
SoftwareX 21 (2023) 101320

a
b
o
o

U

h
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

Exploiting Simu5G for generating datasets for training and testing AI
models for 5G/6G network applications
Giovanni Nardini a,b,∗, Alessandro Noferi a, Pietro Ducange a, Giovanni Stea a

a Dipartimento di Ingegneria dell’Informazione, University of Pisa, Largo L. Lazzarino 1, 56122 Pisa, Italy
b Center for Logistic Systems, University of Pisa, Via dei Pensieri 60, 57142, Livorno, Italy

a r t i c l e i n f o

Article history:
Received 20 September 2022
Received in revised form 16 January 2023
Accepted 19 January 2023

Keywords:
simu5G
Artificial intelligence
Network simulation
Dataset

a b s t r a c t

Researchers working on Artificial Intelligence (AI) need suitable datasets for training and testing their
models. When it comes to applications running through a mobile network, these datasets are difficult
to obtain, because network operators are hardly willing to expose their network data or to open their
network to experimentation. In this paper we show how Simu5G, a popular 5G network simulator
based on OMNeT++, can be used to circumvent this problem: it allows users to log data at arbitrary
spatial and temporal resolution, belonging to every network layer — from the application to the
physical one.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Code metadata

Current code version v1.2.1
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-22-00294,

https://github.com/Unipisa/Simu5G/releases/tag/dataset_generator_software-x
Permanent link to reproducible capsule
Legal code license GNU Lesser General Public License V. 3
Code versioning system used git
Software code languages, tools and services used C++, Network Description (NED) language, few python routines.
Compilation requirements, operating environments and dependencies Requires OMNeT++
If available, link to developer documentation/manual http://simu5g.org, https://github.com/Unipisa/Simu5G
Support email for questions giovanni.nardini@unipi.it
1. Motivation and significance

Research on Artificial Intelligence (AI) for networking has seen
n enormous upsurge in the last years. AI solutions are now
eing envisaged to solve complex networking problems, such as
ptimizing the network configuration and predicting user Quality
f Experience (QoE) [1]. Parallel to this, networked paradigms

for AI algorithms, such as Federated Learning [2], are emerging:
their performance (e.g., speed of convergence) depends on net-
work Quality of Service (QoS), and networks themselves have
to manage new workload for supporting such new paradigms.
This double interplay – i.e., AI for networks, on one hand, and
networked AI, on the other – has at its core cellular access (CA),
i.e., 4G, 5G and Beyond-5G (B5G) [3]. Indeed, CA ensures the

∗ Corresponding author at: Dipartimento di Ingegneria dell’Informazione,
niversity of Pisa, Largo L. Lazzarino 1, 56122 Pisa, Italy.

E-mail address: giovanni.nardini@unipi.it (Giovanni Nardini).
ttps://doi.org/10.1016/j.softx.2023.101320
352-7110/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a
expected reliability and ubiquitous diffusion, and supports com-
plex communication/computation services via Multi-access Edge
Computing (MEC) [4].

Suitable datasets for training and testing AI models for specifics
applications may be hard to obtain. For example, an AI model for
predicting user QoE needs to correlate data coming from different
network (sub)layers and the position data on the mobile users, at
the relevant time and space resolution, with the actual level of
QoE perceived by users. Network infrastructure providers have
their own logging procedures. However, they are (understand-
ably) not always willing to share them, due to a plethora of
reasons (e.g., competitive advantage, or the extra work required
for GDPR compliance). Moreover, these data may not fit the
requirements for the training algorithm: e.g., they may not log
some relevant information, or log it at the wrong time/space
resolution, or in suboptimal network conditions (e.g., too lightly
loaded cells). The same problem occurs – possibly exacerbated –
when Federated Learning of AI models is required. In this case,
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2023.101320
https://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2023.101320&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00294
https://github.com/Unipisa/Simu5G/releases/tag/dataset_generator_software-x
http://simu5g.org
https://github.com/Unipisa/Simu5G
mailto:giovanni.nardini@unipi.it
mailto:giovanni.nardini@unipi.it
https://doi.org/10.1016/j.softx.2023.101320
http://creativecommons.org/licenses/by/4.0/

Giovanni Nardini, Alessandro Noferi, Pietro Ducange et al. SoftwareX 21 (2023) 101320

o

d
e

b
l

Fig. 1. Overview of Simu5G’s functionalities, which cover both application- and network-level modeling of end-to-end applications, as well as flexible configuration
f users mobility.
atasets should in fact include input data to all the federated
ntities (typically, users of cellular networks).
In this paper, we discuss how these issues can be solved

y using Simu5G, a popular 4G/5G cellular network simulation
ibrary [5–7]. Simu5G is an end-to-end simulator for evaluat-
ing how the network affects application-layer metrics, and how
applications impact network performance. It allows users to gen-
erate arbitrary network scenarios, which include user mobility,
handover, real applications, and to set arbitrary probes in the
code, to measure what they need at the relevant time/space gran-
ularity, with full control over experimental conditions. Simu5G
can therefore be used to generate flexible datasets for training
and testing AI models. We describe how to set probes in Simu5G
and how to generate datasets, with reference to a real-life ex-
ample for tele-operated driving. AI models learn their structure,
namely their parameters, from available data. Accordingly, the
higher the capability of a simulator to generate realistic data, the
better the AI models will be able to act in real world applications.
Simu5G’s physical layer reporting has been validated according
to 3GPP guidelines [5], and its MEC model has been validated
in [6]. While this does not constitute any a-priori guarantee, it
is however encouraging.

Simu5G is not the only software that simulates 5G networks.
Authors of [8,9] discuss physical-layer simulators for evaluating
physical-layer design (e.g., antenna performance, transmission
schemes, spectral efficiency). These simulators often lack upper
network protocols and cannot support real applications. Other
end-to-end simulators include some – but not all – Simu5G’s
features [10,11]. For instance, 5G-LENA [10] is an ns3 library [12]
that, to the best of our knowledge, lacks dual connectivity,
network-controlled device-to-device communications, ETSI MEC
modeling, and real-time capabilities.

2. Software description

Simu5G is a discrete-event simulation library for 4G/5G New
Radio networks based on OMNeT++ [13]. As shown in Fig. 1,
Simu5G is interoperable with all the OMNeT++-based libraries,
e.g., the INET library, which includes a wealth of TCP/IP network
elements [14], libraries for vehicular mobility (e.g., using [15]),
etc. Moreover, Simu5G also models the ETSI MEC standard [4,
16]. Users can therefore setup scenarios where user applications
instantiate MEC applications through a 5G network, and MEC
applications use the services provided by the underlying 5G net-
work (e.g., the Radio Network Interface service). Applications can
2

be modeled within the simulator, or they can be external appli-
cations interfaced with it. Simu5G can also run in real time [7]:
packets from an external application are injected into Simu5G,
undergo coherent forwarding treatment (routing, delay, losses,
etc.) and come out at the other end, to be conveyed to their
external destination.

2.1. Software architecture

Simu5G provides a set of modules that implement the main
entities of 5G New-Radio (NR) networks, such as Base Stations
(BSs) and User Equipments (UEs). Following the OMNeT++ phi-
losophy, each entity is described by a Network Description (NED)
file, a declarative language that exploits inheritance and inter-
faces, fully convertible into XML. It defines the parameters of the
module and the submodules that compose its internal architec-
ture, as well as the gates and the connections that allows it to
exchange messages with other modules. Parameters to be used
in a simulation instance can be configured via an initialization
(INI) file. Fig. 2 shows the architecture of the gNodeB and the NrUe
modules. They both include a NR Network Interface Card (NIC)
submodule, which in turn is composed of submodules represent-
ing the different layers of the NR protocol stack, from PDCP to the
physical layer. The behavior of each submodule is specified by a
C++ class, which defines the actions that the module performs to
handle events, such as the reception of messages from another
module or the expiration of a self-scheduled timer. Indeed, data-
plane network packets are implemented as messages that flow
through the submodules of a BS or a UE, where each layer applies
its 3GPP-compliant processing before passing the messages to
the downstream/upstream layer (or sending it to another entity,
e.g., over the radio channel). Many NR features are also supported,
such as carrier aggregation, multiple numerologies, frequency-
and (flexible) time-division duplexing.

Fig. 3 reports a portion of the class diagram describing the
entities performing physical-layer operations. LtePhyBase is the
class providing the base functionalities for a node, which are
specialized by specific classes at BS and UE side. Note that the
same inheritance mechanism is employed for all the submodules
of the NR NIC shown in Fig. 2. LtePhyBase references one or more
channel models, i.e. one for each component carrier supported by
the node. The channel model is implemented by one of the classes
implementing the LteChannelModel interface. Each channel model
is associated to one ComponentCarrier class, which includes the
parameters of the component carrier, such as carrier frequency,
numerology index, etc. An instance of ComponentCarrier can be
used by zero or more nodes in the simulation.

Giovanni Nardini, Alessandro Noferi, Pietro Ducange et al. SoftwareX 21 (2023) 101320

a
u
c
f

a
U
b
b
s
n
S
c
a

w
d
t
n
t
t
d

Fig. 2. High-level architecture of Simu5G’s main modules, namely the NrUe and the gNodeB modules, with special focus on the internal modeling of the NR NIC,
which includes all the NR protocol layers.
Fig. 3. Partial view of the class diagram representing the relationship between classes at the physical layer. Inheritance is widely used to implement common
functionalities and reuse as much code as possible.
.

2.2. Software functionalities

Simu5G can simulate arbitrary 5G network scenarios, as well
as mixed 4G/5G and dual connectivity deployments. Scenarios
can be constructed by composing modules – from Simu5G, INET
and, possibly, other OMNeT++ libraries – using the NED language.
The latter allows one to write parametric simulation scenarios,
e.g., a multicell 5G network with a variable number of BSs and
UEs. Actual simulation parameters, e.g., traffic generation rate of
n application, number of UEs served by a BS, etc., can be config-
red separately in INI files, so that a set of simulation experiments
an be constructed by computing the cartesian product of all the
actors.

Users willing to obtain a dataset for a particular service or
pplication will need to configure a simulation scenario where
Es run their application of interest. Simu5G comes with a set of
uilt-in applications (i.e., application-layer modules) representing
oth real-life applications – such as VoIP – and generators of
ynthetic traffic – e.g., Constant Bit Rate. Occasionally, users may
eed custom applications. In this regard, the modular nature of
imu5G allows one to easily plug new application modules. This
an be done by defining the NED and C++ files for that application
nd configuring the INI so that UEs run that application.
In addition, users need to identify the statistics of interest that

ill form the dataset. Simu5G already provides a large set of pre-
efined metrics at both BS and UE granularity, like cell-wise/UE
hroughput and latency measurements at multiple levels of the
etwork protocol stack. For instance, the end-to-end latency of
ransmitted packets can be obtained at both the application and
he MAC level. Custom statistics can also be defined. Statistics are
eclared within modules, namely in the NED file describing them,
3

and probes capturing the samples are implemented within the
corresponding C++ files. Statistics recording is based on signals.
The latter are generated by a module and received by whichever
other component of the simulation registered a listener for them.
To record metrics, when a module computes a new sample, it
emits a signal carrying it, which is then received by a recorder
that stores and elaborates it to build complex statistics. Listings
1–4 exemplify the code that must be implemented to add a new
statistic recording the end-to-end delay of packets received by a
custom application module.

By default, each simulation instance produces two output files
storing the statistics, namely a .sca file including all scalar-type
statistics and a .vec file including all vector-type statistics. Since
not all statistics may be of interest to the user in a particular
scenario, the actual set of statistics that a simulation produces
can be fine-tuned via the INI file. If statistic statA is defined in
submodule Y of module X , a user can disable all scalars related
to it by configuring:

**.<moduleX>.<submoduleY>.statA.scalar-recording=false
Likewise, the vector-recording parameter can be used to

control vector statistics. The hierarchical structure of the simu-
lation scenario allows one to disable all statistics generated by a
module or by the whole simulation — by using wildcards.

Output files usually need to be parsed to generate the final
dataset. Being raw text files, they can be parsed using any kind
of scripting. However, OMNeT++ includes tools that facilitate
data extraction, e.g. an analysis tool that allows the user to
browse statistics, filter them (e.g., by name, module, replicas,
type) and create plots. Moreover, it exports selected statistics to
JSON or CSV files (e.g., for further analysis through spreadsheet
applications), or other formats readable (e.g.) by R and Matlab.

Giovanni Nardini, Alessandro Noferi, Pietro Ducange et al. SoftwareX 21 (2023) 101320

e

3

D
o
r
b
a
n
n
c
m
n
c
o
S
a
d
o
f

n
l
b
c
s
i
(
o

w
i
c
a
t
(
1
i

s
t
n
g
(
c
f
a
s
I

c
s
b
f
a
l
t
t
b
r
f
s
f
o
i
r
d

t
t
s
t
p
o
t
r
t
o
>

h

Alternatively (e.g., if the user does not have access to a GUI),
the opp_scavetool program included with OMNeT++ allows one to
xtract statistics from the command line.

. Illustrative examples

In this example, we consider the use case of Tele-operated
riving (ToD), where vehicles can be remotely driven by a human
perator. With ToD, the operator must receive a high-definition,
eal-time video streaming from the vehicle through the mo-
ile network, so that he/she can be aware of the environment
round the vehicle and control the latter safely. In this sce-
ario, QoE plays a crucial role, as the ToD functionality could
ot be exploited if the video presents impairments at the re-
eiving side (i.e., the remote driver). In this context, AI models
ay be trained for predicting possible QoE degradations in the
ear future, hence allowing the remote driver to take proper
ountermeasures, such as parking the vehicle in a safe location
r requesting the passenger to take control of the vehicle. The
imu5G software can be exploited to simulate the above scenario
nd generate a dataset that will be used by AI experts to properly
esign the parameters of specific AI models. Unless specified
therwise, in the following we refer to files provided within
older simulations/NR/videostreaming_dataset_generator.

With reference to Fig. 4, the NED file defines a simulated
etwork including three gNBs, namely gnb1, gnb2 and gnb3. The
atter provide the radio coverage over a main road intersected
y three secondary roads. Traffic lights regulate the traffic at
rossroads. Five UEs are deployed in the floorplan, each of them
ending a real-time video stream to their corresponding receiv-
ng application residing at the MEC host. Eight background gNBs
i.e., gNBs whose only purpose is to produce realistic interference
n foreground gNBs) complete the picture.
The above scenario is parametrized by the omnetpp.ini file,

hich is organized in several sections identified by the label
n square brackets. The General section specifies the NED file
ontaining the network and network-wise 5G parameters, such
s carrier aggregation, handover, transmit powers and MEC sys-
em configurations. Moreover, it specifies the simulation duration
set to 900s) and the number of scenario repetitions (set to
0): the OMNeT++ environment will automatically generate ten
ndependent replicas, each 15-minutes long and using different
4

eeds for the pseudo-random generator. The UrbanNetwork sec-
ion, instead, defines the parameters specific to the simulated
etwork. For example, it configures the position of both fore-
round and background gNBs, as well as the number of UEs
set to five) and their mobility type. In this scenario, UEs use a
ustom mobility module called TrafficLightMobility, (see
older src/mobility/trafficLightMobility) which makes UEs move in
straight line at constant speed, randomly turn at crossroads, and
top when they encounter a red traffic light. This section of the
NI file also defines the application module that is run by the UEs.

For the use-case presented in this paper, we implemented a
ustom module that models the behavior of a real-time video-
treaming application at both sender and receiver side, the latter
eing implemented as a MEC app. The implementation can be
ound in folder src/apps/RealTimeVideoStreamingApp. The sender
pplication generates video frames according to a trace file, each
ine of which specifies the size of a video frame. In our simula-
ions, trace files were obtained from dash-camera videos using
he FFmpeg library. For each frame, the sender generates a num-
er of fragments and sends them via the UDP protocol. At the
eceiving side, the application tries to reconstruct the complete
rame and play them out at the intended time. The relevant
tatistics for the QoE prediction – such as the inter-arrival time,
rame and fragment size, percentage of frame displayed, and so
n – were declared in the NED file of the sender application,
.e. RTVideoStreamingSender.ned. In order to generate a dataset
epresenting the values of such metrics over time, statistics are
eclared as vector in the NED file.
In the C++ class, the corresponding signal were declared in

he .h file, and registered (through the registerSignal() func-
ion) in the handleUeMessage() function in the .cc file. Then,
tatistics are emitted in the proper function handling the recep-
ion of fragments and the playout of frames. For example, the
layoutFrame() is invoked when a frame has to be played
ut, it retrieves the number of received segment belonging to
hat frame and computes the percentage of the frame correctly
eceived by dividing the total size of the received segments by the
otal size of the frame. The resulting value is emitted as a sample
f the frameDisplayed statistic by invoking ueAppModule_-
emit(frameDisplayed_, percentage);.
With reference to Fig. 5, the omnetpp.ini can be configured to

andle which statistics are produced and where they are saved.

Giovanni Nardini, Alessandro Noferi, Pietro Ducange et al. SoftwareX 21 (2023) 101320

(

c
b
i

Fig. 4. Simulated scenario: 5G-enabled vehicles move along the roads deployed in the floorplan while sending a video stream using the Real-time Transport Protocol
RTP) over the radio network to the MEC Host, which is connected to the 5G core network.
Fig. 5. Statistics filtering in the omnetpp.ini file: the blue box at the top includes the settings required to filter which metrics are recorded by the simulation,
whereas the orange box at the bottom includes parameters that specify the output path where statistics can be retrieved at the end of the simulation.
Once the scenario is setup, we can launch the simulation
ampaign by typing opp_runall simu5 g -u Cmdenv -c Ur-
anNetwork from the command line. Raw statistics are saved
n the files specified by the output-vector-file parameter
in omnetpp.ini file, as shown in Fig. 5. In order to obtain usable
data, we must parse the above files, extract the relevant statistics
and produce a dataset with the desired format. Parsing and ex-
traction of the statistics is done via the opp_scavetool program.
This produces an intermediate CSV file, which can be parsed
further to generate the final dataset. To do so, we implemented a
python script, namely DatasetExtractor.py that filters unnecessary
columns and cleans some text in order to reduce the size of the
generated dataset.

The final dataset is a set of tuples with the following format:
<run, module, metric, timestamps, values>
Where:

• run is the unique identifier of the simulation that generated
the metric in the tuple;

• module is the entity that produced the metric, e.g., ue[0];
• metric is the name of the collected metric;
• timestamps and values are two arrays. Their ith elements, ti

and mi concur to represent point (ti,metric(ti)).
5

The final rough dataset may be re-elaborated for creating a typical
dataset for training and testing AI model. Usually, the AI-dataset
is a collection of input–output tuples. Each tuple includes a target
value to be predicted and a list of input values. Thus, specific
input variable and the output variable must be extracted from
the rough dataset.

4. Impact

Despite its code having been publicly available for less than
18 months, Simu5G is already being used by a large community
of researchers: it has been downloaded more than 4100 times
so far, from all over the world — see Fig. 6. Among the 45+
papers already citing [5],1 12 are from (other) research groups
that use it to validate their research, some of which involve AI
techniques [17–20].

Simu5G has been developed in the framework of a joint re-
search project between the University of Pisa and Intel. It is
currently being used within the Hexa-X project, EU’s 6G flagship
project [3], where it supports research, development and demon-
stration activities for Federated Learning of Explainable AI (XAI)
models for QoE prediction. Recently, a preliminary performance

1 Google Scholar search, Sept. 6, 2022

Giovanni Nardini, Alessandro Noferi, Pietro Ducange et al. SoftwareX 21 (2023) 101320

d

a
i
Q
d

i
c
p

5

B
l
u
p
h
l
m
a
u
s

D

c
t

D

S

A

a
(
t
1
A

Fig. 6. Google analytics report of the Simu5G website [1] from the release of the code (Apr 15, 2021) to Sep 6, 2022. The rightmost graph shows the number of
ownloads per country.
nalysis was presented in [1], where rough data generated us-
ng Simu5G were elaborated to create a dataset for estimating
oE values using statistics extracted from network metrics. The
ataset is publicly available at [21].
Simu5G is also listed among the tools for MEC app developers

n the ETSI MEC ecosystem [22] – in fact, MEC app developers
an use it as a cradle to test their production-level code for
erformance, in realistic and customizable 5G scenarios.

. Conclusions

This paper discussed how datasets for AI research on 4G/5G/
5G networking can be generated by using Simu5G, a popu-
ar open-source simulation library. In fact, Simu5G – that sim-
lates all the networking stack, from the application to the
hysical layer, includes application-level features like, e.g., MEC
osting, and supports integration with OMNeT++-based libraries
ike, e.g., Veins for vehicular mobility [23] – allows users to record
etrics of heterogeneous provenance, that can be used to train
nd test machine-learning algorithms. We have shown how a
ser can add arbitrary probes in the code, to record any metrics
he needs in her dataset, with the desired time/space resolution.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

The code and the resulting data have been published in the
imu5G GitHub repository

cknowledgments

Work partially supported by the Italian Ministry of Education
nd Research, Italy in the framework of the CrossLab project
Departments of Excellence), and by the European Commission
hrough the H2020 projects Hexa-X (Grant Agreement no.
01015956). We thank our colleagues Francesco Marcelloni and
lessandro Renda for their useful discussions on this paper.
6

References

[1] Corcuera Bárcena JL, Ducange P, Marcelloni F, Nardini G, Noferi A, Renda A,
et al. Towards trustworthy AI for QoE prediction in B5G/6G networks. In:
First international workshop on artificial intelligence in beyond 5G and 6G
wireless networks. Padua, IT; 2022, p. 18–23.

[2] Renda A, et al. Federated learning of explainable AI models in 6G sys-
tems: Towards secure and automated vehicle networking. Information
2022;13(8):395. http://dx.doi.org/10.3390/info13080395.

[3] Hexa-X project. 2023, website: https://hexa-x.eu [Accessed January 2023].
[4] ETSI white paper (28) MEC in 5G networks. 2018, link: https://bit.ly/

3bzCLFI [Accessed January 2023].
[5] Nardini G, Sabella D, Stea G, Thakkar P, Virdis A. Simu5G–an OMNeT++

library for end-to-end performance evaluation of 5G networks. IEEE Access
2020;8:181176–91. http://dx.doi.org/10.1109/ACCESS.2020.3028550.

[6] Noferi A, Nardini G, Stea G, Virdis A. Rapid prototyping and performance
evaluation of ETSI MEC-based applications. Elsevier Simul Model Pract
Theory 2023;123:102700. http://dx.doi.org/10.1016/j.simpat.2022.102700.

[7] Nardini G, Stea G, Virdis A. Scalable real-time emulation of 5G networks
with Simu5G. IEEE Access 2021;9:148504–20. http://dx.doi.org/10.1109/
ACCESS.2021.3123873.

[8] Kim Y, et al. 5G K-simulator: 5G system simulator for performance
evaluation. In: 2018 IEEE international symposium on dynamic spectrum
access networks. Seoul, Korea (South; 2018, p. 1–2. http://dx.doi.org/10.
1109/DySPAN.2018.8610404.

[9] Müller M, Ademaj F, Dittrich T, et al. Flexible multi-node simulation of
cellular mobile communications: The vienna 5G system level simulator. J
Wireless Com Netw 2018 2018;227. http://dx.doi.org/10.1186/s13638-018-
1238-7.

[10] Patriciello N, Lagen S, Bojovic B, Giupponi L. An E2E simulator for 5G NR
networks. Simul Model Pract Theory 2019;96:101933. http://dx.doi.org/10.
1016/j.simpat.2019.101933.

[11] Martiradonna S, Grassi A, Piro G, Boggia G. 5G-air-simulator: An
open-source tool modeling the 5G air interface. Comput Netw
2020;173(22):107151. http://dx.doi.org/10.1016/j.comnet.2020.107151.

[12] Ns3 network simulator. 2023, Website: https://www.nsnam.org [Accessed
January 2023].

[13] OMNeT++ discrete event simulator. 2023, Website: https://omnetpp.org
[Accessed January 2023].

[14] INET framework. 2023, Website: https://inet.omnetpp.org [Accessed
January 2023].

[15] Sommer C, German R, Dressler F. Bidirectionally coupled network and
road traffic simulation for improved IVC analysis. IEEE Trans Mob Comput
2011;10(1):3–15. http://dx.doi.org/10.1109/TMC.2010.133.

[16] ETSI GS MEC 013 v2.2.1. In: Multi-access edge computing. Location API;
2022.

[17] Batista JOR, da Silva DC, Martucci M, Silveira RM, Cugnasca CE. A multi-
provider end-to-end dynamic orchestration architecture approach for 5G
and future communication systems. Appl Sci 2021;11(24):11914. http:
//dx.doi.org/10.3390/app112411914.

[18] Nguyen AC, Pamuklu T, Syed A, Kennedy WS, Erol-Kantarci M. Rein-
forcement learning-based deadline and battery-aware offloading in smart
farm IoT-UAV networks. In: ICC 2022 - IEEE international conference on
communications. Seoul, Korea, Republic of; 2022, p. 189–94. http://dx.doi.
org/10.1109/ICC45855.2022.9838500.

http://refhub.elsevier.com/S2352-7110(23)00016-X/sb1
http://refhub.elsevier.com/S2352-7110(23)00016-X/sb1
http://refhub.elsevier.com/S2352-7110(23)00016-X/sb1
http://refhub.elsevier.com/S2352-7110(23)00016-X/sb1
http://refhub.elsevier.com/S2352-7110(23)00016-X/sb1
http://refhub.elsevier.com/S2352-7110(23)00016-X/sb1
http://refhub.elsevier.com/S2352-7110(23)00016-X/sb1
http://dx.doi.org/10.3390/info13080395
https://hexa-x.eu
https://bit.ly/3bzCLFI
https://bit.ly/3bzCLFI
https://bit.ly/3bzCLFI
http://dx.doi.org/10.1109/ACCESS.2020.3028550
http://dx.doi.org/10.1016/j.simpat.2022.102700
http://dx.doi.org/10.1109/ACCESS.2021.3123873
http://dx.doi.org/10.1109/ACCESS.2021.3123873
http://dx.doi.org/10.1109/ACCESS.2021.3123873
http://dx.doi.org/10.1109/DySPAN.2018.8610404
http://dx.doi.org/10.1109/DySPAN.2018.8610404
http://dx.doi.org/10.1109/DySPAN.2018.8610404
http://dx.doi.org/10.1186/s13638-018-1238-7
http://dx.doi.org/10.1186/s13638-018-1238-7
http://dx.doi.org/10.1186/s13638-018-1238-7
http://dx.doi.org/10.1016/j.simpat.2019.101933
http://dx.doi.org/10.1016/j.simpat.2019.101933
http://dx.doi.org/10.1016/j.simpat.2019.101933
http://dx.doi.org/10.1016/j.comnet.2020.107151
https://www.nsnam.org
https://omnetpp.org
https://inet.omnetpp.org
http://dx.doi.org/10.1109/TMC.2010.133
http://refhub.elsevier.com/S2352-7110(23)00016-X/sb16
http://refhub.elsevier.com/S2352-7110(23)00016-X/sb16
http://refhub.elsevier.com/S2352-7110(23)00016-X/sb16
http://dx.doi.org/10.3390/app112411914
http://dx.doi.org/10.3390/app112411914
http://dx.doi.org/10.3390/app112411914
http://dx.doi.org/10.1109/ICC45855.2022.9838500
http://dx.doi.org/10.1109/ICC45855.2022.9838500
http://dx.doi.org/10.1109/ICC45855.2022.9838500

Giovanni Nardini, Alessandro Noferi, Pietro Ducange et al. SoftwareX 21 (2023) 101320
[19] Antonio G-P, Maria-Dolores C. AIM5la: A latency-aware deep reinforce-
ment learning-based autonomous intersection management system for 5G
communication networks. Sensors 2022;22(6):2217. http://dx.doi.org/10.
3390/s22062217.

[20] Rehman A, Haseeb K, Saba T, Lloret J, Sendra S. An optimization model
with network edges for multimedia sensors using artificial intelligence of
things. Sensors 2021;21(21):7103. http://dx.doi.org/10.3390/s21217103.
7

[21] Dataset for QoE prediction in B5G/6G networks. 2023, [Accessed January
2023].

[22] MEC ecosystem wiki. 2022, [Accessed May 2022].
[23] Nardini G, Virdis A, Stea G. Simulating cellular communications in ve-

hicular networks: Making SimuLTE interoperable with Veins. In: Proc. of
the 4th OMNeT++ community summit. Bremen, DE; 2017, p. 7–8. http:
//dx.doi.org/10.48550/arXiv.1709.02208.

http://dx.doi.org/10.3390/s22062217
http://dx.doi.org/10.3390/s22062217
http://dx.doi.org/10.3390/s22062217
http://dx.doi.org/10.3390/s21217103
http://refhub.elsevier.com/S2352-7110(23)00016-X/sb21
http://refhub.elsevier.com/S2352-7110(23)00016-X/sb21
http://refhub.elsevier.com/S2352-7110(23)00016-X/sb21
http://refhub.elsevier.com/S2352-7110(23)00016-X/sb22
http://dx.doi.org/10.48550/arXiv.1709.02208
http://dx.doi.org/10.48550/arXiv.1709.02208
http://dx.doi.org/10.48550/arXiv.1709.02208

	Exploiting Simu5G for generating datasets for training and testing AI models for 5G/6G network applications
	Motivation and significance
	Software description
	Software architecture
	Software functionalities

	Illustrative examples
	Impact
	Conclusions
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

