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A BASIS FOR THE COHOMOLOGY OF COMPACT

MODELS OF TORIC ARRANGEMENTS

GIOVANNI GAIFFI, OSCAR PAPINI, AND VIOLA SICONOLFI

Abstract. In this paper we find monomial bases for the integer co-
homology rings of compact wonderful models of toric arrangements. In
the description of the monomials various combinatorial objects come
into play: building sets, nested sets, and the fan of a suitable toric va-
riety. We provide some examples computed via a SageMath program
and then we focus on the case of the toric arrangements associated with
root systems of type A. Here the combinatorial description of our basis
offers a geometrical point of view on the relation between some Eulerian
statistics on the symmetric group.

1. Introduction

Let T be an n-dimensional torus and let X∗(T ) be its group of charac-
ters; it is a lattice of rank n and, by choosing a basis, we have isomorphisms
X∗(T ) ≃ Zn and T ≃ (C∗)n. Given an element χ ∈ X∗(T ), the correspond-
ing character on T will be denoted by xχ : T → C∗.

Definition 1.1. A layer in T is a subvariety of T of the form

K(Γ, φ) := {t ∈ T | xχ(t) = φ(χ) for all χ ∈ Γ}

where Γ < X∗(T ) is a split direct summand and φ : Γ → C∗ is a homomor-
phism. A toric arrangement A is a (finite) set of layers {K1, . . . ,Kr} in T .
A toric arrangement is called divisorial if every layer has codimension 1.

In [11] it is shown how to construct projective wonderful models for the
complement M(A) = T \

⋃

iKi. A projective wonderful model is a smooth
projective variety containing M(A) as an open set and such that the com-
plement of M(A) is a divisor with normal crossings and smooth irreducible
components. In [12] the integer cohomology ring of these projective wonder-
ful models was described by showing generators and relations.

In this paper we describe a basis for the integer cohomology modules. This
description calls into play the relevant combinatorial objects that character-
ize the geometrical and topological properties of these models: the fan of a
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suitable toric variety, the building set associated to the arrangement and its
nested sets.

The construction of projective models of toric arrangements is a further
step in a rich theory that was originated by De Concini and Procesi in [15;
16], where they studied wonderful models for the complement of a subspace
arrangement, providing both a projective and a non-projective version of
their construction.

In some cases the toric and subspace constructions provide the same vari-
ety. This happens for instance when we deal with root (hyperplane or toric)
arrangements of type A. Therefore in this case we can compare the new
basis of the cohomology described in this paper with the old one coming
from the subspace construction. Part of the description of these bases is
similar but there are differences, that will lead us to find a bijection between
two families of graphs (labeled forests) and a geometric interpretation of the
equidistribution of two statistics (des and lec) on the symmetric group.

Since both subspace and toric models are involved in our results, we start
providing a sketch of the history of the theory of wonderful models from both
points of view.

1.1. Some history of linear and toric wonderful models. The con-
struction of wonderful models of subspace arrangements in [15; 16] was orig-
inally motivated by the study of Drinfeld’s construction in [23] of special
solutions of the Knizhnik-Zamolodchikov equations with some prescribed as-
ymptotic behavior, then it turned out that the role of these models is crucial
in several areas of mathematics. For instance in the case of a complexified
root arrangement of type An (which we will deal with in Section 5 of this
paper) the minimal model coincides with the moduli spaces of stable curves
of genus 0 with n+ 2 marked points.

In the seminal papers of De Concini and Procesi the notions of building
sets and nested sets appeared for the first time in a general version. In [16] the
authors showed, using a description of the cohomology rings of the projective
wonderful models to give an explicit presentation of a Morgan algebra, that
the mixed Hodge numbers and the rational homotopy type of the complement
of a complex subspace arrangement depend only on the intersection lattice
(viewed as a ranked poset). The cohomology rings of the models of subspace
arrangements were also studied in [29; 48], where some integer bases were
provided, and, in the real case, in [25; 43]. The arrangements associated with
complex reflection groups were dealt with in [32] from the representation
theoretic point of view and in [6] from the homotopical point of view.

The connections between the geometry of these models and the Chow rings
of matroids were pointed out first in [27] and then in [1], where they also
played a crucial role in the study of some relevant log-concavity problems.
The relations with toric and tropical geometry were enlightened for instance
in [2; 20; 26].
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The study of toric arrangements started in [34] and received then a new
impulse from several points of view. In [19] and [18] the role of toric ar-
rangements as a link between partition functions and box splines is pointed
out; interesting enumerative and combinatorial aspects have been investi-
gated via the Tutte polynomial and arithmetics matroids in [9; 37; 38]. As
for the topology of the complement M(A) of a divisorial toric arrangement,
the generators of the cohomology modules over C where exhibited in [17] via
local nonbroken circuits sets, and in the same paper the cohomology ring
structure was determined in the case of totally unimodular arrangements.
By a rather general approach, Dupont in [24] proved the rational formal-
ity of M(A). In turn, in [7], it was shown, extending the results in [4; 5]
and [40], that the data needed in order to state the presentation of the ra-
tional cohomology ring of M(A) is fully encoded in the poset given by all
the connected components of the intersections of the layers. It follows that
in the divisorial case the combinatorics of this poset determines the rational
homotopy of M(A).

One of the motivations for the construction of projective wonderful mod-
els of a toric arrangement A in [11], in addition to the interest in their own
geometry, was that they could be an important tool to explore the general-
ization of the above mentioned results to the non-divisorial case.

Indeed the presentation of the cohomology ring of these models described
in [12] was used in [39] to construct a Morgan differential algebra which
determines the rational homotopy type of M(A). We notice that these
models, and therefore their associated Morgan algebras, depend not only on
the initial combinatorial data, but also on some choices (see Section 2 for
more details). In [13] a new differential graded algebra was constructed as a
direct limit of the above mentioned differential Morgan algebras: it is quasi
isomorphic to any of the Morgan algebras of the projective wonderful models
of M(A) and it has a presentation which depends only on a set of initial
discrete data extracted from A, thus proving that in the non-divisorial case
the rational homotopy type of M(A) depends only on these data.

As another application of the projective wonderful models of a toric ar-
rangement, Denham and Suciu showed in [21] that (in the divisorial case)
M(A) is both a duality space and an abelian duality space.

1.2. Structure of this paper. In Section 2 we will briefly recall from [11]
the construction of the projective wonderful models associated with a toric
arrangement. This is done in two steps: first one embeds the torus in a
suitable smooth projective toric variety X∆ with fan ∆, then one considers
the arrangement of subvarieties (in the sense of Li [33]) given by the closures
of the layers of A. One chooses a suitable building set G of subvarieties
in X∆ and blowups them in a prescribed order to obtain the projective
wonderful model Y (X∆,G). The G-nested sets describe the boundary of the
model. The definitions of building sets and nested sets are recalled in this



4 G. GAIFFI, O. PAPINI, AND V. SICONOLFI

section. Example 2.19 provides a non trivial instance in dimension 3 of this
construction, computed with the help of a SageMath program (see [14]).

In Section 3 we recall from [12] the presentation of the integer cohomol-
ogy ring of Y (X∆,G) as a quotient of a polynomial ring via generators and
relations.

Section 4 is devoted to our main result. We provide a description of a
monomial Z-basis of H∗(Y (X∆,G),Z). Every element of this basis has two
factors: one is a monomial that depends essentially on a nested set S of G
with certain labels (in analogy with the case of subspace models), the other
one comes from the cohomology of a toric subvariety of X∆ associated with
S. With the help of the above mentioned SageMath program we provide a
basis for the model of Example 2.19.

Finally, we devote Section 5 to the case of a divisorial toric arrangement
of type An. We make a canonical choice of the fan ∆, i.e. we take the fan
associated with the Coxeter chambers. Therefore X∆ is the toric variety
of type An studied for instance in [22; 42; 45; 47] and the minimal toric
projective model is isomorphic to the moduli space of stable curves of genus
0 with n + 3 marked points, i.e. to the minimal projective wonderful model
of the hyperplane arrangement of type An+1.

This suggests to compare the new basis described in this paper with the
basis coming from [29; 48]. Both bases are described by labeled graphs. On
one side we have forests on n + 1 leaves with labels on internal vertices,
equipped by an additional label: a permutation in the symmetric group Sj,
where j is the number of trees. On the other side we have forests on n + 2
leaves with labels on internal vertices. We will show an explicit bijection
between these two families of forests. This will also provide us with a new
combinatorial proof, with a geometric interpretation, of the equidistribution
of two statistics on the symmetric group: the statistic of descents des and
the statistic lec introduced by Foata and Han in [28] (both give rise to the
Eulerian numbers).

2. Brief description of compact models

In this section we recall the construction of a wonderful model starting
from a toric arrangement A, mainly following [11] (see also [14]).

First of all, let us fix some notation that will be used throughout this
paper. Given a set A, we will use the symbol ∩A to denote the intersection
of its elements, namely

∩A =
⋂

B∈A

B.

Recall from the Introduction that X∗(T ) is the group of characters of the
torus T ; likewise, we denote by X∗(T ) the group of one-parameters subgroups
of T . Moreover we define the vector spaces V = X∗(T ) ⊗Z R and its dual
V ∗ = X∗(T )⊗ZR. The usual pairing X∗(T )×X∗(T ) → Z and its extension
to V ∗×V → R will both be denoted by the symbol 〈·, ·〉. Given Γ < X∗(T ),
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we define

(2.1) VΓ := {v ∈ V | 〈χ, v〉 = 0 for all χ ∈ Γ} .

Given a fan ∆ in V , the corresponding toric variety will be denoted by X∆.
We want to build a model following the techniques described by Li in [33]:

in that paper, which is inspired by [15; 16; 35], the author describes the con-
struction of a compact model starting from an arrangement of subvarieties.

Definition 2.1. Let X be a non-singular algebraic variety. A simple ar-
rangement of subvarieties of X is a finite set Λ of non-singular closed con-
nected subvarieties properly contained in X such that

(1) for every two Λi,Λj ∈ Λ, either Λi ∩ Λj ∈ Λ or Λi ∩ Λj = ∅;
(2) if Λi ∩Λj 6= ∅, the intersection is clean, i.e. it is non-singular and for

every y ∈ Λi ∩ Λj we have the following conditions on the tangent
spaces:

Ty(Λi ∩ Λj) = Ty(Λi) ∩ Ty(Λj).

Definition 2.2. Let X be a non-singular algebraic variety. An arrange-
ment of subvarieties of X is a finite set Λ of non-singular closed connected
subvarieties properly contained in X such that

(1) for every two Λi,Λj ∈ Λ, either Λi∩Λj is a disjoint union of elements
of Λ or Λi ∩ Λj = ∅;

(2) if Λi ∩ Λj 6= ∅, the intersection is clean.

In the toric arrangements setting, the subvarieties will be given by the
intersections of the layers of the arrangement, so we introduce the combina-
torial object that describe them.

Definition 2.3. The poset of layers of a toric arrangement A is the set
C(A) of the connected components of the intersections of some layers of A,
partially ordered by reverse inclusion.

Remark 2.4. (1) The whole torus belongs to C(A), as it can be obtained
as the intersection of no layers; we define C0(A) := C(A) \ {T}.

(2) The intersection of two layers K(Γ1, φ1) and K(Γ2, φ2) is the disjont
union of layers of the form K(Γ, φi), i.e. they share the same Γ,
namely the saturation of Γ1 + Γ2.

Given a toric arrangement A in a torus T , we embed T in a suitable
compact toric variety. In particular we build a toric variety whose associated
fan satisfies the following equal sign condition.

Definition 2.5. Let ∆ be a fan in V . An element χ ∈ X∗(T ) has the equal
sign property with respect to ∆ if, for every cone C ∈ ∆, either 〈χ, c〉 ≥ 0
for all c ∈ C or 〈χ, c〉 ≤ 0 for all c ∈ C.

Definition 2.6. Let ∆ be a fan in V and let K(Γ, φ) be a layer. A Z-basis
(χ1, . . . , χm) for Γ is an equal sign basis with respect to ∆ if χi has the equal
sign property for all i = 1, . . . ,m.
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We say that a toric variety X∆ is good for an arrangement A if each layer
of C(A) has an equal sign basis with respect to the fan ∆. In fact in this
situation the following Theorem holds; we present the statement from [12],
which summarizes Proposition 3.1 and Theorem 3.1 from [11].

Theorem 2.7 ([12, Theorem 5.1]). For any layer K(Γ, φ) ∈ C(A) let H =
H(Γ) := ∩χ∈Γ ker(xχ) be the corresponding homogeneous subtorus and let VΓ

as in (2.1), i.e.

VΓ := {v ∈ V | 〈χ, v〉 = 0 for all χ ∈ Γ} .

(1) For every cone C ∈ ∆, its relative interior is either entirely contained
in VΓ or disjoint from VΓ.

(2) The collection of cones C ∈ ∆ which are contained in VΓ is a smooth
fan ∆H .

(3) K(Γ, φ) is a smooth H-variety whose fan is ∆H .
(4) Let O be an orbit of T in X∆ and let CO ∈ ∆ be the corresponding

cone. Then
(a) if CO is not contained in VΓ, O ∩K(Γ, φ) = ∅;

(b) If CO ⊂ VΓ, O∩K(Γ, φ) is the H-orbit in K(Γ, φ) corresponding
to CO ∈ ∆H .

As a consequence the set of the connected components of the intersec-
tions of the closures of the layers K(Γ, φ) ∈ A in X∆ is an arrangement of
subvarieties according to Li’s definition.

Following [11] we now introduce the wonderful model associated with an
arrangement Λ of subvarieties in a generic non-singular algebraic variety X.
To do so we need to define the notion of building sets and nested sets.

Definition 2.8. Let Λ be a simple arrangement of subvarieties. A subset
G ⊆ Λ is a building set for Λ if for every L ∈ Λ \ G the minimal elements
(w.r.t. the inclusion) of the set {G ∈ G | L ⊂ G} intersect transversally and
their intersection is L. These minimal elements are called the G-factors of
L.

Definition 2.9. Let G be a building set for a simple arrangement Λ. A
subset S ⊆ G is called (G-)nested if for any antichain1 {A1, . . . , Ak} ⊆ S,
with k ≥ 2, there is an element in Λ of which A1, . . . , Ak are the G-factors.

Remark 2.10. Since the empty set has no antichains of cardinality at least
2, the definition above applies vacuously for it.

Remark 2.11. We notice that if H is a subset of G whose elements have
empty intersection, then it cannot be contained in any G-nested set.

In case the arrangement Λ is not simple, the definitions above apply lo-
cally: first of all, we define the restriction of an arrangement of subvarieties
Λ to an open set U ⊆ X to be the set

Λ|U := {Λi ∩ U | Λi ∈ Λ, Λi ∩ U 6= ∅}.

1An antichain in a poset is a set of pairwise non-comparable elements.
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Definition 2.12. Let Λ be an arrangement of subvarieties of X. A subset
G ⊆ Λ is a building set for Λ if there is a cover U of open sets of X such that

(1) for every U ∈ U , the restriction Λ|U is simple;
(2) for every U ∈ U , G|U is a building set for Λ|U .

Definition 2.13. Let G be a building set for an arrangement Λ. A subset
S ⊆ G is called (G-)nested if there is an open cover U of X such that, for
every U ∈ U , Λ|U is simple, G|U is building for Λ|U and for at least one
W ∈ U , S|W is G|W -nested. (In particular A ∩W 6= ∅ for all A ∈ S.)

Instead of defining a building set in terms of a given arrangement, it is
often convenient to study the notion of “building” as an intrinsic property of
a set of subvarieties.

Definition 2.14. A finite set G of connected subvarieties of X is called
a building set if the set of the connected components of all the possible
intersections of collections of subvarieties from G is an arrangement of sub-
varieties, called the arrangement induced by G and denoted by Λ(G), and G
is a building set for Λ(G) according to Definition 2.12.

From now on, Definition 2.14 applies when we refer to a set of subvarieties
as “building” without specifying the arrangement.

Given an arrangement Λ of a non-singular variety X and a building set
G for Λ, a wonderful model Y (X,G) can be obtained as the closure of the
locally closed embedding:



X \
⋃

Λi∈Λ

Λi



 −→
∏

G∈G

BlGX

where BlGX is the blowup of X along G. Concretely we can build Y (X,G)
one step at a time, through a series of blowups, as described in the following
theorem.

Theorem 2.15 (see [33, Theorem 1.3]). Let G be a building set in a non-
singular variety X. Let us order the elements G1, . . . , Gm of G in such a way
that for every 1 ≤ k ≤ m the set Gk := {G1, . . . , Gk} is building. Then if we
set X0 := X and Xk := Y (X,Gk) for 1 ≤ k ≤ m, we have

Xk = Blt(Gk)Xk−1,

where t(Gk) denotes the dominant transform2 of Gk in Xk−1.

Remark 2.16. Any total ordering of the elements of a building set G =
{G1, . . . , Gm} which refines the ordering by inclusion, that is i < j if Gi ⊂
Gj , satisfies the condition of Theorem 2.15.

2In the blowup of a variety M along a centre F the dominant transform of a subvariety
Z coincides with the proper transform if Z * F (and therefore it is isomorphic to the

blowup of Z along Z ∩ F ), and with π−1(Z) if Z ⊆ F , where π : BlF M → M is the
projection. We will use the same notation t(Z) for both the proper and the dominant
transform of Z, if no confusion arises.
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Let us denote by π : Y (X,G) → X the blowup map. The boundary of
Y (X,G) admits a description in terms of G-nested sets.

Theorem 2.17 (see [33, Theorem 1.2]). The complement in Y (X,G) of
π−1(X \

⋃

Λi) is the union of the divisors t(G), where G ranges among the
elements of G. Let U be an open cover of X such that for every U ∈ U Λ|U is
simple and G|U is building for Λ|U . Then, given U ∈ U and A1, . . . , Ak ∈ G,
the intersection t(A1) ∩ · · · ∩ t(Ak) ∩ π−1(U) is non-empty if and only if
{A1|U , . . . , Ak|U} is G|U -nested; moreover, if the intersection is non-empty
then it is transversal.

Remark 2.18. We notice that Definition 2.13 and the statement of Theo-
rem 2.17 are slightly different from the ones in the literature (see [11–14;
33]), where a subset S ⊆ G is considered G-nested if S|U is G|U -nested for
every U ∈ U . We think that our Definition 2.13 and Theorem 2.17 are more
precise and remove an ambiguity, since they point out that the intersection
property depends on the property of being nested locally in the chart π−1(U)
of Y (X,G).

Example 2.19. In order to compute some non-trivial examples, a series of
scripts, extending the ones described in [41], were developed in the SageMath
environment [44].

Let A = {K1,K2,K3} be the arrangement in (C∗)3, with coordinates
(x, y, z), whose layers are defined by the equations

K1 : xz
2 = 1,

K2 : z = xy,

K3 : xy
2 = 1,

We can view them as Ki = K(Γi, φi) where Γ1 < Z3 is generated by (1, 0, 2),
Γ2 by (1, 1,−1) and Γ3 by (1, 2, 0), and φi is the constant function equal to
1 for i = 1, 2, 3. Figure 1 represents the Hasse diagram of the poset of layers
C(A).

In order to define a projective model for the arrangement, the first in-
gredient is a good toric variety. For this example, following the algorithm
of [11], we built a toric variety X∆ whose fan has 72 rays and 140 maxi-
mal cones, listed in Appendix A respectively. This is not the smallest fan
associated with a good toric variety for this arrangement, but it has some
addictional properties that are useful for the computation of a presentation
for the cohomology ring of Y (X∆,G).

The next choice is a building set G; for this example we use the subset
of the elements of C(A) that are pictured in a double circle in Figure 1
and obtain the model YA = Y (X∆,G). We will study this model in later
examples of this paper.
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T

K1 K2 K3

L1 L2 L3 L4

P1 P2 P3 P4

Figure 1. Poset of layers for the arrangement of Exam-
ple 2.19, with the elements of the building set highlighted
with a double circle.

3. Presentation of the cohomology ring

In this section we recall a presentation of the cohomology ring of the model
Y (X∆,G). As we have seen, given a toric arrangement A and a toric variety
X∆ which is good for it, the set Λ = {K | K ∈ C0(A)} is an arrangement of
subvarieties of X∆ according to Li.

The cohomology ring is described as a quotient of a polynomial ring with
coefficients in H∗(X∆,Z). We present here a result by Danilov that provides
an explicit presentation of the cohomology ring of a toric variety.

Theorem 3.1 ([10, Theorem 10.8]). Let X∆ be a smooth complete T -variety.
Let R be the set of primitive generators of the rays of ∆ and define a poly-
nomial indeterminate Cr for each r ∈ R. Then

H∗(X∆,Z) ≃ Z[Cr | r ∈ R]/(ISR + IL)

where

• ISR is the Stanley-Reisner ideal

ISR := (Cr1 · · ·Crk | r1, . . . , rk do not belong to a cone of ∆);

• IL is the linear equivalence ideal

IL :=

(

∑

r∈R

〈β, r〉Cr

∣

∣

∣

∣

∣

β ∈ X∗(T )

)

.

Notice that for ISR it is sufficient to take only the square-free monomials,
and for IL it is sufficient to take only the β’s belonging to a basis of X∗(T ).

Furthermore the residue class of Cr in H2(X∆,Z) is the cohomology class
of the divisor Dr associated with the ray r for each r ∈ R. By abuse of
notation we are going to denote this residue class in H2(X∆,Z) also by Cr.

Remark 3.2. Given a layer K(Γ, φ), the inclusion j : K(Γ, φ) →֒ X∆ induces
a restriction map in cohomology

(3.1) j∗ : H∗(X∆,Z) → H∗(K(Γ, φ),Z).
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As noted in [12, Proposition 5.4] this map is surjective and its kernel is

generated by {Cr | r ∈ R, r /∈ VΓ}. In the sequel, we identify K(Γ, φ) with
X∆H

, where ∆H is the same fan of Theorem 2.7 (point 3).

Example 3.3 (Example 2.19, continued). We computed the presentation of
H∗(X∆,Z) as in Theorem 3.1 for the toric variety X∆ of Example 2.19. The
cohomology ring is isomorphic to a quotient of the ring Z[C1, . . . , C72] where
each indeterminate Ci corresponds to the ray ri as listed in the table in
Appendix A. We won’t report the full presentation here and give only the
Betti numbers:

rk(H0(X∆,Z)) = 1,

rk(H2(X∆,Z)) = 69,

rk(H4(X∆,Z)) = 69,

rk(H6(X∆,Z)) = 1.

The presentation of the cohomology ring of Y (X∆,G) has been computed
with an additional hypothesis on the building set.

Definition 3.4. A building set G for Λ is well-connected if for any subset
H ⊆ G, if the intersection ∩H has two or more connected components, then
each of these components belongs to G.

Example 3.5 (Example 2.19, continued). The building set G described in
Example 2.19 is a well-connected building set.

Some general properties of well-connected building sets are studied and
presented in [14, Section 6].

We recall here the main ingredients for the presentation of H∗(Y (X∆,G),Z).
Let Z be an indeterminate and let R = H∗(X∆,Z) viewed as Z[Cr | r ∈
R]/(ISR+IL) as in Theorem 3.1. (For brevity we will use again the symbols
Cr instead of the corresponding equivalence classes in the quotient.) For

every G ∈ Λ we denote by ΓG the lattice such that G = K(ΓG, φ).
Given a pair (M,G) ∈ (Λ ∪ {X∆}) × Λ with G ⊆ M , we can choose a

basis (χ1, . . . , χs) for ΓG such that it is equal sign with respect to ∆ and
that (χ1, . . . , χk), with k ≤ s, is a basis for ΓM (if M is the whole variety
X∆, then we choose any equal sign basis of ΓG and let k = 0). We define
the polynomials PM

G ∈ R[Z] as

PM
G (Z) :=

s
∏

j=k+1

(

Z −
∑

r∈R

min(0, 〈χj, r〉)Cr

)

.

If G = M , we set PG
G := 1 since it is an empty product. As shown in [12,

Proposition 6.3], different choices of the PM
G ’s are possible; for example,

in [39, Remark 4.4], the authors suggest the polynomials

PM
G (Z) = Zs−k +

s
∏

j=k+1

(

−
∑

r∈R

min(0, 〈χj , r〉)Cr

)

.
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Now we define the set

W := {(G,H) ∈ G × P(G) | G ( H for all H ∈ H},

where P(G) is the power set of G. Notice that (G, ∅) ∈ W for all G ∈ G. For
each pair (G,H) ∈ W we define a relation F (G,H) in the following way: let
M be the unique connected component of ∩H that contains G (as usual, if
H = ∅ then M = X∆), and for G ∈ G let GG := {H ∈ G | H ⊆ G}; with this
information we define the polynomial F (G,H) ∈ R[TG | G ∈ G] as

F (G,H) := PM
G

(

∑

H∈GG

−TH

)

∏

K∈H

TK .

Finally let W0 := {H ∈ P(G) | ∩H = ∅}. For each H ∈ W0 we define the
polynomial F (H) ∈ R[TG | G ∈ G] as

F (H) :=
∏

K∈H

TK .

Theorem 3.6 ([12, Theorem 7.1]). Let A, X∆ and Λ be as in the beginning
of this section and let G be a well-connected building set for Λ. Let also R =
H∗(X∆,Z) viewed as a polynomial ring as in Theorem 3.1. The cohomology
ring of the wonderful model H∗(Y (X∆,G),Z) is isomorphic to the quotient
of R[TG | G ∈ G] by the ideal IG generated by

(1) the products CrTG, with G ∈ G and r ∈ R such that r does not belong
to VΓG

;
(2) the polynomials F (G,H) for every pair (G,H) ∈ W;
(3) the polynomials F (H) for every H ∈ W0.

The isomorphism is given by sending TG for G ∈ G to the cohomology class
associated with the divisor in the boundary which is the transform of G
(t(G)). Putting all together, we have

H∗(Y (X∆,G),Z) ≃ R[TG | G ∈ G]/IG

≃ Z[Cr, TG | r ∈ R, G ∈ G]/(ISR + IL + IG).

Remark 3.7. It was already noted in [11, Theorem 9.1] that the cohomol-
ogy of the projective wonderful model Y (X∆,G) is a free Z-module and
H i(Y (X∆,G),Z) = 0 for i odd.

Example 3.8 (Example 2.19, continued). We computed the presentation of
H∗(YA,Z) as in Theorem 3.6 for the model YA of Example 2.19. The coho-
mology ring is isomorphic to a quotient of the ring Z[C1, . . . , C72, T1, . . . , T9],
where the Ci’s are the same as Example 3.3 and each Tj corresponds to an
element of G in the following way:

K1  T1, K2  T2, K3  T3, L2  T4, L3  T5,

P1  T6, P3  T7, P2  T8, P4  T9.
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Once again we won’t report the full presentation here and give only the Betti
numbers:

rk(H0(YA,Z)) = 1,

rk(H2(YA,Z)) = 75,

rk(H4(YA,Z)) = 75,

rk(H6(YA,Z)) = 1.

In the next Section we are going to give a description of a monomial basis
of R[TG | G ∈ G]/IG .

4. Main theorem

Let A be a toric arrangement, let X∆ be a good toric variety for it with
associated fan ∆, let Λ be the poset of intersections of the closures of the
layers of A in X∆ which is an arrangement of subvarieties, and let G be
a well-connected building set for Λ. In this Section we show a basis of the
cohomology of Y (X∆,G) in terms of admissible functions (see Definition 4.4).
The notion of admissible function is analogue to the one used in the linear
setting case of subspace arrangements, which is introduced in [29].

We begin by proving a characterization of G-nested sets in this case, which
will be useful in the proof of our main theorem.

Proposition 4.1. Let G be a well-connected building set. A subset S ⊆ G is
G-nested if and only if for any antichain H ⊆ S with at least two elements the
intersection ∩H is non-empty, connected, transversal, and does not belong
to G.

Proof of Proposition 4.1. ⇒ Let S be a G-nested set an let H = {A1, . . . , Ak}
be an antichain with k ≥ 2. The intersection ∩H is not empty by Defini-
tion 2.13 and Remark 2.11. If ∩H is not connected then it would be the
disjoint union of at least two elements in G by well-connectedness. Let us
consider W ∈ U as in Definition 2.13, so that S|W is G|W -nested and for
every A ∈ S A ∩ W 6= ∅, therefore H|W = {A1 ∩ W, . . . , Ak ∩ W} is an
antichain of S|W . This implies that

(A1 ∩W ) ∩ · · · ∩ (Ak ∩W )

would be the G|W -decomposition of G ∩ W , where G ∈ G is one of the
connected components of ∩H. We reached a contradiction because G∩W ∈
G|W , and we deduce that ∩H is connected and furthermore that it is not an
element of G. The transversality of the intersection in W also implies that
∩H is transversal.
⇐ We now suppose that for every antichain H ⊆ S with at least two
elements the intersection ∩H is non-empty, connected, transversal and does
not belong to G.

Let U be an open cover as in Definition 2.12. Let us first notice that ∩S
is equal to the intersection of the antichain given by the minimal elements of
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S, therefore it is non-empty and connected. Let U ∈ U such that (∩S) ∩ U
is not empty. We will prove that S|U is G|U -nested.

Consider an antichain {A1∩U, . . . , Ak∩U} in S|U with k ≥ 2 (in particular
Ai ∩ U is non-empty for every i): we will prove that A1 ∩ U, . . . , Ak ∩U are
the G|U -factors of their intersection.

Let us put H = {A1, . . . , Ak}. We observe that H is an antichain, therefore
by hypothesis we know that A = ∩H is non-empty, connected, transversal
and does not belong to G. Since G|U is building, we know that A ∩ U is
the transversal intersection of the minimal elements of G|U among the ones
containing A∩U . We let those minimal elements be B1∩U, . . . , Br ∩U . For
simplicity, in the rest of the proof we omit the reference to U .

By minimality each of the Ai’s contains some of the Bj’s: in the next
paragraph we partition H in subsets according to this.

Up to reordering the indices of the Bj ’s, we can assume that B1 is con-
tained in some of the Ai’s, and define H1 := {Ai ∈ H | B1 ⊆ Ai}. If
H1 = H we are done, otherwise there is another Bj contained in the ele-
ments of H\H1, and up to reordering we assume that this is B2. We define
H2 := {Ai ∈ H\H1 | B2 ⊆ Ai}. If H\ (H1∪H2) is not empty we repeat the
process with B3 and obtain H3. We stop after ℓ steps, where ℓ ≤ r, when
we have H1 ∪ · · · ∪ Hℓ = H.

By construction we have:

(4.1) B1 ⊆ ∩H1, . . . , Bℓ ⊆ ∩Hℓ,

so

(∩H1) ∩ · · · ∩ (∩Hℓ) = ∩H = A ⊆ B1 ∩ · · · ∩Bℓ ⊆ (∩H1) ∩ · · · ∩ (∩Hℓ)

and this implies that A = B1 ∩ · · · ∩Bℓ, that is to say, r = ℓ.
Recall that B1 ∩ · · · ∩Bℓ is transversal and so is ∩H; since each Hj is an

antichain, ∩Hj is transversal too, and it follows that (∩H1)∩ · · · ∩ (∩Hℓ) is
transversal. From this information and from (4.1) we deduce that dim(Bj) =
dim(∩Hj) for all j = 1, . . . , ℓ, therefore Bj = ∩Hj.

This implies that |Hj| = 1 for any j, otherwise if |Hj| > 1 that would
contradict the fact that the intersection of an antichain does not belong to
G.

Since H1 ∪ · · · ∪ Hℓ = H = {A1, . . . , Ak} we deduce that k = ℓ and, up
to a relabeling, we can assume that Hi = {Ai}. We conclude that Aj = Bj

and this shows that A1, . . . , Ak are the G-factors of A. �

Remark 4.2. Proposition 4.1 implies that when G is well-connected the prop-
erty of being nested can be expressed in global terms (without charts).
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Example 4.3 (Example 2.19, continued). The building set G of Example 2.19
has 48 nested sets, namely

∅, {K1}, {K2}, {K3},
{L2}, {L3}, {P1}, {P2},
{P3}, {P4}, {K1,K2}, {K1, L2},

{K1, L3}, {K1, P1}, {K1, P2}, {K1, P3},
{K1, P4}, {K2,K3}, {K2, P1}, {K2, P2},
{K2, P3}, {K2, P4}, {K3, L2}, {K3, L3},
{K3, P1}, {K3, P2}, {K3, P3}, {K3, P4},
{L2, P1}, {L2, P3}, {L3, P2}, {L3, P4},

{K1,K2, P1}, {K1,K2, P2}, {K1,K2, P3}, {K1,K2, P4},
{K1, L2, P1}, {K1, L2, P3}, {K1, L3, P2}, {K1, L3, P4},
{K2,K3, P1}, {K2,K3, P2}, {K2,K3, P3}, {K2,K3, P4},
{K3, L2, P1}, {K3, L2, P3}, {K3, L3, P2}, {K3, L3, P4}.

Let G = {G1, G2, . . . , Gm} be a well-connected building set and let S be a
G-nested set. Given A ∈ S, we define SA := {B ∈ S | A ( B} and for every
A ∈ S we denote by MS(A) the (connected) intersection ∩SA. We will omit
the nested set S and write just M(A) for brevity when it is clear from the
context which is the involved nested set.

Definition 4.4. A function f : G → N is (G-)admissible if it has both the
following properties:

(1) supp f is G-nested;
(2) for every A ∈ supp f we have f(A) < dimMsupp f (A)− dimA.

Notice that the zero function, i.e. the function such that f(A) = 0 for every
A ∈ G, is admissible since its support is the empty set.

Example 4.5 (Example 2.19, continued). For each nested set S listed in
Example 4.3, we test if it can be the support of an admissible function by
computing the maximum value that the candidate function can assume on
the elements of S (see Definition 4.4). It turns out that only 7 of the 48
nested sets give rise to admissible functions, namely

(4.2) ∅, {L2}, {L3}, {P1}, {P2}, {P3}, {P4}.

In particular we find 11 admissible functions:
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Support Values

∅ f(G) = 0 for all G ∈ G
{L2} f(L2) = 1
{L3} f(L3) = 1
{P1} f(P1) = 1
{P1} f(P1) = 2
{P2} f(P2) = 1
{P2} f(P2) = 2
{P3} f(P3) = 1
{P3} f(P3) = 2
{P4} f(P4) = 1
{P4} f(P4) = 2

Let us fix some notation. Given a nested set S we know that the inter-
section ∩S is non-empty and it is a layer of type K(Γ(S), φS ) for some Γ(S)
and φS . Let H(S) be the subtorus associated with Γ(S) as in Theorem 2.7,
namely H(S) = ∩χ∈Γ(S) ker(xχ). By Theorem 2.7, given a fan ∆, ∆H(S) :=
∆ ∩ VΓ(S) is a smooth fan which we denote by ∆(S). Let X∆(S) be the
corresponding toric variety and let πS be the projection πS : H

∗(X∆,Z) →
H∗(X∆(S),Z), which is the restriction map induced by the inclusion, i.e. the
one of (3.1). Let Θ(S) be a minimal set of elements of H∗(X∆,Z) such that
their image via πS is a basis of H∗(X∆(S),Z).

Given a (non necessarily admissible) function f : G → N we define the
monomial in H∗(Y (X∆,G),Z) viewed as R[T1, . . . , Tm]/IG

mf =
∏

Gi∈G

T
f(Gi)
i

where R = H∗(X∆,Z) and Ti is the (class of the) variable associated with
Gi, and denote by BG the following set of elements of H∗(Y (X∆,G),Z):

(4.3) BG = {bmf | f is admissible, b ∈ Θ(supp f)}.

Remark 4.6. For S = ∅, the only admissible function is the zero function.
In this case the associated monomial is 1, and Θ(∅) is a basis of H∗(X∆,Z).
In fact ∩S = X∆ by the usual convention, which is the closure of T that,
as a layer, has Γ = {0} and VΓ = V . So ∆(∅) = ∆ and π∅ is the identity
function. In particular BG contains the set {a · 1 | a ∈ Θ(∅)}.

Theorem 4.7. Let A, X∆, Λ and G be as in the beginning of this section.
The set BG defined as in (4.3) is a Z-basis of H∗(Y (X∆,G),Z).

Proof. This proof is divided in two parts: we first show that the elements
in BG generate H∗(Y (X∆,G),Z) as a Z-module; then we see that they are
independent by counting them.
BG generates H∗(Y (X∆,G),Z) as a Z-module. First of all notice that
the relations in Theorem 3.6 imply that, given an admissible function f and
d ∈ H∗(X∆,Z) such that πsupp f (d) = 0 in H∗(X∆(supp f),Z) then d ·mf = 0
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in H∗(Y (X∆,G),Z). In fact d is a polynomial in terms of variables Cr where
r does not belong to VΓ(supp f)—this follows from Theorem 2.7. Therefore
we can prove that BG generates H∗(Y (X∆,G),Z) by showing that the set

MG = {mf | f is admissible}

generates H∗(Y (X∆,G),Z) as a H∗(X∆,Z)-module. To show this, let us
consider a function g : G → N which is not admissible: we will prove that mg

can be obtained as a H∗(X∆,Z)-linear combination of monomials in MG .
If supp g is non-nested then the intersection of the elements in supp g is

empty by Theorem 2.2 of [11], so mg = 0 in H∗(Y (X∆,G),Z). From now on
we can assume that supp g is nested, and following the notation introduced
before Definition 4.4 we will write M(B) = Msupp g(B).

Let us consider G ∪ {∅} as a set partially ordered by inclusion. On this
poset we define a “pseudo-rank” function r as follows: r(∅) = 0 and for
G ∈ G let r(G) be the maximal length of a chain between ∅ and G in the
Hasse diagram of the poset.

We say that B ∈ supp g is a bad component for g if g(B) ≥ dimM(B) −
dimB. To every bad component B we assign the pair

(

r(B), g(B)− (dimM(B)− dimB)
)

∈ N× N

and we put on N × N the lexicographic order.3 Since we assumed that
supp g is nested but that g is not admissible, the set of bad components for
g is not empty, so we can define the evaluation of g as the maximal pair
associated with the bad components of g. We will proceed by induction on
the evaluation.
Base step. Let us consider a non-admissible function g whose evaluation is
(1, a), for some a ∈ N. This means that the maximal bad components of g
are minimal elements in G w.r.t. inclusion. Let B be such a bad component.
We can partition supp g as S ∪ S ′ ∪ {B} where S := (supp g)B and S ′ :=
supp g \ (S ∪ {B}). The monomial mg associated with g is of the following
type:

mg =
∏

K∈S′

T
g(K)
K

∏

K∈S

T
g(K)
K · T

g(B)
B .

From Theorem 3.6 we know that in the ideal IG there is the element

F (B,S) = PM
B (−TB)

∏

K∈S

TK

where M = MS(B) = Msupp g(B) = M(B).
Now we notice that PM

B (−TB) is a polynomial in H∗(X∆,Z)[TB ] of the
following form:

±(TB)
dimM−dimB + lower order terms in TB .

3i.e. (a, b) < (c, d) if a < c or if a = c and b < d.
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By writing mg as

mg =
(

∏

K∈S′

T
g(K)
K

∏

K∈S

T
g(K)−1
K ·T

g(B)−(dimM−dimB)
B

)(

∏

K∈S

TK ·T dimM−dimB
B

)

,

we see that the leading term of F (B,S), namely T dimM−dimB
B

∏

K∈S TK ,
divides mg, so when we reduce mg modulo IG we obtain a polynomial of the
following form:

(

∏

K∈S′

T
g(K)
K

∏

K∈S

T
g(K)−1
K · T

g(B)−(dimM−dimB)
B

)(

∏

K∈S

TK ·
dimM−dimB−1

∑

k=0

ck · T
k
B

)

=

dimM−dimB−1
∑

k=0

ck





∏

K∈supp g\{B}

T
g(K)
K



 · T
g(B)−(dimM−dimB)+k

B =

dimM−dimB−1
∑

k=0

ckmgk

for some ck ∈ H∗(X∆,Z) and some suitable gk : G → N. Notice that
supp gk = supp g (eventually without B) and that the gk’s coincide with
g in supp g \ {B}, whereas

gk(B) = g(B)− (dimM − dimB) + k.

Therefore every monomial mgk appearing in this formula either is in BG or
its evaluation is (1, b) with b = a+ k− (dimM − dimB) < a. We can apply
the same argument to the latter monomials until we get a linear combination
of monomials in BG.
Inductive step. Let us suppose that our claim is true for non-admissible func-
tions (with nested support) whose evaluation is (k, c) with k > 1 and c ∈ N.
Let us consider a non-admissible function g with evaluation (k + 1, a). This
means that there is at least one bad component B whose associated pair is
(k + 1, a).

As before we consider the element of IG:

F (B,S) = PM
B (

∑

D∈G,D⊆B

−TD)
∏

K∈S

TK

where S = (supp g)B and M = MS(B) = Msupp g(B) = M(B). The polyno-
mial PM

B (
∑

−TD) is of type

±(TB)
dimM−dimB + q,

where q is a polynomial in H∗(X∆,Z)[TD | D ∈ G,D ⊆ B] with degree in
TB strictly less than dimM − dimB.

As in the base step, we notice that the leading term of F (B,S) divides mg

and this allows us to write mg modulo IG as a H∗(X∆,Z)-linear combination
of monomials. If these are not 0 modulo IG either they are in BG or their
evaluation is strictly less than (k + 1, a). If some of them have evaluation
(k + 1, b) with b < a we can again use the relations in IG and in a finite
number of steps we get a H∗(X∆,Z)-linear combination of monomials that
are in BG or have evaluation (s, t) with s ≤ k. To these latter monomials we
can apply the inductive hypothesis.
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BG is a set of independent elements. To show that the elements in BG

are linearly independent over Z it suffices to show that |BG | is equal to the
rank of H∗(Y (X∆,G),Z) which is a free Z-module (see Theorem 3.6). We
proceed by induction on m, the cardinality of G.
Base step. If m = 1 then G = {G1} and Y (X∆,G) is the blowup of X∆ along
G1. As it is well known (see for example [31, Chapter 4, Section 6]) we have
the following isomorphism of graded Z-modules:

H∗(Y (X∆,G),Z) ∼= H∗(X∆,Z)⊕
codimG1−1
⊕

J=1

H∗(G1,Z)ζ
J

where ζJ is a symbol that shifts the degrees of +2J . We now split BG into
two disjoint subsets:

B1
G := {a · 1 | a ∈ Θ(∅)}

B2
G := {b T r

1 | r = 1, . . . , codimG1 − 1 and b ∈ Θ({G1})}

We observe that by Theorem 2.7, point 3, G1 is isomorphic to X∆({G1}).

Therefore there is a grade-preserving bijection between B2
G and a basis of

⊕

H∗(G1,Z)ζJ which, together with the known bijection between B1
G and a

basis of H∗(X∆,Z), proves our claim in this case.
Inductive step. We assume that the claim holds for every toric model associ-
ated with a building set of cardinality less than or equal to m− 1. Consider
G = {G1, . . . , Gm} and assume that the labelling is a refinement of the or-
dering in G by inclusion. We put Gi := {G1, . . . , Gi} for every i ≤ m and
Z := Gm; we denote then t(Z) the proper transform of Z in the variety
Y (X∆,Gm−1). Then Y (X∆,G) is obtained as the blow up of Y (X∆,Gm−1)
along t(Z).

We can use again the result from [31] and obtain the following graded
isomorphism of Z-modules:

H∗(Y (X∆,G),Z) ∼= H∗(Y (X∆,Gm−1),Z)⊕
codimGm−1
⊕

J=1

H∗(t(Z),Z)ζJ .

Following the idea from the base step, we write BG as the union of the disjoint
sets:

B1
G = {bmf | f admissible, f(Gm) = 0, b ∈ Θ(supp f)},

B2
G = {bmf | f admissible, f(Gm) 6= 0, b ∈ Θ(supp f)}.

There is a bijective correspondence, provided by the restriction, between
the set {f : G → N | f admissible, f(Gm) = 0} and the set {f : Gm−1 → N |
f admissible}. By the inductive hypothesis, B1

G is in bijection with the basis
BGm−1 of H∗(Y (X∆,Gm−1),Z) and this correspondence is grade-preserving.

Notice that because Gm is maximal in G, then Gm is maximal in supp f
for every admissible function f such that f(Gm) 6= 0. So the possible values
for f(Gm) are 1, . . . , codimGm − 1.
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Now we observe that, given an element bmf ∈ B2
G (so that f(Gm) 6= 0), we

also have in B2
G the monomials bmg for all the admissible functions g that

coincide with f on G \ {Gm} and such that g(Gm) ∈ {1, . . . , codimGm −
1} \ {f(Gm)}. As a consequence the sets {bmf ∈ B2

G | f(Gm) = i}, for
i = 1, . . . , codimGm − 1 have all the same cardinality and form a partition
of B2

G , and it suffices to prove that there is a grade-preserving (up to a shift

by 2 in cohomology) bijection between {bmf ∈ B2
G | f(Gm) = 1} and a basis

of H∗(t(Z),Z). This extends to a grade-preserving bijection between B2
G and

a basis of
⊕

H∗(t(Z),Z)ζJ .
Let us now recall the following result and notation from [12, Section 4]. We

consider the family H of subvarieties in Z that are the connected components
of the intersections Gi ∩ Z for every i = 1, . . . ,m − 1. Since G is well-
connected, if Gi ∩ Z is not empty and not connected then its connected
components belong to G. This implies that u := |H| ≤ m− 1. Now for each
H ∈ H, we denote by s(H) the minimum index i such that H is a connected
component of Gi∩Z (in particular H = Gs(H)∩Z). We sort the set {s(H) |
H ∈ H} in ascending order as {s1, . . . , su} and let H = {H1, . . . ,Hu}.

Remark 4.8. Notice that two possibility occurs for H ∈ H: either H = Gs(H)

in case Gs(H) ⊂ Z, or H = Gs(H) ∩ Z and the intersection is transversal.

In [12, Proposition 4.4] it is proven that H is building and well-connected
and from Proposition 4.6 of the same paper it follows that t(Z) is isomorphic
to the model Y (Z,H) obtained by blowing up H in Z. From Theorem 2.7,
point 2, we know that Z = Gm is a toric variety with fan ∆′ = ∆({Gm}),
so Z = X∆′ .

In analogy with the previous notation, for an H-nested S let π′
S be the

projection π′
S : H

∗(X∆′ ,Z) → H∗(X∆′(S),Z) and we take Θ′(S) as a minimal
set of elements of H∗(X∆′ ,Z) such that their image via π′

S is a basis of
H∗(X∆′(S),Z).

Since |H| < m we can apply our inductive hypothesis to Y (Z,H) and we
get the following Z-basis BH of H∗(Y (Z,H),Z):

BH = {b′ mg | g H-admissible, b′ ∈ Θ′(supp g)}.

We are now ready to describe a bijective, grade-preserving (up to a shift by
2 in cohomology) correspondence between BH and

L := {bmf | f G-admissible, f(Gm) = 1, b ∈ Θ(supp f)} ⊂ B2
G.

Let f : G → N be a G-admissible function with f(Gm) = 1. We associate
to f the function f : H → N such that f(H) = f(Gs(H)) for all H ∈ H.

Lemma 4.9. The function f is H-admissible.

Proof. If supp f is empty, f is admissible by definition, so from now we
suppose that supp f 6= ∅.

We show that supp f is H-nested by using the characterization from
Proposition 4.1: we take an antichain K = {K1, . . . ,Kt} (t ≥ 2) in supp f
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and prove that the intersection ∩K is connected, transversal and does not
belong to H.
∩K is connected. It is equal to Gs(K1)∩· · ·∩Gs(Kt)∩Gm and they all belong
to supp f which is G-nested. In particular, their intersection is the intersec-
tion of the minimal elements among them, that is to say, the intersection of
an antichain of a nested set, which is connected by Proposition 4.1.
∩K is transversal. We split this part of the proof in two cases:

(1) if there is a j ∈ {1, . . . , t} such that Kj = Gs(Kj), then

K1 ∩ · · · ∩Kj ∩ · · · ∩Kt = Gm ∩Gs(K1) ∩ · · · ∩Gs(Kt) = Gs(K1) ∩ · · · ∩Gs(Kt)

which is transversal because {Gs(K1), . . . , Gs(Kt)} is a nested set;
(2) if Kj = Gm ∩ Gs(Kj) transversally for every j ∈ {1, . . . , t}, then the

set {Gs(K1), . . . , Gs(Kt), Gm} is a set of elements which are pairwise
non-comparable (the Gs(Ki)’s are not pairwise comparable because
the Ki’s are not), so their intersection

Gm ∩Gs(K1) ∩ · · · ∩Gs(Kt) = ∩K

is transversal.

∩K does not belong to H. Suppose that ∩K = H ∈ H. It is not possible
that H = Gs(H), because otherwise ∩K would belong to G in contradiction
with Proposition 4.1. On the other hand, if H = Gs(H) ∩ Gm transversally,
as a consequence of [12, Proposition 3.3] we have that Gs(H) and Gm are the
minimal elements among the ones in G containing H. We study the following
two subcases:

• if there is a j ∈ {1, . . . , t} such that Kj = Gs(Kj), then we would
have H ⊂ Gs(Kj) ⊂ Gm in contradiction with the minimality of Gm;

• if Kj = Gm∩Gs(Kj) transversally for every j ∈ {1, . . . , t}, since k ≥ 2
we would have two different G-decompositions of H, namely

H = Gm ∩Gs(Kj) = Gm ∩Gs(K1) ∩ · · · ∩Gs(Kt).

This concludes the proof that supp f is nested.
Now let us consider H ∈ supp f . We study the following two cases:

Case H = Gs(H). In this case f(H) = f(Gs(H)) and, since f is G-admissible,

we have
1 ≤ f(Gs(H)) < dimMsupp f (Gs(H))− dimGs(H).

Now, because Gm ∈ {B ∈ supp f | Gs(H) ( B} we notice that

∩(supp f)Gs(H)
= ∩(supp f)H

where supp f is viewed as a H-nested set and with the usual convention that
if {Hi ∈ supp f | H ( Hi} is empty the intersection is the ambient space
Gm. In particular

dim
(

Msupp f (Gs(H))
)

= dim
(

Msupp f (H)
)

,

therefore f(H) ranges in the expected interval.



A BASIS FOR THE COHOMOLOGY OF COMPACT MODELS 21

Case H = Gs(H) ∩Gm transversally. In this case f(H) = f(Gs(H)) where

again
1 ≤ f(Gs(H)) < dimMsupp f (Gs(H))− dimGs(H).

Now since supp f is G-nested and Gm does not belong to {B ∈ supp f |
Gs(H) ( B} we have that

(4.4) dim
(

Msupp f (Gs(H)) ∩Gm

)

= dim
(

Msupp f (Gs(H))
)

− codimGm.

But
(

∩(supp f)Gs(H)

)

∩Gm = ∩(supp f)H

so we can rewrite (4.4) as

dimMsupp f (H) = dim
(

Msupp f (Gs(H))
)

− codimGm

and, observing that dimH = dimGs(H) − codimGm, we conclude that

dimMsupp f (Gs(H))− dimGs(H) = dimMsupp f (H) + codimGm − dimGs(H)

= dimMsupp f (H)− dimH

therefore also in this case f(H) ranges in the expected interval. �

Lemma 4.10. If f is G-admissible and f(Gm) = 1, then supp f \ {Gm} ⊆
{Gs(H) | H ∈ H}.

Proof. Let us suppose B = Gk ∈ supp f \ {Gm} with k 6= s(H) for every
H ∈ H. We notice that B * Gm otherwise B = B ∩Gm ∈ H so B = Gs(B).
Moreover, since supp f is nested and contains both B and Gm it follows that
B∩Gm 6= ∅ and connected by Proposition 4.1. Now we observe that from the
connectedness of B∩Gm and the definition of H we have that B∩Gm = Hj

for some j and that B and Gm are its G-factors. But Hj = Gsj ∩ Gm is a
different G-factorization of Hj, obtaining a contradiction. �

Therefore, given f G-admissible with f(Gm) = 1 we can associate two
monomials: mf and mf . Now in BG we find elements of the form bmf with

b belonging to Θ(supp f); on the other hand in BH we find elements of the
form b′ mf with b′ belonging to Θ′(supp f). But ∆′(supp f) = ∆(supp f),

therefore we can choose b and b′ above so that they range over the same set.
We have thus constructed a map Φ: L → BH such that Φ(bmf ) = bmf .

If we show that Φ is a bijection, this concludes the proof of the theorem.
Actually it is sufficient to prove that Φ is injective: in fact the injectivity
implies

|L| ≤ |BH| = rk(H∗(t(Z),Z))

where the last equality, as we have seen, derives from the inductive hypoth-
esis, since BH is a basis of H∗(t(Z),Z). This in turn implies that

|BG| =
∣

∣B1
G

∣

∣+
∣

∣B2
G

∣

∣ =
∣

∣B1
G

∣

∣+ (codimGm − 1) |L| =

= rkH∗(Y (X∆,Gm−1),Z) + (codimGm − 1) |L|

≤ rkH∗(Y (X∆,Gm−1),Z) + (codimGm − 1) rk(H∗(t(Z),Z)) = rkH∗(Y (X∆,G),Z).
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On the other hand we already know, from the first part of this proof, that
BG generates H∗(Y (X∆,G),Z). It follows that

|BG | = rkH∗(Y (X∆,G),Z)

which is the claim of the theorem (and of course this also implies that Φ is
actually a bijection).

To show the injectivity of Φ let f1, f2 be two distinct G-admissible func-
tions with f1(Gm) = f2(Gm) = 1: we prove that f1 6= f2.

Let us first suppose that supp f1 6= supp f2; up to switching f1 and f2, we
can assume that there exists B ∈ supp f1\supp f2. By Lemma 4.10 we know
that B = Gs(H) for a certain H ∈ H. We deduce that H ∈ supp f1 \ supp f2
and conclude that f1 6= f2.

If instead supp f1 = supp f2, f1 6= f2 implies that there is a certain B
in their support such that f1(B) 6= f2(B). Again by Lemma 4.10 we know
that B = Gs(H), H ∈ H, therefore f1(H) = f1(Gs(H)) 6= f2(Gs(H)) = f2(H).
This proves that Φ is injective and concludes the proof of the theorem. �

Example 4.11 (Example 2.19, continued). We can compute a Z-basis for the
ring H∗(YA,Z) using the admissible functions found in Example 4.5. The
result is detailed in Tables 1 and 2; the tables have one line for each possible
support S of admissible functions, as listed in (4.2).

Table 1. Data used to build the basis of H∗(YA,Z).

S
Basis for Monomials mf

H∗(X∆(S),Z) with f s.t. supp f = S

∅ Basis of H∗(X∆,Z) {1}
{L2} {C7, 1} {T4}
{L3} {C7, 1} {T5}
{P1} {1} {T6, T

2
6 }

{P2} {1} {T8, T
2
8 }

{P3} {1} {T7, T
2
7 }

{P4} {1} {T9, T
2
9 }

Example 4.12. As we have seen in Example 4.5, not all the nested sets are
supports of admissible functions. In particular, for small toric arrangements
in low dimensions admissible functions often are supported only on single-
tons. In this example we study a case where there are supports of admissible
functions with cardinality 2.

Let A = {K1,K2,K3} be the arrangement in (C∗)4, with coordinates
(x, y, z, t), whose layers are defined by the equations

K1 : z = t = 1, K2 : y = 1, K3 : x = 1.

The poset of layers C(A) is represented in Figure 2. In this example X∆ =
(P1)4 is a good toric variety for the arrangement, so we can use its associated
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Table 2. Contribution to the basis of H∗(YA,Z) and to the
Betti numbers of YA.

S
Contribution to Contribution to rk(H i(YA,Z))

the basis BG i = 0 i = 2 i = 4 i = 6

∅ Basis of H∗(X∆,Z) 1 69 69 1
{L2} {C7T4, T4} 0 1 1 0
{L3} {C7T5, T5} 0 1 1 0
{P1} {T6, T

2
6 } 0 1 1 0

{P2} {T8, T
2
8 } 0 1 1 0

{P3} {T7, T
2
7 } 0 1 1 0

{P4} {T9, T
2
9 } 0 1 1 0

BG 1 75 75 1

fan ∆ (recall that its 16 maximal cones are C(σ1e1, σ2e2, σ3e3, σ4e4) where
e1, . . . , e4 are the vectors of the canonical basis of C4 and (σ1, σ2, σ3, σ4) ∈
{±1}4); moreover we choose G = C0(A) and build the model YA = Y (X∆,G).

T

K1

K2 K3

M1 M2

L

P

K1  T1

K2  T2

K3  T3

M1  T4

M2  T5

L  T6

P  T7

Figure 2. Poset of layers C(A) for the arrangement of Ex-
ample 4.12. Elements at the same height have the same codi-
mension. On the right: map from elements of G = C0(A) to
the corresponding variables Ti in H∗(X∆,Z)[T1, . . . , T7].

The possible non-empty supports of admissible functions are

• {L}: it supports one admissible function f such that f(L) = 1;
• {M1}, {M2}: each supports two admissible functions, namely f(Mi) =
1 and f(Mi) = 2;

• {P}: it supports three admissible functions, where f(P ) is either 1,
2 or 3;

• {L,P}: it supports one admissible function such that f(L) = 1 and
f(P ) = 1.
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Table 3 details the contribution to the Betti numbers for each admissible
function.

Table 3. Contribution to the Betti numbers of H∗(YA,Z)
for each admissible function, grouped by support.

S
Betti numbers Monomials mf with f Contribution to rk(Hi(YA,Z))

for H∗(X∆(S),Z) s.t. supp f = S i = 0 i = 2 i = 4 i = 6 i = 8

∅ 1, 4, 6, 4, 1 {1} 1 4 6 4 1
{L} 1, 2, 1 {T6} 0 1 2 1 0
{M1} 1, 1 {T4, T

2
4 } 0 1 2 1 0

{M2} 1, 1 {T5, T
2
5 } 0 1 2 1 0

{P} 1 {T7, T
2
7 , T

3
7 } 0 1 1 1 0

{L,P} 1 {T6T7} 0 0 1 0 0

5. The case of root systems of type A

In this section we will apply our main theorem to the case of the toric
arrangement associated with a root system of type An−1.

5.1. The minimal toric model and its cohomology basis. The toric
analogue of the hyperplane arrangement of type An−1 is AAn−1 = {Kij |
1 ≤ i < j ≤ n} in T = (C∗)n/Hn ≃ (C∗)n−1, where Hn is the C∗-span of
(1, . . . , 1) and

Kij := {[t1, . . . , tn] ∈ T | tit
−1
j = 1}.

Its poset of intersections C(AAn−1) is isomorphic to the poset of partitions
of the set {1, . . . , n} ordered by refiniment. More precisely, the partition
{I1, . . . , Ik} with I1 ⊔ · · · ⊔ Ik = {1, . . . , n} corresponds to the layer

KI1,...,Ik := {[t1, . . . , tn] ∈ T | ti = tj if ∃ l such that i, j ∈ Il},

where for the sake of convenience we will sometimes omit to write the blocks
Ij with cardinality one.

Let FAn−1 ⊂ C(AAn−1) be the set whose elements are the KI for every
I ⊂ {1, . . . , n} with |I| ≥ 2. It is a building set, in fact it is the minimal
one that contains the layers Kij ; it is the analogue of the “building set of
irreducible elements” for the linear case (see [16; 29; 48]).

For the arrangement AAn−1 there is a natural choice of a fan that produces
a good toric variety, as noted in [11]: we take in V = X∗(T ) ⊗Z R the fan
∆An−1 induced by the Weyl chambers of the root system. By construction
every layer of C(AAn−1) has an equal sign basis with respect to ∆An−1 , so
the toric variety X∆An−1

associated with ∆An−1 is a good toric variety for

the arrangement.
In [42] Procesi studies this toric variety (and also the more general toric

varieties XW associated with the fan induced by the Weyl chambers of a Weyl
group W ; see also [22]). As it is well-known, the even Betti numbers of the
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toric variety X∆An−1
are the Eulerian numbers A(n, k) (see, for example, [45–

47]). We recall briefly the main definitions and results about the numbers
A(n, k) and the cohomology of X∆An−1

.

Definition 5.1. The Eulerian number A(n, k + 1) is the number of permu-
tations in Sn with k descents4 for n ≥ 1 and 0 ≤ k ≤ n− 1.

Following [8] we present the Eulerian polynomial An(q) as

An(q) =











n
∑

k=1

A(n, k)qk, n ≥ 1,

1, n = 0.

According to the above formula one can compute the first Eulerian poly-
nomials obtaining A1(q) = q, A2(q) = q + q2, A3(q) = q + 4q2 + q3. The
exponential generating function of the Eulerian polynomials is (see for in-
stance [8, Section 6.5]):

(5.1)
∑

n≥0

An(q)
tn

n!
=

1− q

1− qet(1−q)
.

The dimension of H2k(X∆An−1
) is A(n, k + 1) (see [47, Section 4]), so

the Poincaré polynomial of X∆An−1
, written following the convention that

deg q = 2, is

P (X∆An−1
, q) =

n−1
∑

k=0

A(n, k + 1)qk =
1

q
An(q).

From Theorem 4.7 we know that a basis for the cohomology of YT (An−1) :=
Y (X∆An−1

,FAn−1) is given by the elements of BFAn−1
. Recall that these el-

ements are products of the form bmf , where f is an admissible function and
b ∈ Θ(supp f); we are going to study these two factors in this case.
Monomial mf . In analogy with [29] and [48], we can associate in a natural

way an admissible function f : FAn−1 → N with a so-called admissible forest
(on n leaves).

Definition 5.2. An admissible tree on m leaves is a labeled directed rooted
tree such that

• it has m leaves, each labeled with a distinct non-zero natural number;
• each non-leaf vertex v has kv ≥ 3 outgoing edges, and it is labeled

with the symbol qi where i ∈ {1, . . . , kv − 2}.

By convention, the graph with one vertex and no edges is an admissible tree
on one leaf (actually the only one). The degree of an admissible tree is the
sum of the exponents of the labels of the non-leaf vertices.

4If σ is a permutation in Sn, a descent of σ is an index i ∈ {1, . . . , n − 1} such that
σ(i) > σ(i+ 1). The number of descents of σ is denoted by des(σ).



26 G. GAIFFI, O. PAPINI, AND V. SICONOLFI

Definition 5.3. An admissible forest on n leaves is the disjoint union of
admissible trees such that the sets of labels of their leaves form a partition
of {1, . . . , n}. The degree of an admissible forest is the sum of the degrees of
its connected components.

As illustrated by Example 5.5, the association between admissible forests
and functions is the following: given an admissible forest F , for each internal
vertex v let I(v) be the set of labels of the leaves that descend from v and

let i(v) be such that qi(v) is the label of v; then the admissible function f
associated with F has supp f = {KI(v) | v internal vertex of F} and, for
each v, f : KI(v) 7→ i(v).

Remark 5.4. The degree of an admissible forest associated with the function
f is equal to the degree of the monomial mf .

Example 5.5. The admissible forest of Figure 3 is associated with the function
f with

supp f = {K{1,7,9,12},K{8,10,13},K{1,5,7,8,9,10,12,13},K{2,6,11,14}}

and such that f(K{1,7,9,12}) = 2, f(K{8,10,13}) = 1, f(K{1,5,7,8,9,10,12,13}) = 1,
f(K{2,6,11,14}) = 1. If we denote by TI the variable corresponding to KI ∈
FA13 , the monomial mf in this case is

T 2
{1,7,9,12}T{8,10,13}T{1,5,7,8,9,10,12,13}T{2,6,11,14}.

1 7 9 12 5 8 10 13 2 6 11 14 3 4

q2 q1 q1

q1

Figure 3. An example of an admissible forest on 14 leaves
with degree 5.

Element b ∈ Θ(supp f). To study the elements b ∈ Θ(supp f), first of all

we need to analyze H∗(X∆An−1
(supp f)): it is easy to show that the subfan

∆An−1(supp f) is isomorphic to ∆Ak−1
, where k is the number of connected

components of the forest associated with f (the isomorphism is obtained
by identifying the coordinates associated with the leaves of the same tree).
Therefore the elements of Θ(supp f) are in bijection with the permutations
of Sk, and any statistics on Sk that is equidistributed with the statistic
des makes this bijection grade-preserving. We choose to use the so-called
lec statistic, first introduced in [28]. To describe it, we need a couple of
definitions. In the following, a permutation in Sn will be denoted by the
ordered n-tuple [σ(1), . . . , σ(n)].
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5.2. Some remarks on the statistic lec. Given an ordered list of distinct
numbers (not necessarily a permutation), say σ = [σ1, . . . , σn], we denote by
inv(σ) the set of inversions of σ:

inv(σ) := {(i, j) | i < j, σi > σj}.

Definition 5.6. A hook is an ordered list of distinct non-zero natural num-
bers τ = [t1, . . . , th], with h ≥ 2, such that t1 > t2 and t2 < t3 < · · · < th
(this second condition applies only for h ≥ 3).

Remark 5.7. Given s numbers 1 ≤ j1 < · · · < js ≤ n and i ∈ {1, . . . , s − 1}
there is a unique way to sort {j1, . . . , js} so that they form a hook with
exactly i inversions, namely [ji+1, j1, . . . , ji, ji+2, . . . , js].

It is easy to observe that every list of distinct numbers has a unique hook
factorization (this notion comes from [30]), i.e. it is possible to write σ as
a concatenation σ = pτ1 · · · τk where each τi is a hook and p is a list of
increasing numbers. Notice that it is possible to have k = 0, if σ is an
increasing sequence; also it may happen that p = ∅ (σ = [3, 1, 2] is an
example with k = 1). The statistic lec is defined as

lec(σ) =
k
∑

i=1

|inv(τi)|

where pτ1 · · · τk is the hook factorization of σ.

Example 5.8. Let σ = [10, 13, 14, 8, 3, 6, 5, 4, 7, 11, 12, 9, 1, 2]. Its hook factor-
ization is

[10, 13, 14] [8, 3, 6] [5, 4, 7, 11, 12] [9, 1, 2]

and lec(σ) = 2 + 1 + 2 = 5.

Our choice of the statistic lec has been again inspired by the theory of
wonderful models. As it is well known (see for instance [3]), X∆An−1

can

be also seen as a projective wonderful model for the boolean hyperplane ar-
rangement in Pn−1. More precisely, it is the maximal model: the (projective)
hyperplanes are

Hi = {[z1, z2, . . . , zn] ∈ Pn−1 | zi = 0}

for i = 1, . . . , n and the building set is provided by the full poset of their
intersections. The nested sets in this case are simply the chains of elements
in this poset.

Therefore from [29] we know how to describe a monomial basis of H∗(X∆An−1
,Z).

In fact we will describe a basis of the cohomology of the corresponding non-
projective model, but the two cohomologies are isomorphic (this is a general
property, see [16; 29]).

A monomial in this basis is a product of Chern classes associated with an
admissible function (in analogy with our previous definitions; see also [29;
48]). In particular, the support of the (function associated with the) mono-
mial is a chain of subsets of {1, . . . , n}.
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As an example let n = 10 and consider the monomial

ζ{1,2}ζ
2
{1,2,4,5,6}ζ{1,2,4,5,6,7,8}

which is an element of the basis of the cohomology of X∆A9
; the variable

ζI , I ⊂ {1, . . . , 10}, is the Chern class of the irreducible divisor obtained as
proper transform of the subspace HI := ∩i∈IHi. Notice that, for instance,
the exponent of ζ{1,2,4,5,6} is strictly less than 3, i.e. the codimension of
H{1,2,4,5,6} in H{1,2}.

We show an algorithm producing a bijection between this monomial basis
of H∗(X∆An−1

,Z) and Sn, which is grade-preserving provided that we con-

sider in Sn the grade induced by the statistic lec. The idea is to write a
permutation σ ∈ Sn in terms of its hook decomposition, associating a hook
with every power of Chern class appearing in the monomial.

• We first look at the elements in {1, . . . , n} that do not appear in the
support of the monomial. We write them in increasing order obtain-
ing the non-hook part p of σ. In our example we have {1, . . . , 10} \
{1, 2, 4, 5, 6, 7, 8} = {3, 9, 10} so p = [3, 9, 10].

• We then create the first hook of σ by using Remark 5.7 with the
numbers in the smallest set of the support of the monomial, and the
number of the inversions given by the corresponding exponent. In
our example the smallest set is {1, 2} with exponent 1 so τ1 = [2, 1].

• The second hook of σ is formed using the numbers of the second set
of the chain that do not appear in the smallest one. In the example
those numbers are {4, 5, 6} = {1, 2, 4, 5, 6} \ {1, 2}, so we form the
hook with two inversions since 2 is the exponent of ζ{1,2,4,5,6} in the
monomial: τ2 = [6, 4, 5].

• We go on building the i-th hook τi by looking at the numbers in the
i-th set of the support of the monomial that do not appear in the
(i − 1)-th set. In our case there is only one set remaining: we pick
{7, 8} from {1, 2, 4, 5, 6, 7, 8} and form the hook [8, 7].

In the end we obtain σ = [3, 9, 10] [2, 1] [6, 4, 5] [8, 7], which has lec(σ) = 4.
Notice that this bijection, if one already knows that the Betti numbers of

X∆An−1
coincide with the Eulerian numbers, gives a geometric interpretation

of the fact that the lec statistic is Eulerian.

5.3. The toric model and the subspace model: an explicit bijection

between their cohomology bases. In Section 5.1 we have established a
bijection between the basis BFAn−1

and the set of pairs (F, σ) where:

• F is an admissible forest on n leaves,
• σ is a permutation in Sm, where m is the number of connected com-

ponents of the forest F .

If we define the degree of a pair as deg(F, σ) = deg(F )+lec(σ), this bijection
is grade-preserving.
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Now, it can be proved that the model YT (An−1) is isomorphic to the pro-
jective model YH(An) for the hyperplane arrangement of type An, obtained
by blowing up the building set of irreducible elements. Even if we don’t use
this fact in the present paper (we mention it only as inspiring additional
information), we sketch here a proof.

The first step consists in noticing that both the toric and the hyperplane
arrangements can be seen as the same subspace arrangement in a projective
space of dimension n− 1. On one side, the hyperplane arrangement of type
An can be seen as the arrangement in

V = {(0, x1, . . . , xn) | xi ∈ C} ⊆ Cn+1

given by the hyperplanes

x1 = 0, . . . , xn = 0, xi − xj = 0 for 1 ≤ i < j ≤ n.

The corresponding projective arrangement in P(V ) is given by the hyper-
planes

y1 = 0, . . . , yn = 0, yi − yj = 0 for 1 ≤ i < j ≤ n

where, omitting the first zero, we denote by [y1, . . . , yn] the projective coor-
dinates of a point in P(V ). On the other side we observe that we can identify
(C∗)n−1 with

P(Cn) \
n−1
⋃

i=0

{ti = 0}

via the map (t1, . . . , tn−1) 7→ [1, t1, . . . , tn−1], where we denote by [t0, . . . , tn−1]
the projective coordinates in P(Cn). In this setting, the divisorial layers of
the toric arrangement of type An−1 T = (C∗)n/Hn ≃ (C∗)n−1 are given by

ti = tj for 0 ≤ i < j ≤ n− 1.

Overall, we are considering in P(Cn) the hyperplanes

t0 = 0, . . . , tn−1 = 0, ti − tj = 0 for 0 ≤ i < j ≤ n− 1.

The second step of the proof consists now in noticing that the two models
YT (An−1) and YH(An) are obtained by blowing up the same subspaces;
however, the two constructions differ in the order in which the blow ups are
carried out, but thanks to [33, Theorem 1.3] the two resulting varieties are
isomorphic.

This suggests us to search for a grade-preserving bijection between the
bases of the cohomologies of YT (An−1) and YH(An). Recall that a basis
for the cohomology of YH(An) is in grade-preserving bijection with the set
of admissible forests on n + 1 leaves [29; 48]. So we describe an algorithm
that produces an explicit bijection Ψ, associating a pair (F, σ) (given by an
admissible forest F on n leaves with m trees and a permutation σ ∈ Sm)
with an admissible forest F on n+ 1 leaves.

As a preliminary step we fix an ordering of the trees in F . For example
we can say that T < T ′ if the minimum index labelling the leaves in T is
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smaller than the minimum index labelling the leaves in T ′. We denote the
trees accordingly as T1 < T2 < · · · < Tm.

Let σ = pτ1 · · · τk be the hook factorization of σ.
Base step: k = 0. In this case F is obtained from F by simply adding a
connected component with a single vertex-leaf labeled with n+ 1.
Inductive step: k > 0. Let τk = [M,a1, . . . , aℓ] be the last hook of σ and let
i = |inv(τk)|, i.e. the number of inversions. We produce a tree T connecting
with a new internal labeled vertex the roots of the trees TM , Ta1 , . . . , Taℓ and
an extra leaf labeled with n+1. We label this new internal vertex, which is
the root of T , with qi. Figure 4 shows the situation.

. . .
Ta1

. . .
TM

. . .
Taℓ

n+ 1

. . .

qi

Figure 4. The new tree T obtained using the last hook τk of σ.

Now we consider the forest F ′ obtained from F by removing the trees
TM , Ta1 , . . . , Taℓ and the list σ′ = pτ1 · · · τk−1 and we apply the same con-
struction to the pair (F ′, σ′), with the difference that now, instead of con-
necting the trees to an extra leaf labeled n + 1, we connect them to the
root of the tree T obtained in the previous step. The algorithm is repeated
inductively until there are no hooks remaining.

To prove that this algorithm defines a bijection, we present the reverse
algorithm that computes Ψ−1, associating an admissible forest F on n + 1
leaves with a pair (F, σ).
Description of the forest F . As the first step of the reverse algorithm, we
remove all the internal vertices of F that have the leaf labeled n+ 1 among
their descendants. When we remove a vertex, we remove also its label and
all its outgoing edges (but not their descendants). Then we remove the leaf
labeled with n+1. In this way, we have obtained a forest F on n leaves, and
we sort its connected components according to the usual ordering T1, . . . , Tm

(see Figure 5).
Description of the permutation σ. We now need to describe σ ∈ Sm. If F
has no internal vertices with the leaf n + 1 as a descendant, we just take
σ = e, the identity in Sm. Otherwise, let v be the vertex in F that covers
n+1; let qi be its label and let {Ta1 , . . . , Tas , n+1} be the set of connected
components of the forest obtained by removing v and its outgoing edges from
the subtree of F with root v. The situation is described in Figure 6. Since F
is an admissible forest we have 1 ≤ i ≤ s− 1, so we can apply Remark 5.7 to
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1 4 5 2 3 7 6

q1

q1

−→

1 4 5 2 3 6

q1

Figure 5. An example of the application of the reverse algorithm.

the set {a1, . . . , as} and obtain the hook [ai+1, a1, . . . , ai, ai+2, . . . , as], which
will be the last hook of the permutation σ.

. . .
Ta2

. . .
Ta1

. . .
Tas

n+ 1

. . .

v qi

Figure 6. The vertex v covers the leaf labeled with n+ 1.

Let now {1, . . . ,m}\{a1, . . . , as} = {b1, . . . , bm−s}, with b1 < · · · < bm−s.
If in F there are no vertices that cover v we define

σ = [b1, . . . , bm−s, ai+1, a1, . . . , ai, ai+2, . . . , as];

if instead there is a vertex, say w, that covers v in F we have a picture like
Figure 7, with c1 < · · · < ch and 1 ≤ r ≤ h− 1. We repeat the same step as
we did for v, obtaining a new hook [cr+1, c1, . . . , cr, cr+2, . . . , ch] so that the
last part of σ is now

[cr+1, c1, . . . , cr, cr+2, . . . , ch, ai+1, a1, . . . , ai−1, ai+2, . . . , as].

. . .
Tc1

. . .
Tch

. . .
(Fig. 6)

v
. . .

w qr

Figure 7. The vertex w covers the vertex v of Figure 6.

We repeat the previous steps as long as there are internal vertices in F
covering the last vertex that we removed.
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5.4. A combinatorial proof, with a geometrical interpretation, that

lec is Eulerian. The bijection Ψ described above allows us to give a new
proof that lec is an Eulerian statistic. This proof is purely combinatorial,
and therefore in particular it differs from the one sketched in Section 5.2,
which uses the fact that the Betti numbers of X∆An−1

are Eulerian numbers.

Nevertheless our proof has a geometric inspiration that comes from counting
elements of monomial bases of cohomologies of models. We first need to
introduce some generating functions.

Let λ(q, t) be the generating function of the admissible trees, i.e. the series
whose coefficient of qitk/k! counts the number of admissible trees of degree
i on k leaves (see [29; 36; 48]). There are explicit combinatorial ways to
compute the series λ, as the following theorem shows.

Theorem 5.9 ([29, Theorem 4.1]). Let λ defined as above. Then we have
the following recurrence relation:

∂

∂t
λ = 1 +

∂
∂t
λ

q − 1
(eqλ − qeλ + q − 1).

In other words

(5.2)
∂

∂t
λ =

1− q

eqλ − qeλ
.

The first few terms of λ are

λ(q, t) = t+ q
t3

3!
+ (q + q2)

t4

4!
+ · · ·

By standard combinatorial arguments we deduce that the generating func-
tion of the admissible forests is eλ − 1, and in particular the number of the
admissible forests with k connected components on n leaves and degree d is
counted by the coefficient of qdtn/n! in the series λk(q, t)/k!.

We define now the exponential generating function for the lec statistic

L(q, t) :=
∑

n≥1

(

∑

σ∈Sn

qlec(σ)

)

tn

n!

and the usual exponential generating function for any Eulerian statistic

E(q, t) :=
∑

n≥1

(

∑

σ∈Sn

qdes(σ)

)

tn

n!
=
∑

n≥1

An(q)

q

tn

n!
.

Our goal is to prove that L(q, t) = E(q, t). This is equivalent to prove that

L(q, λ(q, t)) = E(q, λ(q, t))

since λ, viewed as a series in Z[q][[t]], is invertible with respect to the com-
position (its constant term is zero and its degree 1 term is invertible in Z[q]).

Notice that the coefficient of qdtn/n! in the series L(q, λ(q, t)) counts the
pairs (F, σ) where F is an admissible forest on n leaves and deg(F, σ) = d;
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from the bijection Ψ we deduce that the series L(q, λ(q, t)) is equal to the
series eλ − 1 shifted by one, i.e.

(5.3) L(q, λ(q, t)) =
∂

∂t
(eλ(q,t) − 1)− 1.

Now, a simple computation of formal power series gives that

(5.4)
∂

∂t
(eλ(q,t) − 1)− 1 = E(q, λ(q, t)).

In fact from (5.1) we can write

q · E(q, λ(q, t)) =
1− q

1− qeλ(q,t)·(1−q)
− 1

from which we have

E(q, λ(q, t)) =
−1 + eλ(q,t)·(1−q)

1− qeλ(q,t)·(1−q)
=

eλ(q,t) − eλ(q,t)·q

eλ(q,t)·q − qeλ(q,t)
;

on the other hand
∂

∂t
(eλ(q,t) − 1)− 1 = eλ(q,t)

∂

∂t
(λ(q, t)) − 1 =

(5.2)
=

eλ(q,t)(1− q)

eλ(q,t)·q − qeλ(q,t)
− 1 =

eλ(q,t) − eλ(q,t)·q

eλ(q,t)·q − qeλ(q,t)
.

By combining (5.3) and (5.4) we conclude.
This proof has used only combinatorial arguments, but, as we remarked

above, it has a geometric inspiration. We notice that some of the power series
involved are actually the generating functions for the Poincaré polynomials
of the compact models YT (An−1) and YH(An−1), defined as

ΦT (q, t) :=
∑

n≥1

P (YT (An−1), q)
tn

n!
,

ΦH(q, t) :=
∑

n≥1

P (YH(An−1), q)
tn

n!
.

In fact we already know that ΦH(q, t) = eλ(q,t) − 1, and the description of
the basis for the toric model gives that ΦT (q, t) = E(q, λ(q, t)). From this
point of view we can read Equation (5.4) as

∂

∂t
ΦH(q, t)− 1 = ΦT (q, t),

which reveals itself to be a consequence of the isomorphism between YT (An−1)
and YH(An).
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Appendix A. Description of the fan in Example 2.19

The following table lists the rays of the fan ∆ associated with a good toric
variety for the arrangement of Example 2.19.

r1 : (0,−2,−1) r2 : (0,−1,−1) r3 : (−2, 1,−1) r4 : (−1, 1,−1)
r5 : (0,−1, 1) r6 : (0, 1, 0) r7 : (−2, 1, 1) r8 : (−1, 1, 1)
r9 : (1,−1, 1) r10 : (−1, 3, 1) r11 : (−2, 3, 1) r12 : (1,−2,−1)

r13 : (1,−1,−1) r14 : (6,−3,−1) r15 : (2,−1,−1) r16 : (2,−2,−1)
r17 : (2,−1,−2) r18 : (0, 0,−1) r19 : (2,−1, 1) r20 : (0, 0, 1)
r21 : (0, 2, 1) r22 : (1, 0, 1) r23 : (1, 0,−1) r24 : (−6, 3, 1)

r25 : (−2,−2,−1) r26 : (−2,−1,−1) r27 : (4,−3,−1) r28 : (0,−1, 0)
r29 : (2, 0,−1) r30 : (−5, 3, 1) r31 : (−2,−1, 1) r32 : (2, 0, 1)
r33 : (−1,−1, 1) r34 : (−1,−2,−1) r35 : (−1, 1, 0) r36 : (−2, 1, 0)
r37 : (2, 2, 1) r38 : (3,−3,−1) r39 : (1,−1, 0) r40 : (−4, 2, 1)

r41 : (−1,−1,−1) r42 : (2,−1, 0) r43 : (1, 2, 1) r44 : (5,−3,−1)
r45 : (−3, 3, 1) r46 : (−2, 0, 1) r47 : (−1, 0, 1) r48 : (3,−2,−1)
r49 : (−2, 0,−1) r50 : (−1, 0,−1) r51 : (−1, 2, 1) r52 : (−2, 2, 1)
r53 : (1, 0, 0) r54 : (0,−3,−1) r55 : (2,−3,−1) r56 : (−4, 3, 1)
r57 : (0, 1,−1) r58 : (2, 1,−1) r59 : (1,−3,−1) r60 : (0, 1, 1)
r61 : (−2, 1, 2) r62 : (2, 1, 1) r63 : (0, 3, 1) r64 : (−2,−3,−1)

r65 : (−1,−3,−1) r66 : (1, 3, 1) r67 : (4,−2,−1) r68 : (−1, 0, 0)
r69 : (2, 3, 1) r70 : (1, 1,−1) r71 : (1, 1, 1) r72 : (−3, 2, 1)

The following table lists the maximal cones of the fan ∆ associated with a
good toric variety for the arrangement of Example 2.19. Each cone is given
by its generating rays.

C(r6, r53, r69) C(r37, r53, r69) C(r37, r53, r62) C(r6, r66, r69)
C(r37, r66, r69) C(r37, r43, r66) C(r37, r43, r62) C(r43, r62, r71)
C(r6, r63, r66) C(r21, r63, r66) C(r21, r43, r66) C(r21, r43, r60)
C(r43, r60, r71) C(r32, r53, r62) C(r22, r32, r62) C(r22, r62, r71)
C(r22, r60, r71) C(r20, r22, r60) C(r6, r53, r58) C(r6, r58, r70)
C(r6, r57, r70) C(r29, r53, r58) C(r23, r29, r58) C(r23, r58, r70)
C(r18, r23, r70) C(r18, r57, r70) C(r19, r28, r39) C(r19, r42, r53)
C(r19, r39, r42) C(r9, r19, r28) C(r5, r9, r28) C(r19, r32, r53)
C(r19, r22, r32) C(r19, r20, r22) C(r9, r19, r20) C(r5, r9, r20)
C(r28, r54, r59) C(r1, r54, r59) C(r1, r12, r59) C(r1, r2, r12)
C(r28, r39, r55) C(r28, r55, r59) C(r12, r55, r59) C(r15, r53, r67)
C(r14, r42, r53) C(r14, r53, r67) C(r27, r39, r42) C(r27, r42, r44)
C(r27, r44, r48) C(r15, r48, r67) C(r14, r42, r44) C(r14, r44, r48)
C(r14, r48, r67) C(r27, r38, r39) C(r27, r38, r48) C(r16, r38, r48)
C(r15, r16, r48) C(r13, r15, r16) C(r2, r12, r13) C(r38, r39, r55)
C(r16, r38, r55) C(r13, r16, r55) C(r12, r13, r55) C(r15, r29, r53)
C(r15, r23, r29) C(r13, r15, r17) C(r15, r17, r23) C(r13, r17, r18)
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C(r17, r18, r23) C(r2, r13, r18) C(r6, r10, r63) C(r10, r21, r63)
C(r10, r21, r51) C(r21, r51, r60) C(r6, r11, r35) C(r6, r10, r11)
C(r10, r11, r51) C(r7, r40, r68) C(r24, r36, r68) C(r24, r40, r68)
C(r35, r36, r56) C(r30, r36, r56) C(r30, r56, r72) C(r7, r40, r72)
C(r24, r30, r36) C(r24, r30, r72) C(r24, r40, r72) C(r35, r45, r56)
C(r45, r56, r72) C(r45, r52, r72) C(r7, r52, r72) C(r7, r8, r52)
C(r8, r51, r60) C(r11, r35, r45) C(r11, r45, r52) C(r8, r11, r52)
C(r8, r11, r51) C(r7, r46, r68) C(r7, r46, r47) C(r7, r8, r61)
C(r7, r47, r61) C(r8, r20, r61) C(r20, r47, r61) C(r8, r20, r60)
C(r3, r6, r35) C(r3, r36, r68) C(r3, r35, r36) C(r3, r4, r6)
C(r4, r6, r57) C(r3, r49, r68) C(r3, r49, r50) C(r3, r18, r50)
C(r3, r4, r18) C(r4, r18, r57) C(r28, r31, r68) C(r28, r31, r33)
C(r5, r28, r33) C(r31, r46, r68) C(r31, r46, r47) C(r31, r33, r47)
C(r20, r33, r47) C(r5, r20, r33) C(r28, r64, r68) C(r25, r64, r68)
C(r25, r26, r68) C(r28, r64, r65) C(r25, r64, r65) C(r25, r34, r65)
C(r25, r26, r34) C(r26, r34, r41) C(r28, r54, r65) C(r1, r54, r65)
C(r1, r34, r65) C(r1, r2, r34) C(r2, r34, r41) C(r26, r49, r68)
C(r26, r49, r50) C(r26, r41, r50) C(r2, r41, r50) C(r2, r18, r50)
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