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ABSTRACT Electroencephalography (EEG)-based emotion recognition is gaining increasing importance
due to its potential applications in various scientific fields, ranging from psychophysiology to
neuromarketing. A number of approaches have been proposed that use machine learning (ML) technology
to achieve high recognition performance, which relies on engineering features from brain activity dynamics.
Since ML performance can be improved by utilizing 2D feature representation that exploits the spatial
relationships among the features, here we propose a novel input representation that involves re-arranging
EEG features as an image that reflects the top view of the subject’s scalp. This approach enables emotion
recognition through image-based ML methods such as pre-trained deep neural networks or ‘‘trained-
from-scratch’’ convolutional neural networks. We have employed both of these techniques in our study
to demonstrate the effectiveness of our proposed input representation. We also compare the recognition
performance of these methods against state-of-the-art tabular data analysis approaches, which do not utilize
the spatial relationships between the sensors. We test our proposed approach using two publicly available
benchmark datasets for EEG-based emotion recognition tasks, namely DEAP and MAHNOB-HCI. Our
results show that the ‘‘trained-from-scratch’’ convolutional neural network outperforms the best approaches
in the literature, achieving 97.8% and 98.3% accuracy in valence and arousal classification on MAHNOB-
HCI, and 91% and 90.4% on DEAP, respectively.

INDEX TERMS Convolutional neural networks, electroencephalography, emotion recognition, spatial
information representation.

I. INTRODUCTION
Affective computing is a broad research field that investi-
gates emotional and mental states through the analysis of
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physiological signals or other sources of information, such
as videos, images, or sounds.

In this field, emotion recognition is becoming increasingly
important due to the many applications in which it is
involved. The exploitation of physiological data for emotion
recognition may be motivated by several factors, such as their
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psycho-physiological correlates, or the ability of intelligent
systems to analyze them and potentially identify patterns
associated with affective disorders (e.g., anxiety and depres-
sion). Additionally, there has been an increasing number
of easy-to-use, non-invasive, portable devices capable of
gathering robust physiological data [1], [2]. Emotions can
be identified as discrete regions in a multidimensional space,
whose main dimensions according to the circumplex model
of affect [3], [4] are valence (positive to negative feelings)
and arousal (sleepy to excited), or as a series of discrete basic
emotions such as the Ekman model [5], that identifies six
basic emotions, i.e. anger, disgust, fear, happiness, sadness
and surprise, or the Plutchik’s model [6], that proposed a
wheel of eight emotions: joy, trust, fear, surprise, sadness,
disgust, anger and anticipation; all these categorical emotions
can combined to define more detailed perception.

In the context of emotion recognition tasks based on non-
invasive physiological data, electroencephalography (EEG) is
one of the most commonly used signals [7] due to its good
compromise between temporal and spatial resolution [8].
It is also widely used thanks to the number of non-
invasive, low-cost, and easy-to-operate wearable devices on
the market [9]. EEG is usually sampled by placing a group of
sensors or channels on the patient’s scalp, arranged according
to a standard scheme, such as the international standard
pattern 10-20 [10]. The EEG signals are usually analyzed
in the frequency and time domains, and EEG channels are
mostly handled as independent time series, meaning that the
spatial relationship among EEG sensor dynamics is mostly
neglected [11].

It has been reported that the majority of studies (89.4%)
performing EEG-driven emotion recognition extract features
from the frequency domain and employ methods such as
Short-time Fourier Transform or Discrete Fourier Trans-
form (25.4%), Power Spectral Density (PSD) (22.2%), and
Wavelet Transform (19.1%) [12]. Once computed, these
data are generally converted into tabular shape, where a
number of location-specific features are extracted from each
classification instance. Eventually, the tabular features are
processed by some machine learning (ML) model capable
of recognizing the corresponding class label associated
with emotional correlates. Most of the emotion recognition
tasks presented in the literature rely on ML algorithms
such as Support Vector Machines (SVM) (59%), K-Nearest
Neighbors (KNN) (14%), Multilayer Perceptron Networks
(MLP) (6.63%), linear discriminant analysis (LDA) (6.3%),
and quadratic discriminant analysis (QDA) (3.2%) [12]. The
operations of model training and testing are performed either
separately, using data from a single subject (i.e., a subject-
dependent framework), or using data from multiple subjects
(i.e., a subject-independent framework) [12].

Recent studies have shown that the spatial information
integrated into the EEG arrangements can be used to improve
EEG classification performances [13]. To include the spatial
domain information, the features obtained by processing each
EEG channel can be considered as spatial points displayed

in a tri- or bi- dimensional space, considering the sensors’
placement [12], and then processed through spatial filters [13]
or image processing tools [14].

As a consequence, arranging EEG features as an image
would allow employing specific image-basedML approaches
like Convolutional Neural Networks (CNNs) [14]. CNN is
considered one of the most widely used ML techniques,
especially in image-related applications; CNNs can learn
new representations from images and have shown substantial
performance improvement in various ML applications [15].
Usually, several neurons’ layers of different natures are inter-
mixed in a CNN architecture, with the last one performing
the actual classification task.

The arrangement of CNN layers plays a fundamental
role in the designing and training of new architectures,
thus allowing increasing algorithmic performance. With
the correct architecture, CNNs have demonstrated the
capability to handle and generalize big data exploiting
high-computational resources. Indeed, there are several
publicly available state-of-the-art CNN-based architectures
trained with huge datasets [16], such as the well-known
AlexNet [17], DenseNet [18], or MobileNetV2 [19]. These
pre-trained architectures can be easily imported into a new
system, quickly fine-tuned if necessary, and then used in a
new task with the benefit of previously learned knowledge.
This is very useful for all the applications, like the ones based
on physiological data, in which it is difficult to get a sufficient
amount of data to correctly train the CNN [15]. The effec-
tiveness of these models in an affective computing scenario
for EEG-based emotion classification is also suggested by the
fact that some of the most accurate architectures proposed in
recent years used an image rearrangement of the EEG to allow
the usage of CNN, without considering the spatial relations of
the electrodes [20], [21].

To summarize, EEG-based emotion recognition is an
extremely important task, which has mainly been tackled
using standard signal processing techniques in the time
and frequency domains; spatial information has been over-
looked so far, despite its known importance in ML-based
applications.

To this extent, the main contribution of this study is a
novel approach to exploit the spatial relationship among EEG
sensors through image-based machine learning algorithms.
Specifically, the proposed method involves a rearrangement
of EEG features into images, which are subsequently fed
to pre-trained neural networks and a novel CNN to extract
features and classify emotions. To evaluate the proposed
approach, we compared the performance of several pre-
trained neural networks on image classification tasks in
emotion recognition with different state-of-the-art algorithms
for the classification of EEG tabular features. Furthermore,
a novel ad-hoc CNN is here proposed, trained from scratch
to process the new input. The experimental results show
that the proposed approach outperforms the state-of-the-
art algorithms in subject-dependent valence- and arousal-
emotion classification.
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The paper is organized as follows: In section II, we detail
the experimental setup, dataset description, feature extrac-
tion, and the rearrangement of EEG features into images.
Additionally, we provide an explanation of the machine
learning architectures tested, including pre-trained neural
networks and the proposed CNN. In section III, we report
on the experimental results and the comparison between the
multiple machine learning models employed. In section IV,
we discuss the achieved results in light of the associated
literature, and in section V we illustrate the proposed
approach’s main strengths and limitations, concluding with
possible future developments.

II. MATERIALS AND METHODS
This section provides a detailed description of the experi-
mental pipeline employed in this study, which is graphically
depicted in Figure 1 using a block diagram that describes
the overall architecture. The experimental pipeline involves
four blocks, with the first two blocks, characterized by black
dashed lines, involving the sampling and windowing of EEG
signals from 32 sensors into 8-second epochs. From each
epoch, EEG bands and features are extracted and represented
in their tabular form. The last two blocks, characterized
by red dashed lines, represent the main contribution of our
work, which involves the rearrangement of EEG tabular
features into a new image-like format that exploits spatial
information. This is achieved by mapping the tabular features
to a two-dimensional grid that resembles an image. This
new representation of EEG signals is then used as input
for an image-based machine learning algorithm for emotion
classification.

A. EXPERIMENTAL DATASET
For this study, two publicly available datasets were used,
both of which involved physiological signal collection from
healthy volunteers undergoing emotional video elicitation.
Emotion perception was evaluated through the well-known
circumplexmodel of affect [3], consisting in a bi-dimensional
space: arousal associated with the strength of the feeling,
and valence associated with the pleasantness of the feeling.
Both variables were quantified through a 0-9 Likert-type
scale. As reported in the papers in which the datasets were
presented, prior to the experiment, each participant signed a
consent form.

In this study, trials of both datasets and for both variables
(i.e., arousal and valence) were split into two classes: high and
low. Arousal and valence labels were assigned separately for
all the videos analyzed according to what was expressed by
each subject individually. Consequently, regarding arousal,
trials were separated into high-arousal (HA, arousal >= 5.5)
evoking a strong emotional response, and low-arousal (LA,
arousal <= 4.5), evoking a weak elicitation. Regarding
valence, trials were separated into high-valence (HV, valence
>= 5.5) evoking a pleasant response, and low-valence (LV,
valence <= 4.5), evoking unpleasant elicitation. Numerical
thresholds were selected to exclude elements related to

neutral responses (i.e., with arousal or valence in the interval
[4.5, 5.5]) from the experimental set, thus preventing the
deep learning model from encountering ambiguity in the
boundary between low and high classes, and enhancing class
separability.

1) THE DEAP DATASET
The dataset consisted of 32 healthy participants (age range,
19–27 yo; 16 females) [22]. A number of physiologi-
cal signals were gathered, and, in this study, 32-channel
EEG sampled at 512Hz was considered. It is available at
https://www.eecs.qmul.ac.uk/mmv/datasets/deap/.

The experimental protocol consisted of 40 emotional video
trials from famous music videos. After an initial 2min resting
state, 60sec emotional videos, with different levels of arousal
and valence, were presented. Extensive details can be found
at [22].

2) THE MAHNOB–HCI DATASET
The dataset consisted of 27 healthy participants (age range,
19–40 years; 15 females) [23]. Different trials might involve
a different number of volunteers, ranging from 25 to 27,
because of missing or bad-quality signals. A number of
physiological signals were gathered, and, in this study,
32-channel EEG sampled at 256Hz was considered. It is
available at https://mahnob-db.eu/hci-tagging/.

The experimental protocol consisted of 20 emotional video
trials from famous movies. After an initial 30sec resting state,
emotional videos of varying lengths (between 35 and 177sec),
with different levels of arousal and valence, were presented.
Extensive details can be found at [23].

B. EEG PROCESSING AND FEATURE EXTRACTION
The EEG processing procedure was implemented to obtain
artefact-free signals to compute the EEG spectrogram to be
used in the classification task. The processing procedure
comprised frequency filtering, large artefacts rejection, eye
movements and cardiac-field artefact removal, interpolation
of contaminated channels, and average re-referencing [24].
These steps were implemented in MATLAB R2018b (Math-
Works) using the Fieldtrip Toolbox [25]. An extensive
description of the preprocessing procedure applied can be
found in [26].

The EEG power spectral density (PSD) was extracted
through Welch’s method with a Hanning window. A sliding
time window 2sec long and with 50% of overlap was
employed, and PSD time series were integrated within four
frequency bands, namely: theta : θ ∈ (4 − 8]Hz,alpha :

α ∈ (8 − 12]Hz, beta : β ∈ (12 − 30]Hz, and gamma :

γ ∈ [30 − 45]Hz.
For each time segment corresponding to a classification

instance (i.e., 8sec length, with 2sec of overlap), a set
of EEG channels (i.e., 32) and frequency bands (i.e., 4)
were considered and five features were derived: total PSD;
the three Hjort parameters (i.e., activity, mobility, and
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FIGURE 1. Block diagram of the experimental pipeline. In the first block, the acquired 32-channel EEG time series are divided into 8-second windows; in
the second, EEG features are extracted from each frequency band, then rearranged into images according to the proposed scheme, and then classified
using an image-based classification approach, e.g. CNN.

complexity [27]); and asymmetry, as the difference between
PSD in channels symmetric with respect to the vertical
cerebral axis. Summarizing, each instancewas represented by
640 features (32 channels× 4 frequency bands× 5 features).

C. EEG FEATURES SPATIAL ARRANGEMENT
The following EEG-features spatial arrangement scheme has
been designed to allow image-basedML algorithms to exploit
the spatial proximity among electrodes. The main idea is to
build an image-block arranging the EEG features obtained
via the electrodes considering their spatial proximity and then
aggregating the image associated with each feature following
their proximity in the frequency domain.

To incorporate spatial information, a single image-block
was constructed using a single feature and frequency band
(e.g., the α band of the PSD), and the corresponding
1 × 32 channel vector was transformed into a 2D-image of
size 11 × 9 (Fig. 2.b) that depicts a top view of the subject’s
scalp, where each element corresponds to a specific sensor
position on the scalp. Thematrix elements (Fig. 2.b) represent
a 2D-map of the 10-20 EEG sensor international scheme.
Non-0 elements correspond to positions occupied by sensors,
while 0 elements represent empty positions.

This spatial rearrangement provides clear information to
the classification system about the spatial arrangement of
the input features, enabling the exploitation of electrical
patterns localized in different brain regions. The neuroscience
literature [28] suggests that such information should enhance
emotion recognition performance, since human emotions are
closely linked to specific brain regions.

FIGURE 2. Spatial localization of the 32-channel EEG in the 10-20
standard schema (a); Spatial rearrangement in an 11 × 9 matrix (b);
interpreted as a grayscale image (i.e., an image-block) (c).

Figure 2 provides an example of an image-block. The
resulting 11 × 9 matrix can be easily transformed into a
grayscale image, as shown in Fig. 2.c. Assuming that all
EEG values are greater than or equal to zero, only the pixels
corresponding to electrode positions are non-white in the
image. The darker the pixel, the higher the feature value.

At this stage, we obtain 20 2D-matrices of size 11 × 9 for
each instance. To obtain the final representation of the EEG
sample, we reshape the 20× 11× 9 matrices into a new 2D-
matrix by placing the 11×9 matrices side by side in the same
column for those extracted from the same frequency band and
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FIGURE 3. Exemplary image obtained exploiting spatial and frequency
proximity.

in the same row for those belonging to the same feature type
(Fig. 3). Thus, in each image-block, features are arranged in
rows (i.e., PSD, Activity,Mobility, Complexity, Asymmetry),
and frequency bands are arranged in columns (i.e., θ , α, β,
and γ ).

To realistically represent the spatial proximity between
electrodes, EEG features obtained from a single sensor placed
on one side of the scalp (e.g., right) and a particular frequency
band (e.g., β) should not be processed together with features
from the opposite side of the scalp (e.g., left) or those obtained
from a different frequency band (e.g., γ ). To achieve this, the
convolutional operations should not process different image-
blocks at the same time, not even partially. To achieve this
separation, each image-block is separated both horizontally
and vertically by a number of white pixels equal to the width
of the filter used in convolutional operations. If we consider
a filter width equal to 3, the size of the image obtained by
rearranging all EEG features would be 67 × 45 pixels.

D. MACHINE LEARNING MODELS
Firstly, we detail the state-of-the-art image-based approaches
implemented in our experiments. Then, we include nine
classical ML approaches for tabular data, i.e., with no spatial
information embedded in the inputs. These approaches have
been named tabular-features-based. All of the models were
developed to perform two distinct binary classifications:
the first distinguishing between high-arousal (HA) and low-
arousal (LA) trials, and the second disentangling between
high-valence (HV) and low-valence (LV) trials.

1) IMAGE-BASED ALGORITHMS
Seven different approaches were implemented to evaluate the
image-based classification performance using the procedure
described in section II-C. Initially, we tested several pre-
trained architectures on the ImageNet [16] dataset, including
MobileNetV2 [19], DenseNet121 [18], ResNet152V2 [29],
ResNet50V2 [29], VGG16 [30], and VGG19 [30]. Fur-
thermore, we developed a Convolutional Neural Network
(CNN) [31] architecture from scratch to solve the image-
classification task.

To fine-tune the pre-trained neural networks for the emo-
tion classification datasets, we removed the top classification
layers and addedmultiple fully-connected layers with the relu

FIGURE 4. Visual representation of the CNN model trained from scratch.
Architecture plot provided by Net2Vis [33].

activation function. During training, these newly added layers
were set as trainable, while the remainder of the architecture
was frozen. Each pre-trained neural network had a similar
number of trainable parameters in the added layers. The
last fully connected layer of each architecture comprised
two neurons with the softmax activation function to address
the binary classification problem. The activation of these
neurons is mutually exclusive, meaning that the only possible
outcomes are either 0, 1 or 1, 0.
The other image-based classification approach imple-

mented is based on a CNN. In particular, CNN has
been widely and successively adopted in several image
classification tasks, even in clinical scenarios [32]. A classic
approach to solve an image classification problem is to train
a CNN from scratch, meaning first defining convolutional
layers, able to extract features from input images, and
then adding dense fully connected layers to perform the
final classification step; all neurons are usually randomly
initialized. Unlike the pre-trained architectures, CNN was
trained as a whole with the arousal/valence classification
input.

The implemented CNN architecture (Fig. 4), consists of
two convolutional layers, with depths of 32 and 64, respec-
tively, followed by two Max-Pooling layers. As mentioned
above, the size of the convolutional filters was set to 3 × 3.
Subsequently, a flattening layer was inserted to prepare the
data to be classified by the final two dense fully connected
layers, of 512 and 2 neurons, respectively. The last level has
2 neurons due to the number of classes to classify, i.e. the last
layer is composed of a 2 neurons dense layer with SoftMax
activation function, which performs a binary classification
task of the label arousal or valence, so the final output of the
network is a tuple {1, 0} in case of predicting low arousal
or valence, or {0, 1} in case of predicting high arousal or
valence. To prevent overfitting during training, a dropout
layer has been added after the flattening layer.

2) TABULAR-FEATURES-BASED ALGORITHMS
The Support Vector Machine (SVM) is the most commonly
used feature-based ML model in affective computing and
emotion recognition tasks. Other widely used approaches
include, but are not limited to, K-Nearest Neighbours (KNN),
Random Forest (RF), Linear Discriminant Analysis (LDA),
Quadratic Discriminant Analysis (QDA), and MultiLayer
Perceptron network (MLP) [34]. In this study, all of the afore-
mentioned algorithms were implemented. Additionally, other
ensemble and boosting-based algorithms, such as Extremely
Randomized Trees (ET), AdaBoost, and GradientBoosting,
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TABLE 1. The number of trainable and total parameters of the neural
network models used for the experiments.

were considered to ensure completeness of the results, as well
as their generally good performance on tabular data.

The SVM algorithm transforms the original feature space
into a higher-dimensional space using a kernel function.
Then, it identifies support vectors to maximize the separation
(margin) between the classes [35]. The algorithm uses these
support vectors to construct hyperplanes that separate the
two classes in a high-dimensional space [35]. ET and RF
are tree-based ensemble methods that use a recursive feature
selection procedure through decision trees until a minimum
subset of data corresponding to a class is identified. The
main difference between them is the selection of cut points
to split nodes: RF performs an optimization procedure to
split the input, while ET does it randomly to achieve
convergence in a shorter period of time [36]. KNN is a
lazy learner algorithm that stores the entire training input
and then performs a classification strategy, assigning to
each sample in the test set the majority class of its K
nearest neighbour samples in the training set. AdaBoost
and GradientBoosting are two boosting-based classification
methods that rely on decision tree ensembling. The AdaBoost
algorithm attempts tominimize the loss function related to the
classification error and was designed for binary classification
problems. Gradient Boosting, on the other hand, is used
to optimize differentiable loss functions and can be used
for both classification and regression. MLP, implemented
as feed-forward neural networks, is characterized by fast
operation, ease of implementation, and smaller training set
requirements [37]. MLP performs a mapping between classes
and input data through a generally non-linear function whose
parameters (or neurons) are set during training. This makes
MLP a very effective and adaptable approach to various
classification problems. TheMLP employed in this study was
a 7-layer neural network. The number of neurons per layer
was chosen to feature comparable computational complexity
(i.e., the number of trainable parameters) with the other pre-
trained image-based architectures. Table 1 lists the number
of trainable parameters for all of the NN-based methods
implemented in this study.

3) IMPLEMENTATION DETAILS
The classification was performed in a subject-dependent
framework, i.e., in each experiment, the samples belonging to
a single subject were considered. A 10-fold cross-validation

(CV) was applied to each classification task, providing the
value of the CV average accuracy as the reference accuracy
for each subject. Finally, the results from all the subjects are
aggregated, presenting the average and standard deviation
among all of the reference accuracy.

All NN-based models employ the same hyper-parameters:
categorical cross-entropy loss function, consistent with the
classes encoding in one hot encoding; Adam optimizer; the
batch size equal to 16; and early stopping to managing
the number of training epochs, managed with patience set
to 8. All the features-based algorithms have been tested with
different parameters setup using nested cross-validation in
order to find the optimal parameters.

III. EXPERIMENTAL RESULTS
A. IMAGE-BASED VS TABULAR-FEATURE-BASED
COMPARISON
Firstly, the accuracy of the image-based ML approaches is
compared with the tabular-features-based ones; then the best
performing model is chosen and its main hyperparameters’
space is explored to compare the obtained classification
performance with the state-of-the-art on the same dataset.
Table 2 summarizes the classification performance of the
implemented models in terms of average accuracy, f1 score,
precision, recall, and area under the receiver operating
characteristic curve (AUROC) in the HA-LA, and HV-LV
binary classification tasks.

Based on the results obtained from the MAHNOB-HCI,
it can be observed that the ensemble-based algorithms and
the boosting-based algorithms demonstrate similar results.
However, in comparison to other features-based approaches,
they exhibit the best recognition performance in both the
HA-LA and the HV-LV classification task. Notably, the RF
classifier achieves an accuracy of 72.43% ± 13.24% in HA-
LA and 73.03%± 8.77% in HV-LV, while GradientBoosting
attains an f1 score of 69.07% ± 11.91% in HA-LA and
65.55% ± 8.62% in HV-LV. In terms of AUROC score, Gra-
dient Boosting shows superior performances in the arousal
classification task, achieving 76.19% ± 11.61%, whereas
RF has the highest performance in valence classification,
achieving 78.40% ± 9.75%. Overall, it can be concluded
that RF has better performance over tabular-features-based
algorithms, but it suffers more from class imbalance in
comparison to GradientBoosting.

Similar observations can be made for the DEAP dataset,
where ET demonstrates better accuracy performances,
achieving 64.17%± 7.48% in HA-LA and 61.09%± 8.84%
in HV-LV, while GradientBoosting attains better f1 scores,
achieving 55.88%±14.51% inHA-LA and 55.69%±11.81%
in HV-LV.

The proposed image-based approaches show superior
performance when compared to the tabular-features-based
algorithms, with CNN achieving the highest results in both
the arousal and valence classification tasks for both the
MAHNOB-HCI and DEAP datasets. Specifically, on the
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TABLE 2. Performance results for the tabular-features-based algorithms and image-based algorithms for the subject-dependent HA-LA, and HV-LV
classification tasks on MAHNOB-HCI and DEAP dataset.

MAHNOB-HCI dataset, CNN attains an accuracy of
96.77%±2.24% and 97.42%±2.01%, which is significantly
higher than the best results obtained by tabular-features-based
algorithms, which were 72.43% and 73.03%, respectively.
The difference in accuracy between the two methods is
24.34% and 24.39%, highlighting the impact of the proposed
input rearrangement. Similarly, on the DEAP dataset, CNN
attains an accuracy of 88.68% ± 3.59% and 88.03% ±

3.12%, with a difference of 24.51% and 26.94% when
compared to the tabular-features-based approaches. In this
case, the classification of valence level benefits more from
the proposed input representation than the classification of
arousal.

Regarding the other image-based methods, including
DenseNet121, MobileNetV2, ResNet, and VGG, it can be
observed that all of them achieve similar performances in
both datasets compared to the ones achieved by CNN,
with MobileNetV2 demonstrating higher performance in all
the classification tasks when compared to the others. This
is particularly interesting, as MobileNetV2 has a smaller

number of total parameters than the other methods, indicating
its potential for efficient image-based classification.

In summary, our results confirm that the proposed input
representation effectively incorporates valuable information
for the emotion classification task. This leads to improved
classification performance compared to any other feature-
based approaches that were tested.

B. HYPER-PARAMETRIZATION
At this point, the best-performing approach (CNN) is investi-
gated further by exploring the space of its hyper-parameters:
batch size, early stopping patience, and optimizer. For
each of these parameters, different settings were tested:
Results of the configurations implemented are summarized
in Fig. 5. Adam optimizer outperforms RMSprop for the HA-
LA classification problem, whereas the opposite happens for
the HV-LV classification.

Regarding the other two hyper-parameters, patience and
batch size, a trend can be seen whereby increasing patience
and decreasing batch size improve results up to the configura-
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FIGURE 5. Heatmap showing the hyperparametrization results in terms of
% accuracy of the proposed CNN varying the patience, batch size and
optimizer for the two selected datasets, DEAP and MAHNOB-HCI, and the
two binary classification tasks, arousal and valence.

tion of patience 32 and batch size 4, with which 91% accuracy
on DEAP, and 97.8% on MAHNOB-HCI are reached for the
HA-LA discrimination task. The same pattern can be seen in
the HV-LV classification results, where the best results are
obtained with the RMSprop optimizer and patience equal to
32, while varying the batch size appears to have no effect.

C. COMPARISON WITH THE STATE-OF-THE-ART
The performance of the CNN with the best hyper-
parameterization is compared with the current state-of-the-
art, as shown in Table 3. The approach proposed in this study
outperforms the state-of-the-art on both MAHNOB-HCI and
DEAP datasets, with the exception of the DEAP HV-LV
recognition task, where [38] and [39] achieved comparable
performance. Zhang et al. [40] propose a hierarchical
fusion convolutional neural network to integrate information
coming from different modalities, i.e., EEG and other
physiological signals, to classify emotions. However, in their
study, the authors neglected the EEG spatial information,
resulting in lower performances compared to this study,
which only considered EEG as the information source. Piho
and Tjahjadi [41] achieved good recognition performance,
thanks to a non-trivial human-driven processing procedure.
Specifically, the authors proposed a feature extraction and
selection process in two separate steps via a trial and error
process. However, this procedure has to be repeated for each

new dataset, as it is not possible to determine the optimal
subset of features and channels in advance. Therefore, the
optimal subset of extracted features-selected features must be
determined through a complex search, as explained by Piho
and Tjahjadi [41].

The fact that the approach presented in this study
outperforms the one in [41] may suggest that the EEG
spatial information, which was not taken into consideration
in [41], is actually relevant for the classification problem.
The proposed approach employs a small CNN with only
two convolutional layers, which automatically performs
all the tasks of feature selection, feature learning, and
classification, thus being trainable for each dataset in a simple
manner.

The approach introduced by Lin et al. [20] relies on
an end-to-end fine-tuning of a big CNN such as AlexNet ,
which was pre-trained on the Imagenet dataset. However,
the main difference with the proposed approach is that
the EEG-derived grayscale image does not consider spatial
information. Furthermore, six different EEG images are built
from each EEG signal, one for each band frequency, and
fed to the network separately. Salama et al. [21] propose an
image-based model that exploits a three-dimensional CNN
(3D-CNN). This representation is similar to the one proposed
by Lin et al. [20], but it also considers the time-domain
feature representation. Instead, Yin et al. [38] propose a
different approach based on graph-CNN and long short-
term memory -NN. An interesting aspect of their study
is the use of graph-CNN to model EEG inter-channel
relations, which should have the added value of exploiting
deeper information than the simple spatial localization of the
electrodes.

Our approach outperforms the one proposed by
Yin et al. [38] for the arousal-classification problem (0.4%
higher) and has comparable performance on the valence-
levels classification problem. However, since they did
not provide a standard deviation for their results, it is
impossible to determine which approach actually offers better
performance.

Zhang and colleagues propose a new approach in [39]
that is based on heterogeneous convolutional neural networks
and multimodal factorized bilinear pooling. This approach
constructs a neural network ensemble to classify emotions
from a multimodal input that includes EEG and other
physiological signals. Compared to our study, Zhang et al.
achieved lower performance on the MAHNOB-HCI dataset,
and comparable results, whichwere slightly higher, onDEAP.
However, it is worth noting that the comparison with our
approachmay not be entirely fair, since the authors of [39] did
not consider the spatial relationship between the EEG sensors
and also included other information sources.

IV. DISCUSSION
In this study, we propose a novel approach for emotion recog-
nition tasks by rearranging EEG-based dynamical features as
images, resulting in a new input representation. The approach
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TABLE 3. Comparison between the performances achieved by the current
state-of-the-art approaches in the subject-dependent HA-LA and HV-LV
classification task and the proposed method. * Multimodal architectures
based on EEG and other physiological signal.

focuses on converting traditional EEG feature-based classifi-
cation problems into image-based ones, enabling algorithms
to exploit the spatial information associated with electrode
placement. The proposed input representation allows for the
use of well-established image recognition approaches such
as pre-trained deep neural networks and convolutional neural
networks, which can use spatially informed inputs to solve
the emotion recognition task.

The proposed approach has been evaluated using two
benchmark publicly-available datasets, namely DEAP and
MAHNOB-HCI, These datasets consist of data collected
from healthy participants with different age ranges and
experimental protocols, involving various emotional stim-
uli, resting states, and labelling procedures. Despite the
differences between the datasets, the proposed approach
demonstrates high performance on both, indicating its
potential for generalization. However, it is worth noting
that both datasets share the same EEG sensor arrangement,
with 32 channels placed according to the international 10-20
system. Table 2 demonstrates the superior performance of
image-based approaches over tabular-feature-based ones in
discriminating affective states. Among these approaches, ET,
RF, and GradientBoosting (see Tab. 2) are the most effective
due to their utilization of powerful decision tree ensembles
and recursive feature selection algorithms [36], enabling them
to exploit the informative nature of the dataset. While ET and
RF result in better overall performance, GradientBoosting is
more adept at handling class imbalance, as indicated by its
superior F1 score. All image-based approaches outperformed
feature-based ones, underscoring the competitive advantages
offered by arranging EEG features into an image representa-
tion and using image-based classification models.

The effectiveness of the proposed approach is further
illustrated by the maximum accuracy scores attained by an

image-based method. Specifically, a simple CNN with two
convolutional layers trained from scratch achieved 96.77%
and 97.42% accuracy in arousal and valence detection,
respectively, for MAHNOB-HCI, and 88.68% and 88.03%
accuracy in arousal and valence detection, respectively, for
DEAP. Moreover, as shown in Table 2, the proposed CNN
outperformed other models in terms of F1 score, AUROC,
precision, and recall, successfully addressing the class
imbalance problem. With further hyper-parametrization, the
simple model achieved even higher accuracy rates, with
97.8% and 98.3% accuracy in arousal and valence detection,
respectively, for MAHNOB-HCI, and 91% and 90.4%
accuracy in arousal and valence detection, respectively, for
DEAP (see Table 3). The proposed approach outperforms the
majority of existing approaches in the literature, particularly
those that do not rely on EEG spatial information [20], [21],
[40], [41].

The limitations of the current study are rooted in the
fact that the proposed approach is solely based on a
rearrangement of EEG features. This is in contrast to the
results achieved by Zhang et al. [39], which emphasize the
importance of utilizing multimodal physiological data for
emotion recognition. Therefore, future developments could
potentially integrate brain-heart interplay features to combine
the EEG dynamics with cardiovascular data [42], or adopt a
neural network-based fusion strategy [39] to merge different
signals while preserving the spatial features’ arrangement.

V. CONCLUSION
In conclusion, our study confirms the significance of
spatial information in EEG analysis and recommends its
inclusion in EEG-based emotion recognition tasks. Fur-
thermore, transitioning from feature-based to image-based
classification would enable explainability algorithms to pro-
vide physiologically plausible insights into the informative
features that contribute the most to a given classifica-
tion [43]. These explainable artificial intelligence approaches
are crucial for clinicians and technicians to validate the
algorithm’s outcomes and enhance the decision-making
process.

Given the promising results of this study, future research
should concentrate on subject-independent frameworks,
as well as emotion recognition tasks that enable a finer
sampling of arousal and valence space. Additionally, an inter-
esting research direction could be to integrate the two
approaches to leverage all the relations between the EEG
electrodes, including the ones that can be extracted with
graphs [44], such as the correlation between channels’
activity, and the spatial ones, that can be simply provided with
an image feature rearrangement. Finally, future research will
explore the impact of different EEG sensor arrangements and
densities on emotion recognition tasks.
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