
can be attributed to intermolecular dissociation ending with the
formation of monomeric macrocyclic units in keeping with
previous results.[18-19]

The same behavior was shown by complex 3a in DMF. In contrast,
the UV-vis spectra of compounds 3b and 3c in the same solvent
were characterized by a progressive increase in the absorption,
respectively at 761 and 759 nm, with a simultaneous decrease in
the Q and B band intensities. If disaggregation could be obtained
for all compounds in the nondonor solvent, CH2Cl2, and for
compound 3a in DMF, the introduction of aromatic substituents
such as 2-pyridil (complex 3b) and phenyl groups (complex 3c)
caused an intensification of the aggregation phenomena. These
could be potentially due to an increase in the p-p stacking
interactions between the Titanium-based complex monomers
reaching its maximum after one hour. The UV-vis spectra in DMF
are characterized by intense and sharp peaks in the Q-region
respectively at 647 (3a), 667 (3b) and 665 (3c) nm (Figure 1 and
Table 1).

Figure 1. UV-vis spectral changes of Titanium-based complexes 3a-c in DMF
and CH2Cl2 solutions as a function of time.

Generally, a negligible solvent effect was observed in the Q band
position, while the B band was subjected to a red-shift for
complexes 3a-b and to a blue-shift for complex 3c changing the

solvent from DMF to CH2Cl2. A summary of 3a-c absorptions,
together with a comparison with the corresponding ligands 2a-c
is presented in Table 1. In particular, the introduction of eight 2-
pyridil (3b) or eight phenyl groups (3c) caused a bathochromic
shift in the Q band respectively of 20 nm (for complex 3b in CH2Cl2
the shift is of 22 nm) and 18 nm (for complex 3c in CH2Cl2 the shift
is of 20 nm) in DMF with respect to the non-substituted complex
3a. These shifts are quite small because only a partial conjugation
between the substituents and the macrocycle framework is
possible due to intrinsic steric hindrance of 2-pyridil and phenyl
groups.
Weak vibrational bands were present between 587 and 605 nm.
These peaks became more intense in CH2Cl2 for compounds 3b
and 3c (peaks at 603 and 667 nm), while for complex 3a the peak
at 585 nm remained broad. The splitting in the Q band in CH2Cl2
has been observed for other metal complexes in chlorinated
solvents and it is probably due the formation of excitonic coupling
because of molecular association.[20]

Finally, as observed for porphyrazines and phthalocyanines,
because of HOMO-LUMO p-p* transitions, B bands between 315
and 421 nm are also present (Table 1).
As it can be seen from Table 1, the UV-vis spectra of compounds
3a-c strictly parallel the ones of the corresponding un-metallated
macrocycles, with the exception in the B band region. As shown
in Figure 2, ligands were, generally, characterized by an envelope
in the 300-400 nm region, whereas the corresponding metallated
compound presented more defined and red-shifted absorptions.
In contrast to complex 3a, ligand 2a presented a very low solubility
in both DMF and CH2Cl2 (see Figure 2a for a comparison between
2a and 3a), while more soluble ligands were obtained by the
introduction of 2-pyridil and phenyl groups (Figure 2b).

Table 1. UV-Vis spectral data for ligands 2a-c and complexes 3a-c in
different solvents.

Compound Solvent B band region
[nm]

Q band region [nm]

2a DMF 404 435 576 636

3a DMF 326 587 647

3a CH2Cl2 338 585 646

2b CH2Cl2 355 421 581 617 634 668

3b DMF 315 603 667

3b CH2Cl2 320 577 634 668

2c DMF 336 657

2c CH2Cl2 342 638 667

3c DMF 375 605 665

3c CH2Cl2 362 441 607 637 666
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Figure 2. Comparison between the UV-vis spectra of ligands 2a-b and
complexes 3a-b in different solvents.

Electrochemical Measurements.
As proposed in literature for tetra-2,3-pyrazinoporphyrazines
ligands/metal complexes and for phatholocyanine and
diazepinoporphyrazine analogues, the macrocycle is able to give
four one-electron reductions in the range of potentials 0.0 ÷ -2.0
V vs SCE. In general, cyclic voltammograms (CVs) of ligands
present, also, a fifth redox event which has been attributed to the
reduction of a dianionic specie in equilibrium with the neutral
porphyrazine as confirmed by the measurements in pyridine. In
the case of cobalt-based complexes, two reductions on charge of
CoII occur prior to the classical four-reduction sequence observed
for CuII, ZnII and MgII complexes.
Cyclic voltammograms of complexes 3a-c in DMSO and DMF
containing Bu4NBF4 0.1 M as support electrolyte are shown in
Figures 3 and 4. Scan rates of 0.5 V/sec were employed for each
measurement. Even though, a suspended excess of compound
was employed well defined redox processes were observed, only,
for complex 3a in both solvents, particularly in DMSO. The quality
of voltammograms in DMF was strongly affected by the poor
solubility of compounds 3b-c. On the other hand, low intensity
redox events were clearly identified in DMSO for all three
compounds. In general, no oxidations were observed up to a
positive potential of 1.1 V vs SCE (The complete set of
voltammograms recorded is summarized in the Supporting
Information).
The voltammogram in DMSO of ligand 2a showed only one
reversible peak at -0.77 V (Figure 3), probably due to the
reduction of dianion 2a2-. This result is in agreement with the

literature[18-19, 21] where tetrapyrazinoporphyrazines are known to
undergo deprotonation upon dissolution in DMSO and their
dianion TPysPzs2- are in equilibrium with the neutral forms
TPysPzsH2. In contrast, the CV of 2a in DMF/CH2Cl2 5/1 showed
one irreversible peak at -0.89 V for the reduction of the
corresponding dianion and a second reversible peak, barely
visible, at -1.42 V, which can be probably attributed to the
reduction of its neutral form (Figure 3).[22]

As shown in Figure 3 and 4, complex 3a exhibits in DMSO five
redox couples labeled I – V. In the case of couples I – IV, the
cathodic to anodic peak separation (DE = Epc - Epa) at 0.5 V/s was
in the range 85 – 100 mV; however the cathodic to anodic peak
current ratios (Ipc/Ipa) were near unit, suggesting a quasi-reversible
behavior. The CV of 3a in DMF, 3b and 3c in DMSO showed a
similar electrochemical behavior, although peaks were not cleanly
resolved (Figures 3-4).
The half-wave potentials (E1/2) and the potential separation
between different stepwise reductions (D) are reported in Table 2
for 3a-c complexes. For comparison, E1/2 and D of ligand 2b/metal
MII cations complexes (2b-MII)[23] and tetra-substituted
oxo(phthalocyaninato)titanium(IV) complexes [(PhCH2O)4Pc-
TiIVO and (PhOC6H4OCH2)4Pc-TiIVO][24] are reported in the same
Table.
As shown in Table 2, the E1/2 and the potential separation between
couples III, IV and V for compounds 3a-c are very similar to those
of metal complexes 2b-MII; as proposed in literature, these
stepwise reduction sequences are assumed to be ligand-centered.
Moreover, the new titanium-based tetrapyrazinoporphrazine
complexes are reduced more easily than their analogues
(PhCH2O)4Pc-TiIVO and (PhOC6H4OCH2)4Pc-TiIVO thanks to the
substitution of benzene rings in phthalocyanines with pyrazine
rings. It has been demonstrated that the sequence of reduction
process for oxotitanium tetra-substituted phthalocyanines
complexes involved two initial metal-centered TiIV → TiIII and TiIII

→ TiII stepwise reductions, followed by two other ligand-based
reduction steps.[24] From all these observations we propose the
following mechanism for the reduction of compounds 3a-c
(Scheme 2):

[TPyzPz-TiIV] + e D [TPyzPz-TiIII]

[TPyzPz-TiIII] + e D [TPyzPz-TiII]

[TPyzPz-TiII] + e D [TPyzPz-TiII]-

[TPyzPz-TiII]- + e D [TPyzPz-TiII]2-

[TPyzPz-TiII]2- + e D [TPyzPz-TiII]3-

Scheme 2. Suggested mechanism for reduction of complexes 3a-c.

In other words, as suggested by cyclic voltammetry, the
electrochemical behavior of complexes 3a-c can involve a quasi-
reversible reduction of titanium(IV) in the first two steps followed
by two or three tetrapyrazinoporphyrazine-based reduction.
.
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Figure 3. Top and middle: cyclic voltammograms of complex 3a and ligand 2a in DMSO and DMF, 0.1 M Bu4NBF4, scan rate 0.5 V/s. A mixture DMF/CH2Cl2 5/1
was applied as solvent in order to increase the solubility of ligand 2a. Bottom: cyclic voltammograms of complex 3b and 3c in DMSO, 0.1 M Bu4NBF4, scan rate 0.5
V/s.
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Figure 4. Cyclic voltammograms of complex 3a in DMSO, 0.1 M Bu4NBF4, scan rate 0.5 V/s.

Cyclic voltammetry technique was also used to study the
response of complex 3a towards electrochemical processes, such
as hydrogen and oxygen redox reactions, of practical interest in
energy conversion devices. To improve the electronic conductivity
of the sample, compound 3a was blended with a carbon support
(Vulcan XC72) in weight ratio 20:80 and mixed with 2-propanol
and 5% Nafion solution in order to prepare the catalytst ink.[25] A
catalyst ink based on Pt/C (E-TEK, with 20 wt.% Pt content with
respect to C) was used as benchmark. A properly designed three
electrode cell configuration was used to evaluate the catalytic
activity of the sample: Ag/AgCl was used as reference electrode;
a glassy carbon of 4 mm diameter disk, where a thin layer of
catalyst ink was coated with a loading of 50 μg/cm2 of the catalyst
(3a or Pt) was adopted as the working electrode (WE). A platinum
wire was used as counter electrode and the cell was filled with 0.1
M HClO4 electrolyte.

Cyclic voltammetry was performed under nitrogen atmosphere
with a scan rate of 50 mV/sec in the potential range 0,05 ÷ 1,2 V
(all the potential values for this measurement were reported
versus the reversible hydrogen electrode RHE).
Figure 5 shows the 50th voltammetric cycle recorded for both 3a-
and Pt-based samples. Interestingly, sample 3a showed typical
peaks due to hydrogen redox reactions (i.e.
adsorption/desorption) visible at low potential, delivering higher
current densities with respect to the Pt/C catalyst. Unfortunately,
negligible electrochemical activity was observed at higher
potential regions, where the oxygen reactions are expected.
This result could be explained considering the acidic properties of
the sample sustained by the presence of the Ti-O system, which
can participate in the hydrogen reactions by the reversible
deprotonation equilibrium above explained (Scheme 2).

Table 2. Half-Wave Potentialsa (E1/2, V vs SCE) and potential separations between different stepwise reductions (D) of complexes 3a-c and [2b-MII]

Compound I II III IV V DI-II D II-III D III-IV D IV-V

3ab -0.087 -0.39 -1.23 -1.60 -1.89c 0.30 0.84 0.37 0.29

3ac,d -0.32 -0.45 -1.33 -1.73 -1.95c 0.13 0.86 0.40 0.23

3bb,c -0.062 -0.34 -1.00 -1.20 -1.58 0.28 0.66 0.20 0.38

3cb,c -0.062 -0.39 -1.11 0.33 0.72

[2b-ZnII]e,f -0.34 -0.72 -1.38 -1.66 -1.83 0.38 0.66 0.28 0.17

[2b-ZnII]f,g -0.26 -0.67 -1.38 -1.64 0.41 0.71 0.26

[2b-CuII]f,g -0.22 -0.58 -1.22 -1.58 0.36 0.64 0.36

[2b-CoII]f,g -0.06 -0.76 -1.31 -1.77 0.70 0.55 0.46

[2b-MnII]f,g -0.16 -0.89 -1.33 -1.64 0.73 0.44 0.47

(PhCH2O)4Pc-TiIVOh,i -0.18 -0.58 -1.51 -1.76 0.40 0.93 0.25

(PhOC6H4OCH2)4Pc-TiIVOh,i -0.14 -0.55 -1.42 -1.71 0.41 0.87 0.29

[a]: E1/2 = (Epc + Epa)/2; [b]: DMSO, 0.1 M Bu4NBF4; scan rate 0.5 V/s; [c]: Epcathodic; [d]: DMF, 0.1 M Bu4NBF4; scan rate 0.5 V/s; [e] pyridine/0.1M
TBAP, scan rate 0.1 V/s; [f]: ref [23]; [g]: DMF, 0.1M TBAP, scan rate 0.1 V/s; [h]: DMF, 0.1 M Bu4NBF4; scan rate 01 V/s; [i]: ref [24].
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Furthermore, it is worth noticing pointing out that superior
behavior has been obtained for bare 3a/C composite toward
hydrogen redox process with respect to platinum. The latter being
the benchmark, commonly used catalyst for both hydrogen
oxidation and evolution reactions occurring in a fuel cell or
electrolyzer device, respectively.[26-27] Consequently, due to the
intrinsic advantages of compound 3a with respect to platinum, in
terms of cost and scalability, the proposed Ti-based complex is
considered of great interest, deserving further investigations to
evaluate its applicability as catalytic material in fuel cell or water
electrolyzer devices.

Figure 5. Cyclic voltammograms of the investigated 3a sample (green) and of
benchmark Pt/C (black) catalyst, analyzed in HClO4, 0.1 M electrolyte at 50
mV/s scan rate.

IR Spectra.
Pyrazinoporphyrazine macrocycles object of this study exhibited
quite similar IR spectral patterns. In general, signals of Ti-
complexes were sharper and more intense than those of the
corresponding ligands, especially between 900 and 1340 cm-1.
The porphyrazine macrocycle which is characterized by the
presence of conjugated CC and CN double bonds, gave typical
absorptions in the range 1000 – 1600 cm-1 due to skeletal
vibrations.
Interestingly, the introduction of the Ti=O group in complexes 3a-
c caused the appearance of peaks located near 700 and 900
cm-1 (3a: 744 cm-1, 906 cm-1; 3b: 704 cm-1, 743 cm-1, 993 cm-1;
3c: 762 cm-1, 938 cm-1).[10, 28-29] Because of the presence of the
NH stretching, broad absorptions above 3000 cm-1 were observed
for ligands 2b-c (2b: 3292 cm-1, 2c: 3053 cm-1), while for
compound 2a this broad peak was shifted to 2958 cm-1. Complex
3c also showed a broad absorption around 3056 cm-1, which can
be attributed to the stretching of aromatic CH (see Supporting
Information for full IR spectra).

Solid State Studies:
Solid State NMR Studies.
For the characterization of all complexes, Solid State Nuclear
Magnetic Resonance (SSNMR) 1H-13C Cross Polarization-Magic
Angle Spinning (CP-MAS) spectra were acquired and compared
with the spectra of the corresponding ligands. It should be noted
that in CP spectra the relative intensities of the different peaks are
not quantitative, since signals form carbon-13 nuclei in closest

proximity to protons are enhanced by the cross-polarization
process.
For complex 3a, a single peak centered at 148.9 ppm was
observed in the aromatic region, similarly to what already reported
in literature [3], which is ascribable to carbons 1, 2 and 3 (Figure
6a). In the case of complex 3c, three main peaks could be
identified, which are centered at 128.4 ppm (carbons 5, 6, 7),
137.7 ppm (carbon 4) and at about 151.0 ppm (carbons 1, 2, 3)
(Figure 6b). The spectrum of complex 3b presented four main
signals in the aromatic region centered at 123.7 ppm (carbons 5
and 7), 136.3 ppm (carbon 6), 147.9 ppm (carbon 8) and 155.6
ppm (carbons 1, 2, 3, 4) (Figure 6c). The spectra of all complexes
and ligands also presented low intensity signals in the aliphatic
region between 0 ppm and 70 ppm (Figure 6d-f), probably due to
residual solvent molecules (such as acetone) co-crystallized with
the complexes and/or to reaction by-products.
The spectra of each ligand presented carbon resonances similar
to the ones observed for the corresponding complex; only a small
change of their chemical shifts could be observed (ligand 2a:
146.6 ppm; ligand 2b:123.7 ppm, 136.9 ppm, 147.4 ppm, 155.1
ppm; ligand 2c: 128.4 ppm, 137.2 ppm, 150.8 ppm; see
Supporting Information), indicating that the coordination with the
titanyl group induces only a slight modification of the symmetry
and the conformational properties of the
tetrapyrazinotetraazaporphyrine macrocycle.

Figure 6. Aromatic (left panel) and aliphatic (right panel) regions of the 1H-13C
CP-MAS spectra of complexes 3a (a, d), 3c (b, e) and R=3b (c, f). Spinning side
bands are marked with asterisks.

MALDI-TOF Analysis.
Ligands and complexes were further analyzed by MALDI-TOF
analysis employing 2,5-dihydroxybenzoic acid (DHB) as matrix.
DHB was preferred because it undergoes less fragmentation
respect to other reference compounds under laser shot (data not
shown). To this end, samples were prepared according to the
procedures reported in the following references.[30-32] In general,
for ligands 2a-c, the precursor ion results from the addition of a
proton to form the positively charged molecular ion [M+H]+ (see
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Supporting Information for related measurements). Moreover,
sodium [M+H+Na]+ and potassium [M+H+K]+ adducts were also
identified. Similarly, complexes 3a-c were detected as precursor
ion [M+H]+ as well as in cation adduct clusters. MALDI spectra
and a summary of all the ligands and complexes species detected
are displayed in Supplemental Information.

Morphological Studies by SEM.
Morphological studies of all Titanium-based complexes were
carried by SEM analysis, as shown in Figure 6. Among all

samples, material 3a displayed unique morphological features,
resulting in agglomerates of quasi-spherical particles with spotty
flat mats. When the complexity of the molecule structure
increases, i.e. with the introduction of eight 2-pyridil and eight
phenyl groups (samples 3b and 3c respectively), the
corresponding particles exhibit important changes in terms of both
shape and size distributions, as more homogeneous, layered-like
structures were observed.

Figure 6. SEM images of all Titanium-based complexes.

Conclusion

In summary, this paper presented the synthesis, characterization
and the electrochemical behavior of a family of ligands and Ti-
complexes based on the tetrakis-2,3-[5,6-di-R8-
pyrazino]porphyrazine (R= H, 2-Py, Ph) macrocycle. Ligands 2a-
c were obtained by cyclotetramerization of precursors 1a-c in the
presence of DBU as catalyst, while complexes 3a-c could be
prepared by precursors melting and addition of Titanium(IV)
butoxide under inert gas and dry reaction conditions. Molecular
aggregation was confirmed by UV-Vis studies in different solvents.
IR spectra were characterized by typical absorptions due to CC
and CN skeletal vibrations. Complexes showed additional peaks
related to the Ti=O group in the range 700 - 900 cm-1. Broad
bands due to NH stretching were also observed for the ligands.
MALDI-TOF analysis was performed in order to further investigate
the structures. [M+H]+ adducts as well cation adduct clusters were
identified for both compounds 2a-c and 3a-c. Morphological studies

by SEM revealed a change in the morphological features with an

increase in homogeneity passing from 3a to 3b-c. The
electrochemical characterization was carried out in
DMSO/Bu4NBF4 0.1 M. In general, ligands showed only one
reversible peak that can be attributed to the dianion reduction.
Despite the low solubility, it was possible to observe different
redox events of low intensity for compounds 3b-c, while complex
3a gave well defined voltammograms. From the results obtained,
we proposed that our Ti-complexes can participate in up to five
redox events. The first two involving the step-wise quasi-

reversible reduction of the metal centre (TiIV→ TiIII and TiIII→ TiII),
while the remaining two or three reductions occur on charge of
the TPysPz macrocycle. In the light of a future application of
compounds 3a-c in energy conversion devices, such as fuel cell
or water electrolyzer, we realized a preliminary study to test the
response of these catalysts towards hydrogen and oxygen redox
reactions. Therefore, an ink of catalyst blended on a carbon
support was used to coat 3a on a glassy carbon. No activity
toward oxygen redaction was observed but, interestingly, the
presence of the Ti-O system confers the catalyst the ability to
participate in hydrogen reactions delivering higher current
densities with respect to Pt/C, introducing this catalyst as a
possible alternative to Pt. Evaluation of the applicability of these
materials as catalysts in energy conversion devices is ongoing.

Experimental Section

General

Analytical grade solvents and all commercially available reagents were
used as received. Reactions were monitored by thin-layer chromatography
using silica gel plates TLC Silica gel 60 F254 from Sigma-Aldrich;
visualization was accomplished with UV light (254 nm) or KMnO4 stain.
Flash chromatography (FC) was carried out using Merck silica gel 60 (230-
400 mesh) employing mixtures of petroleum ether and acetone as eluant.
1H-NMR spectra of starting materials were recorded on a Bruker Avance
300 spectrometer (1H: 300 MHz at 295 K). Chemical shifts were reported
to the solvent residual peak (CDCl3: 1H = 7.26 ppm). SSNMR spectra of
all complexes and their respective ligands were acquired on a Varian

3a 3b 3c
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InfinityPlus spectrometer working at a Larmor frequency of 400.34 and
100.67 MHz for 1H and 13C, respectively, using a CP-MAS 3.2 mm probe.
1H-13C CP-MAS spectra were recorded using a contact time of 2 ms, under
High-Power Decoupling from 1H nuclei, at a MAS frequency of 15 kHz.
15000-80000 transients were accumulated, using a recycle delay of 3 s
between consecutive transients. 13C chemical shifts were referred to
hexamethylbenzene and TMS as secondary and primary references,
respectively. UV-vis spectra were recorded with a Hewlett Packard 8452
diode array spectrophotometer equipped with an external water bath
circulator (Julabo Labortechnik, GmbH) for temperature control (± 0.1 °C),
using quartz cuvettes with 1 cm optical path. ATR FT-IR spectra were
recorded using a Thermo Scientific Nicolet iS10 spectrometer equipped
with a triglycine sulfate detector (DTGS) and acquired with Omnic vers.
8.1.10 software. The spectra were the result of 32 scans with a spectral
resolution of 4 cm-1. An ATR correction algorithm and automatic
atmospheric suppression were applied to all spectra. Cyclic voltammetry
was performed on a homemade electrochemical equipment consisting of
a computer-controlled potentiostat with Vernier Software Multi Purpose
Laboratory Interface (MPLI) program for Windows, a glassy-carbon disk
(diameter of 1 mm) as working electrode; an Ag/AgCl/KCl 3 M as the
reference electrode (E vs SCE = E vs Ag/AgCl -0.032), and a platinum disc
(surface 1 cm2) as the auxiliary electrode. Cyclic voltammograms were
acquired at 0.5 V/sec scan speed, 25°C, in DMF or DMSO containing
Bu4NBF4 (0.1M) as supporting electrolyte. Concentration of ligands or
complexes was 2 mM. Mass Spectrometry Analysis MALDI-TOF-MS
spectra were acquired using a 5800 MALDI TOF/TOF Analyzer (Sciex,
Ontario, Canada). The spectra were acquired in the positive reflector mode
by 20 subspectral accumulations (each consisting of 50 laser shots) in an
50−1500 mass range, focus mass 800 Da, using a 355 nm Nb:YAG laser
with a 20 kV acceleration voltage. Peak labelling was automatically done
by 4000 Series Explorer software Version 4.1.0 (Sciex) without any kind of
smoothing of peaks or baseline, considering only peaks that exceeded a
signal-to noise ratio of 10 (local noise window 200 m/z) and a half maximal
width of 2.9 bins. Calibration was performed using default calibration
originated by five standard spots. 2,5-dihydroxybenzoic acid (DHB) was
employed as matrix. SEM images were obtained from AURIGA Zeiss Field
Emission.

Synthesis of starting materials 1a-c: Compounds 1a-c were obtained
by a modification of the procedure reported in ref. [17]. A solution of
diaminomaleonitrile (18.5 mmols; 1 Equiv.) and the corresponding α-
diketone (20.4 mmols; 1.1 Equiv.) in glacial acetic acid (35 mL) was heated
under reflux for 3 hours. When the diaminomaleonitrile was totally
consumed, the reaction mixture was cooled down and 50 mL of water were
added. The aqueous layer was extracted with 100 mL of ethyl acetate and
then washed according to the following sequence with water (3 x 50 mL),
a saturated solution of NaHCO3 (4 x 50 mL; exothermic reaction), water (2
x 50 mL) and brine (2 x 50 mL). The organic layer was dried over sodium
sulfate. After filtration, the solvent was removed under reduced pressure
and the solid residue was purified by recrystallization from ethanol/water
at 4°C.

1a: m.p. 180°C; 1H NMR (300 MHz, CDCl3): δ= 8.94 (s, 2 H); 76% yield.

1b: m.p. 175°C; 1H NMR (300 MHz, CDCl3): δ= 8.31 ppm (d, J= 6 Hz, 1H),
8.06 ppm (d, J= 9 Hz, 1H), 7.96-7.84 (m, 1H), 7.40-7.28 (m, 1H); 73% yield.

1c: m.p. 240°C; 1H NMR (300 MHz, DMSO-d6): δ= 7.58-7.45 (m, 3H), 7.45-
7.33 (m, 2H); 85% yield.

Synthesis of ligands 2a-c: Pyrazinoporphyrazine macrocycles 2a-c were
prepared by autocyclotetramerization of starting materials 1a-c as follows:
the precursor (400 mg; 3.1 mmols) was placed in a thick test tube and
heated in an oil or sand bath until the solid melted (temperature of oil/sand
bath employed: compound 1a: 180°C; compound 1b: 175°C; compound
1c: 240°C). A few drops of DBU were added as catalyst. The mixture was
manually stirred until a black solid was formed. After complete solidification,
the solid was cooled down, finely grounded and purified by Soxhlet

extraction with methanol (16 h) followed by acetone (10 h). The green or
bluish powders were dried under vacuum until they reach a constant
weight

2a: 13C (SSNMR): 146.6 ppm. FTIR-ATR: ν˜= 722, 725, 857, 890, 1150,
1118, 1193, 1356, 1429, 1599, 1868, 2111, 2936 cm−1; UV/Vis (DMF): λ=
636, 576, 435, 404 nm; MS (MALDI-TOF): m/z calc for C24H11N16:
523,1353 [M+H]+; found 523.0859; m/z calc for C24H11N16Na: 546.1250
[M+H+Na]2+; found 546.2062. Elemental analysis calc for 2a·2C2H6O: C
56.43%, H 3.47%, N 35.08%. Found: C 56.67%, H 3.42%, N 35.66%; 21%
yield.

2b: 13C (SSNMR): 123.7 ppm, 136.9 ppm, 147.4 ppm, 155.1 ppm. FTIR-
ATR: ν˜= 648, 696, 744, 759, 801, 950, 992, 1092, 1105, 1144, 1225, 1360,
1431, 1470, 1500, 1585, 1566, 1864, 2096, 3285 cm-1; UV/Vis (DCM): λ=
668, 634, 617, 605, 581, 421, 355 nm; MS (MALDI-TOF): m/z calc for
C64H35N24: 1140.3229 [M+H]+; found 1139.3477;m/z calc for C64H35N24Na:
1162.3374 [M+H+Na]2+; found 1162.3042. Elemental analysis calc for
2b·2H2O: C 65.42%, H 3.26%, N 28.60%. Found: C 65.13%, H 3.56%, N
27.44%; 20% yield.

2c: 13C (SSNMR): 128.4 ppm, 137.2 ppm, 150.8 ppm. FTIR-ATR: ν˜= 689,
765, 1023, 1173, 1340, 1523, 1860, 2103, 3053 cm-1; UV/Vis (DMF): λ=
657, 336 nm; UV/Vis (DCM): λ= 667, 638, 342 nm; MS (MALDI-TOF): m/z
calc for C72H43N16: 1131.3857 [M+H]+; found 1131.2971; m/z calc for
C72H43N16Na: 1154.3754 [M+H+Na]2+; found 1154.2932. Elemental
analysis calc for 2c: C 76.45%, H 3.74%, N 19.80%. Found: C 77.27%, H
4.04%, N 18.36%; 18% yield.

Synthesis of complexes 3a-c: Titanium-based pyrazinoporphyrazines
3a-c were prepared by cyclotetramerization of starting materials 1a-c in
the presence of titanium (IV) butoxide as follows: the precursor 1a-c (400
mg; 3.1 mmols; 8 Equiv.) was placed under argon in a dry Schlenk flask
and heated in an oil or sand bath until the solid melted (temperature of
oil/sand bath employed: compound 1a: 180°C; compound 1b: 175°C;
compound 1c: 240°C). Against a flux of inert gas, titanium (IV) butoxide
(0.39 mmols; 1 Equiv.) was added. The evolution of a white smoke was
generally observed. The reaction mixture was stirred at high temperature
(temperature of oil/sand bath employed: starting-material 1a: 180°C;
starting-material 1b: 175°C; starting-material 1c: 240°C) for 5 hours, then
the mixture was cooled down, 30 mL of MeOH were added and the crude
product was left under stirring overnight. The solid obtained was separated
by centrifugation and brought to constant weight under vacuum. In order
to dissolve the contaminants, the complex 3a-c finely grounded, were then
resuspended in CH2Cl2 and left under stirring for 30 minutes. After this time,
the product 3a-c was collected by centrifugation and dried under vacuum
until constant weight

3a: 13C (SSNMR): 148.9 ppm. FTIR-ATR: ν˜= 744, 906, 909, 913, 1208,
1359, 1507, 1508, 1664, 1864, 2110 cm-1; UV/Vis (DMF): λ= 647, 587, 326
nm; UV/Vis (DCM): λ= 646, 614, 585, 338 nm; MS (MALDI-TOF): m/z calc
for C24H9N16OTi: 585.0625 [M+H]+; found 584.9780. Elemental analysis
calc for 3a·2H2O: C 46.47%, H 1.95%, N 36.12%. Found: C 46.23%, H
3.03%, N 33.03%; blue powder obtained with 78% yield.

3b: 13C (SSNMR): 123.7 ppm, 136.3, 147.9, 155.6 ppm. FTIR-ATR: ν˜=
705, 744, 790, 958, 993, 1092, 1147, 1359, 1432, 1471, 1566, 1584, 1738,
2113 cm-1; UV/Vis (DMF): λ= 667, 603, 315 nm; UV/Vis (DCM): λ= 668,
634, 605, 577, 320 nm; MS (MALDI-TOF): m/z calc for C64H33N24NaOTi:
1224.2646 [M+H+Na]2+; found 1224.3872; Elemental analysis calc for
3b·6H2O: C 58.73%, H 3.39%, N 25.67%. Found: C 58.43%, H 4.06%, N
24.19%; green powder obtained with 65% yield.

3c: 13C (SSNMR): 128.4 ppm, 137.7 ppm, 151.0 ppm. FTIR-ATR: ν˜= 690,
768, 938, 1024, 1104, 1143, 1180, 1231, 1341, 1444, 1540, 1631, 1885,
2102, 3051, 3288 cm-1; UV/Vis (DMF): λ= 665, 601, 375 nm; UV/Vis
(DCM): λ= 666, 637, 607, 445, 362 nm; MS (MALDI-TOF): m/z calc for
C72H41N16OTi: 1193.3129 [M+H]+; found 1193.2933; Elemental analysis
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calc for 3c·2H2O: C 70.36%, H 3.61%, N 18.23%. Found: C 70.05%, H
3.88%, N 17.47%; green powder obtained with 95% yield.
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1. Materials and Methods

Analytical grade solvents and all commercially available reagents were used as received.
Reactions were monitored by thin-layer chromatography using silica gel plates TLC Silica gel 60 F254
from Sigma-Aldrich; visualization was accomplished with UV light (254 nm) or KMnO4 stain. Flash
chromatography (FC) was carried out using Merck silica gel 60 (230-400 mesh) employing mixtures of
petroleum ether and acetone as eluant.
UV-vis spectra were recorded with a Hewlett Packard 8452 diode array spectrophotometer equipped
with an external water bath circulator (Julabo Labortechnik, GmbH) for temperature control (± 0.1 °C),
using quartz cuvettes with 1 cm optical path.
1H-NMR spectra of starting materials were recorded on a Bruker Avance 300 spectrometer (1H: 300
MHz at 295 K). Chemical shifts were reported to the solvent residual peak (CDCl3: 1H = 7.26 ppm).
SSNMR spectra of all complexes and their respective ligands and were acquired on a Varian InfinityPlus
spectrometer working at a Larmor frequency of 400.34 and 100.67 MHz for 1H and 13C, respectively,
using a CP-MAS 3.2 mm probe. 1H-13C CP-MAS spectra were recorded using a contact time of 2 ms,
under High-Power Decoupling from 1H nuclei, at a MAS frequency of 15 kHz. 15000-80000 transients
were accumulated, using a recycle delay of 3 s between consecutive transients. 13C chemical shifts were
referred to hexamethylbenzene and TMS as secondary and primary references, respectively.

Cyclic voltammetry was performed on a homemade electrochemical equipment consisting of a
computer-controlled potentiostat with Vernier Software Multi Purpose Laboratory Interface (MPLI)
program for Windows, a glassy-carbon disk (diameter of 1 mm) as working electrode; an Ag/AgCl/KCl
3 M as the reference electrode (E vs SCE = E vs Ag/AgCl -0.032), and a platinum disc (surface 1 cm2) as
the auxiliary electrode (Friis, E. P.; Andersen, J. E. T.; Madsen, L. L.; Bonander, N.; Moller, P.; Ulstrup,
J. Electrochimica Acta 1998, 43, 1114). Cyclic voltammograms were acquired at 0.5 V/sec scan speed,
25°C, in DMF or DMSO containing Bu4NBF4 (0.1M) as supporting electrolyte. Concentration of ligands
or complexes was 2 mM.
ATR FT-IR spectra were recorded using a Thermo Scientific Nicolet iS10 spectrometer equipped with a
triglycine sulfate detector (DTGS), and acquired with Omnic vers. 8.1.10 software. The spectra were the
result of 32 scans with a spectral resolution of 4 cm-1. A Smart iTR ATR accessory provided with a
diamond ATR crystal was used. An ATR correction algorithm and automatic atmospheric suppression
were applied to all spectra.
Mass Spectrometry Analysis MALDI-TOF-MS spectra were acquired using a 5800 MALDI TOF/TOF
Analyzer (Sciex, Ontario, Canada). The spectra were acquired in the positive reflector mode by 20
subspectral accumulations (each consisting of 50 laser shots) in an 50−1500 mass range, focus mass 800
Da, using a 355 nm Nb:YAG laser with a 20 kV acceleration voltage. Peak labelling was automatically
done by 4000 Series Explorer software Version 4.1.0 (Sciex) without any kind of smoothing of peaks or
baseline, considering only peaks that exceeded a signal-to noise ratio of 10 (local noise window 200 m/z)
and a half maximal width of 2.9 bins. Calibration was performed using default calibration originated by
five standard spots (Mass Standards kit for Calibration P/N 4333604). 2,5-dihydroxybenzoic acid (DHB)
was employed as matrix.
Scanning electron microscopy (SEM) analysis was performed using an AURIGA Zeiss Field Emission.
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2. General procedures and characterization

2.1 General procedure for the preparation of starting material 1a-c

Compounds 1a-c were obtained by a modification of the procedure reported by Mørkved et al.
(Mørkved, E. H.; Ossletten, H.; Kjøsen, H.; Bjørlo, O. J. Prakt. Chem. 2000, 342, 83).
A solution of diaminomaleonitrile (18.5 mmols; 1 Equiv.) and the corresponding α-diketone (20.4
mmols; 1.1 Equiv.) in glacial acetic acid (35 mL) was heated under reflux for 3 hours. When the
diaminomaleonitrile was totally consumed, the reaction mixture was cooled down and 50 mL of water
were added. The aqueous layer was extracted with 100 mL of ethyl acetate and then washed according to
the following sequence with water (3 x 50 mL), a saturated solution of NaHCO3 (4 x 50 mL; exothermic
reaction), water (2 x 50 mL) and brine (2 x 50 mL). The organic phase was dried over sodium sulfate.
After filtration, the solvent was removed under reduced pressure and the solid residue was purified by
recrystallization from ethanol/water at 4°C. Products were obtained with the following yields: compound
1a 76% yield; compound 1b 73% yield; compound 1c 85% yield.

2.2 Characterization of starting materials 1a-c

1a. 1H-NMR (300 MHz, CDCl3): 8.94 ppm (s, 2 H).

1b. 1H-NMR (300 MHz, CDCl3): 8.31 ppm (d, 1H; J= 6 Hz);
8.06 ppm (d, 1H; J= 9 Hz); 7.96-7.84 (m, 1H); 7.40-7.28 (m, 1H).

1c. 1H-NMR (300 MHz, DMSO-d6): 7.58-7.45 (m, 3H); 7.45-7.33 (m, 2H).
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2.3 1H-NMR spectra of starting materials 1a-c
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2.4 General procedure for the preparation of ligands 2a-c

Ligands 2a-c were obtained according to the procedure reported by Ercolani, Kadish et al. (Donzello, M.
P.; Zhongping Ou, Z.; Monacelli, F.; Ricciardi, G.; Corrado Rizzoli, C.; Ercolani, C.; Kadish, K. M.
Inorg. Chem. 2004, 43, 8626).
Pyrazinoporphyrazine macrocycles 2a-c were prepared by autocyclotetramerization of starting materials
1a-c as follows: the precursor (400 mg; 3.1 mmols) was placed in thick test tube and heated in a oil or
sand bath until the solid melted (temperature of oil/sand bath employed: compound 1a: 180°C;
compound 1b: 175°C; compound 1c: 240°C). A few drops of DBU were added as catalyst. The mixture
was manually stirred until a black solid was formed. After complete solidification, the solid was cooled
down, finely grounded and purified by Soxhlet extraction with methanol (16 h) followed by acetone (10
h). The green or bluish powders were dried under vacuum until they reach a constant weight (Compound
2a: blue powder, 21% yield; compound 2b: green powder, 20% yield; compound 2c: green powder, 18%
yield).

2.5 UV-Vis spectra of ligands 2a-c

2a. UV-Vis in DMF: 636 nm, 576 nm, 435 nm, 404 nm.
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2b. UV-Vis in DCM: 668 nm, 634 nm, 617 nm, 605
nm, 581 nm, 421 nm, 355 nm.

2c. UV-Vis in DMF: 657 nm, 336 nm.

2c. UV-Vis in DCM: 667 nm, 638 nm, 342 nm.
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2.6 General procedure for the preparation of Titanium-complexes 3a-c

Titanium-based pyrazinoporphyrazines 3a-c were prepared by cyclotetramerization of starting materials
1a-c in the presence of titanium (IV) butoxide as follows: the precursor 1a-c (400 mg; 3.1 mmols; 8
Equiv.) was placed under argon in a dry Schlenk flask and heated in a oil or sand bath until the solid
melted (temperature of oil/sand bath employed: compound 1a: 180°C; compound 1b: 175°C; compound
1c: 240°C). Against a flux of inert gas, titanium (IV) butoxide (0.39 mmols; 1 Equiv.) was added. The
evolution of a white smoke was generally observed. The reaction mixture was stirred at high temperature
(temperature of oil/sand bath employed: starting-material 1a: 180°C; starting-material 1b: 175°C;
starting-material 1c: 240°C) for 5 hours, then the mixture was cooled down, 30 mL of MeOH were
added and the crude product was left under stirring overnight. The solid obtained was separated by
centrifugation and brought to constant weight under vacuum. In order to dissolve the contaminants, the
complex 3a-c finely grounded, then resuspended in CH2Cl2 and left under stirring for 30 minutes. After
this time, the product 3a-c was collected by centrifugation and dried under vacuum until constant weight
(Compound 3a: blue powder; compound 3b: green powder; compound 3c: green powder). Products were
obtained with the following yields: compound 3a 78% yield; compound 3b 65% yield; compound 3c
95% yield.
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2.7 UV-Vis spectra of Titanium-complexes 3a-c

3a. UV-Vis in DMF: 647 nm, 587 nm, 326 nm.

3a. UV-Vis in DCM: 646 nm, 614 nm, 585 nm, 338 nm.
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3b. UV-Vis in DMF: 667 nm, 603 nm, 315 nm.

3b. UV-Vis in DCM: 668 nm, 634 nm, 605 nm, 577
nm, 320 nm.N
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3c. UV-Vis in DMF: 665 nm, 601 nm, 375 nm.

3c. UV-Vis in DCM: 666 nm, 637 nm, 607 nm, 445
nm, 362 nm.
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3. Cyclic voltammograms of ligands 2a-c and complexes 3a-c

Cyclic voltammetry was performed on a homemade electrochemical equipment consisting of a
computer-controlled potentiostat with Vernier Software Multi Purpose Laboratory Interface (MPLI)
program for Windows, a glassy-carbon disk (diameter of 1 mm) as working electrode; an Ag/AgCl/KCl
3 M as the reference electrode (E vs SCE = E vs Ag/AgCl -0.032), and a platinum disc (surface 1 cm2) as
the auxiliary electrode (Friis, E. P.; Andersen, J. E. T.; Madsen, L. L.; Bonander, N.; Moller, P.; Ulstrup,
J. Electrochim. Acta 1998, 43, 1114). Cyclic voltammograms were acquired at 0.5 V/sec scan rate, 25°C,
in DMF or DMSO containing Bu4NBF4 (0.1M) as supporting electrolyte. Concentration of ligands or
complexes was 2 mM.
Titanium-based complexes 3a-c were dissolved in 10 mL of DMSO/Bu4NBF4 0.1 M or DMF/Bu4NBF4
0.1 M, the solution was degassed with Argon then the voltammograms were recorded.

3.1 Cyclic voltammograms of ligands
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3.2 Cyclic voltammograms of complex 3a in DMSO
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3.3 Cyclic voltammograms of complex 3a in DMF
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3.4 Cyclic voltammograms of complex 3b in DMSO
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3.5 Cyclic voltammograms of complex 3c in DMSO

3.6 Cyclic voltammograms of complex 3c in DMF
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4. Solid State NMR: 1H-13C CP-MAS spectra of ligands 2a-c

Aromatic (left panel) and aliphatic (right panel) regions of the 1H-13C CP-MAS spectra of
ligands 2a (a, d), 2c (b, e) and 2b (c, f). Spinning side bands are marked with asterisks.
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5. MALDI-TOF analysis of ligands 2a-c and complexes 3a-c

In order to determine the mass of ligands and complexes a MALDI-TOF analysis was performed employing
2,5-dihydroxybenzoic acid (DHB) as matrix. The samples were prepared according to the following
procedure (see references: Lidgard, R.; Duncan, M. W. Rapid Commun. Mass Sp. 1995, 9, 128; Canlica, M.;
nyokong, T. Polyedron 2011, 30, 1975):

- A standard solution of DHB matrix was prepared dissolving 0.14 mmols of DBH in 1 mL of CH3CN
100% (standard solution A);

- A standard solution for each ligand and complex was prepared dissolving 2*10-3 mmols of
ligand/complex in 1 mL of CH3CN 100% (standard solution B);

- Standard solution A was diluted 1:100 with CH3CN 100% (standard solution C);
- Standard solution B was diluted 1:10 with CH3CN 100% (standard solution D);
- 6 μL of standard solution C were mixed with 9 μL of standard solution D (solution E);
- 0.5 μL of solution E were applied on the MALDI plate. The solvent was let to evaporate in order to

form a crystal.
- The MALDI plate was transferred inside the instrument for the analysis.
- The spectra were acquired in the positive reflector mode by 20 subspectral accumulations (each

consisting of 50 laser shots) in an 50-1000 mass range, focus mass 600 Da, using a 351 nm Nb:YAG
laser with a 20 kV acceleration voltage.

5.1 Mass spectrum of the DHB matrix (full spectrum)
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5.2 Mass spectrum of ligand 2a

5.3 Mass spectrum of ligand 2a: enlargement and comparison with the matrix DHB
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5.4 Mass spectrum of ligand 2b

5.5 Mass spectrum of ligand 2b: enlargement and comparison with the matrix DHB
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5.6 Mass spectrum of ligand 2c

5.7 Mass spectrum of ligand 2c: enlargement and comparison with the matrix DHB
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5.8 Mass spectrum of complex 3a

5.9 Mass spectrum of ligand 3a: enlargement and comparison with the matrix DHB
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5.10 Mass spectrum of complex 3b

5.11 Mass spectrum of ligand 3b: enlargement and comparison with the matrix DHB
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5.12 Mass spectrum of the complex 3c

5.13 Mass spectrum of ligand 3c: enlargement and comparison with the matrix DHB
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Sample name MALDI-TOF adduct Mass found Mass calculated

Ligand 2a
[M+H]+

[M+H+Na]2+

[M+H+K]2+

523.0859
546.2062
561.2230

523.1353
546.1250
561.0990

Ligand 2b

[M]
[M+H]+

[M+H+Na]2+

[M+H+K]2+

1138.3590
1140.3229
1162.3042
1179.3101

1138.3398
1139.3477
1162.3374
1179.2218

Ligand 2c
[M+H]+

[M+H+Na]2+
1131.2971
1154.2932

1131.3857
1154.3754

Complex 3a [M+H]+ 584.9780 585.0625

Complex 3b
[M]

[M+H+Na]2+
1201.4016
1224.3872

1200.2670
1224.2646

Complex 3c
[M]

[M+H]+

[M+Na]+

1192.2972
1193.2933
1215.2549

1192.3050
1193.3129
1216.3026
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6. IR spectra of ligands 2a-c and complexes 3a-c

6.1 IR spectra of ligands 2a

IR spectrum of ligand 2a: 722 cm-1; 725 cm-1; 857 cm-1; 890 cm-1; 1150 cm-1; 1118 cm-1;
1193 cm-1; 1356 cm-1; 1429 cm-1; 1599 cm-1; 1868 cm-1; 2111 cm-1; 2936 cm-1.
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6.2 IR spectra of ligands 2b

IR spectrum of ligand 2b: 648 cm-1; 696 cm-1; 744 cm-1; 759 cm-1; 801 cm-1; 950 cm-1; 992
cm-1; 1092 cm-1; 1105 cm-1; 1144 cm-1; 1225 cm-1; 1360 cm-1; 1431 cm-1; 1470 cm-1; 1500

cm-1; 1585 cm-1; 1566 cm-1; 1864 cm-1; 2096 cm-1; 3052 cm-1; 3285 cm-1.

15

25

35

45

55

65

75

85

95

105

525102515252025252530253525

Tr
an
sm

itt
an
ce

[%
]

Wavenumbers [cm-1]

IR spectrum of ligand 2b

45

55

65

75

85

95

525725925112513251525172519252125

Tr
an
sm

itt
an
ce

[%
]

Wavenumbers [cm-1]

IR spectrum of ligand 2b: enlargement



27

6.3 IR spectra of ligands 2c

IR spectrum of ligand 2c: 689 cm-1; 765 cm-1; 1023 cm-1; 1173 cm-1; 1340 cm-1; 1523 cm-1;
1860 cm-1; 2103 cm-1; 3053 cm-1.
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6.4 IR spectra of complex 3a

IR spectrum of ligand 3a: 744 cm-1; 906 cm-1; 909 cm-1; 913 cm-1; 1208 cm-1; 1359 cm-1;
1507 cm-1; 1508 cm-1; 1664 cm-1; 1864 cm-1; 2110 cm-1.
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6.5 IR spectra of complex 3b

IR spectrum of complex 3b: 705 cm-1; 744 cm-1; 790 cm-1; 958 cm-1; 993 cm-1; 1092 cm-1;
1147 cm-1; 1359 cm-1; 1432 cm-1; 1471 cm-1; 1566 cm-1; 1584 cm-1; 1738 cm-1; 2113 cm-1.
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6.6 IR spectra of complex 3c

IR spectrum of complex 3c: 690 cm-1; 768 cm-1; 938 cm-1; 1024 cm-1; 1104 cm-1; 1143 cm-1;
1180 cm-1; 1231 cm-1; 1341 cm-1; 1444 cm-1; 1540 cm-1;1631 cm-1; 1885 cm-1; 2102 cm-1;

3051 cm-1; 3288 cm-1.
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7. SEM images of complexes 3a-c

7.1 SEM images of complex 3a
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7.2 SEM images of complex 3b
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7.3 SEM images of complex 3c
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