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Entanglement transitions in the quantum Ising chain: A comparison between different
unravelings of the same Lindbladian
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We study the dynamics of entanglement in the quantum Ising chain with dephasing dissipation in a Lindblad
master equation form. We consider two unravelings which preserve the Gaussian form of the state, allowing us
to address large system sizes. The first unraveling gives rise to a quantum-state-diffusion dynamics, while the
second one describes a specific form of quantum-jump evolution, suitably constructed to preserve Gaussianity.
In the first case we find a crossover from area-law to logarithm-law entanglement scaling and draw the related
phase diagram. In the second case we only find logarithm-law scaling, remarking on the different entanglement
behavior for different unravelings of the same Lindblad equation. Finally, we compare these outcomes with the
predictions of a non-Hermitian Hamiltonian evolution, finding conflicting results.
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I. INTRODUCTION

Understanding the physics of quantum systems coupled to
an external environment is intriguing both for applications
in recent quantum technologies and from a fundamental per-
spective, being related to the boundary between classical and
quantum domains [1–3]. In the hypothesis of a weak and
Markovian coupling with the bath, the underlying dynamics
can be reliably described by a master equation in the Lindblad
form [4–6] for the reduced density matrix of the system. Re-
cently it has been argued that this framework can also model
the process of quantum measuring at random or continuous
times. In fact, the external environment can be thought of
as a measurement apparatus performing measurements on
the quantum system [7,8]. While the measurement process
itself is stochastic and the outcome is a pure-state quantum
trajectory, the density matrix obtained by averaging over such
trajectories obeys a Lindblad-type evolution. The evidence
that different measuring protocols commonly lead to different
behaviors [9] has renewed interest in the measurement prob-
lem.

Here we focus on entanglement, a crucial property for
quantum computing purposes [10,11] with a key role in
quantum many-body systems [12], and study the effect on
the entanglement dynamics of the coupling to a classical
measurement apparatus performing random measurements.
In particular, we study the so-called measurement-induced
entanglement transitions: When measuring a quantum many-
body system, the interplay between the unitary dynamics
(contributing to the creation of entanglement) and the quan-
tum measurements (contributing to its destruction) might
result in sharp transitions between different dynamical phases,
characterized by qualitatively different entanglement proper-
ties in the asymptotic regime [13–24].

A paradigmatic example is provided by random cir-
cuits undergoing random measurements [25–45], which may

display a transition between a phase with volume-law scaling
of entanglement and another phase with area-law scaling. In
the case of free-fermion Hamiltonians, the asymptotic volume
law of the unitary evolution [46–48] is unstable for any mea-
surement rate and exhibits a transition toward a subextensive
phase [13,14,22,24]. This transition is observed even for long-
range free-fermion Hamiltonians [44]. Similar results have
been obtained for free-fermion random circuits with temporal
randomness [49], a setting that has been recently generalized
to higher dimensions [50], Majorana random circuits [20,51],
and Dirac fermions [52]. These entanglement transitions can
sometimes be predicted by a related non-Hermitian Hamilto-
nian evolution, as discussed in Ref. [53] for a quantum Ising
chain with no transverse field.

The set of stochastic trajectories whose average gives rise
to a Lindblad evolution (unraveling) depends on the physics
of the involved measurement process [8]. A question which
has been only marginally addressed so far is related to the
observation that any Lindblad equation has many possible
unravelings. The entanglement properties are encoded in the
stochastic quantum trajectories, that, contrarily to the aver-
age density matrix, contain only quantum correlations. One
expects these correlations to strongly depend on the specific
unraveling. In fact, each unraveling corresponds to a specific
measurement process and a specific way for destroying the en-
tanglement generated by the unitary part of the dynamics. This
can give rise to different dynamical phases and entanglement
transitions. An example of that is provided in Ref. [13], where
the unitary unraveling gives rise to a volume-law asymptotic
entanglement, while the quantum-state-diffusion one provides
an area-law entanglement.

In this paper we study measurement-induced quantum tran-
sitions in the transverse-field quantum Ising chain undergoing
a dephasing measurement process. We quantify entangle-
ment using mainly the entanglement entropy [54], a well-
known entanglement monotone, and consider two different
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FIG. 1. Sketched phase diagram of the measurement-induced
entanglement transition in the quantum Ising chain, obtained by
solving the quantum-state-diffusion dynamics. Here γ denotes the
measurement rate, while hf the transverse-field strength. The line
γ = 0 corresponds to the singular limit of the unitary dynamics,
where the asymptotic entanglement entropy obeys a volume-law
scaling (i.e., it grows proportionally to the system size L). For
γ > 0, the entanglement is either subextensive (i.e., it grows loga-
rithmically with the system size) or it follows an area-law scaling
(i.e., it is independent of L). The crossover between these two
regimes occurs at a threshold value of hf which strongly depends
on the system size and on the measurement rate. Black dots with
error bars denote the threshold fields evaluated at Lmax = 256 (big
filled circles) and Lmax = 192 (small empty circles). Red dashed
lines are guides to the eye. The blue, orange, and light-green
circles mark the parameters used for simulating the quantum tra-
jectory dynamics in Fig. 5. Even though some of the parameters
have been chosen deep in the area-law phase, with this unravel-
ing, the entanglement entropy always exhibits a logarithmic growth
with L.

unravelings: First we solve the quantum-state-diffusion
stochastic Schrödinger equation; then we consider an unrav-
eling based on a quantum-jump measurement process. The
phase diagram in Fig. 1, obtained by solving the quantum-
state-diffusion dynamics, extends the results of Ref. [53] to
the case of nonzero transverse field. We find the existence of a
crossover point from a subextensive to an area-law phase that
depends on the measurement and the field strength; the subex-
tensive region reduces while increasing the system size. For
small couplings with the measurement apparatus, we observe
the emergence of a maximum in the asymptotic entanglement
entropy close to the zero-temperature quantum critical point,
as a reminiscence of the unitary dynamics.

We then compare these results with those obtained from
the quantum-jump measurement process. To this purpose, we
choose slightly different measurement operators, which pre-
serve the Gaussian form of the state (allowing numerics for
quite large system size) and at the same time result in the
same Lindblad equation. With this unraveling we do not find
any entanglement entropy transition, not even in the parameter
range where the quantum state diffusion predicts it. In fact,

we monitor the entanglement trajectories at fixed γ = 1.5, for
h f = 2, 5, 8, marked in Fig. 1 by the blue, orange, and light-
green circles, respectively, and always observe a subextensive
growth with L. However we should stress that, considering the
size dependence of the crossover point and the computational
effort needed for simulations, it is not possible to completely
rule out the existence of an area-law phase from a numerical
analysis. Finally, we compare both unravelings with the non-
Hermitian Hamiltonian dynamics and find no agreement with
this approximate dynamics.

The paper is organized as follows. In Sec. II we introduce
the model, the two unravelings, and the way they preserve
the Gaussianity of the state in each quantum trajectory. We
also introduce the entanglement entropy and discuss how it
can quantify the entanglement for different unravelings. In
Sec. III we discuss our results on the quantum-state-diffusion
unraveling, in particular its phase diagram. In Sec. IV we
present the logarithm-law behavior of the asymptotic entan-
glement in the quantum-jump unraveling. We also show that
results with both unravelings cannot be predicted through a
non-Hermitian Hamiltonian evolution. Finally, in Sec. V we
draw our conclusions. Appendix A contains the results for the
second Rényi entropy and the square equal-time correlation
function. They are two other nonlinear functions of the pro-
jector on the state, and witness the entanglement transition in
the quantum-state-diffusion unraveling. The other appendices
contain technical details that are useful for the numerical
treatment of the dynamics of Gaussian fermionic systems in
the presence of quantum measurements.

II. THEORETICAL FRAMEWORK

A. Hamiltonian model

We consider the integrable quantum Ising chain with L
spins, described by the Hamiltonian

Ĥ = −J
L∑

j=1

σ̂ x
j σ̂

x
j+1 − h

L∑
j=1

σ̂ z
j . (1)

The spin-1/2 Pauli matrices σ̂ α
j act on the jth site

(α = x, y, z), while J and h denote, respectively, the spin-spin
coupling and the transverse-magnetic-field strength. In what
follows we set J = 1 as the energy scale, assume periodic
boundary conditions (σ̂ α

L+1 ≡ σ̂ α
1 ), and work in units of h̄ = 1.

The Hamiltonian (1) features a parity symmetry generated by
the operator P̂ = ⊗L

j=1σ̂
z
j , which divides the Hilbert space into

two subspaces of dimension 2L−1. The quantum Ising chain is
known to exhibit a zero-temperature quantum phase transition
from a paramagnetic state (for h > hc) to a ferromagnetic
state (for h < hc), when the transverse-field strength crosses
the critical value hc = 1 and the above symmetry is broken
[55]. Without loss of generality we restrict our analysis of the
dynamics to the even-parity sector.

The ground-state entanglement entropy (see Sec. II C) of
a subchain with � sites obeys an area-law scaling (meaning
that it is independent of �, in one dimension), except at the
critical point, where it grows logarithmically with � [48,56].
On the other hand, during the unitary dynamics after a sudden
quench in the transverse field h (or during a periodic driving
[57]), it exhibits a linear growth in time eventually attaining
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an asymptotic constant value which increases linearly with
� (i.e., volume-law behavior, in one dimension) [47]. The
asymptotic entanglement entropy as a function of h features
a nonanalytical cusp at hc.

As explained in Appendix B, the above Ising chain
(1) can be mapped onto a quadratic spinless-fermion
Hamiltonian. Using the Nambu spinor notation,
�̂ = (ĉ1, . . . , ĉL, ĉ†

1, . . . , ĉ†
L )T , with ĉ(†)

j denoting anti-
commuting fermionic annihilation (creation) operators, such
Hamiltonian reads

Ĥ = 1
2 �̂†H�̂ + const., (2)

where H is the so-called Bogoliubov–de Gennes matrix
defined in Eq. (B4). This can be easily diagonalized by per-
forming a 2L × 2L transformation U such that

U−1HU = diag(ωk,−ωk ). (3)

For the Hamiltonian in Eq. (1), the dispersion relation is

ωk = 2J
√

1 + (h/J )2 − 2(h/J ) cos k, (4)

where the momenta k = 2πn/L, n = −L/2 + 1, . . . , L/2, are
fixed by the parity sector we chose. This analysis will be
useful in Sec. IV B, in the context of the non-Hermitian
Hamiltonian approximation.

A similarly simple treatment is possible for a nonuni-
form model and for the nonequilibrium dynamics, provided
U (t ) in Eq. (3) depends on time and obeys the equation
i∂tU (t ) = HU (t ) [58]. The key point is that, in the ground-
state and the dynamical cases, the state of the system keeps
the Gaussian form

|ψ〉 = N exp

(
1

2

L∑
j1 j2=1

Zj1 j2 ĉ†
j1

ĉ†
j2

)
|0〉, (5)

where Z = −(U †)−1V † is a quadratic antisymmetric form [the
U and V matrices being subblocks of U ; see Eq. (B7)], N a
normalization factor, and |0〉 the vacuum of the ĉ(†)

j fermions
[58]. This Gaussian form is preserved by the application of
the exponential of any operator quadratic in ĉ(†)

j , as for the
Hamiltonian (2). In the next subsection we show that the
two unravelings we are going to consider amount precisely
to the application to the state (5) of exponentials of operators
quadratic in ĉ(†)

j . So the Gaussianity is preserved, together
with the possibility of a simple numerical treatment, whose
complexity scales polynomially with L.

B. The measurement process

The measurements of the environment give rise to a
stochastic quantum dynamics. This means that the evolution
of the state is provided by a trajectory |ψt 〉 (also known as
conditional state) that is the solution of a single realization of a
stochastic process which models the quantum measurements.
By ensemble averaging over the trajectories, we obtain the
averaged density matrix

ρ(t ) ≡ |ψt 〉 〈ψt |, (6)

where (· · · ) marks the average over the stochastic ensemble
of trajectories. Such density matrix follows a Lindblad-type

evolution [59],

d

dt
ρ(t ) = −i[Ĥ, ρ(t ) ] − γ

2

∑
j

[m̂ j, [m̂ j, ρ(t )]], (7)

where m̂ j are the Hermitian measurement operators and γ

quantifies the strength of the coupling between the system
and the measurement apparatus. There are many stochastic
processes giving the same Lindblad-type evolution.

We emphasize that the system we are considering is quan-
tum, while the environment providing random measurements
is a classical measurement apparatus. This situation differs
from the quantum-open-system framework, where both the
system and the environment are quantum [1,60]. The clas-
sical measurement process is stochastic and each individual
trajectory corresponds to a specific sequence of random mea-
surement strokes [7,8]. The simple fact that the environment
measurements have been performed—even if we ignore the
outcomes—is enough to perturb the quantum evolution [61].
The specific sequence of measurements and outcomes which
has occurred provides the quantum trajectory corresponding
to one realization of the stochastic process. If we were able to
monitor when each click of the apparatus occurs, we would
have access to the single trajectory. For this reason, the sin-
gle trajectory actually has a physical meaning and can be
experimentally observed in some context [8,62–65]. Being
the system observed by the environment, the trajectories do
not interfere with each other, and give rise at each time to a
classical probability distribution of states [61]. The average
over this distribution provides the Lindblad-type evolution
of Eq. (7), which captures the mean effect of this stochastic
dynamics.

In what follows we consider two different measurement
processes that are the unraveling of the same Lindblad equa-
tion (7).

1. Quantum state diffusion with continuous measurements

We aim to measure the number of fermions on the jth site
of the chain; hence we set m̂ j ≡ n̂ j , where n̂ j = ĉ†

j ĉ j denotes
the number operator. In this case, the Lindblad master equa-
tion is obtained by simply substituting m̂ j �→ n̂ j in Eq. (7).

We start assuming the system to be continuously measured;
i.e., the information is continually extracted from it and the
strength of the measurements is proportional to a small time
interval δt [66]. In the context of quantum optics, quantum-
state diffusion can be obtained as a quantum-jump description
of heterodyne detection [8]. In this setting (namely, the
quantum-state-diffusion model) we can write the measured
dynamics as a collection of Wiener processes resulting in a
stochastic Schrödinger equation [see Eq. (C1) in Appendix C].
Discretizing the time, the approximate evolution of the state
over one step δt of the dynamics is

|ψt+δt 〉 � C e
∑

j [δW j
t +(2〈n̂ j 〉t −1)γ δt]n̂ j e−iĤδt |ψt 〉 , (8)

with δW j
t being normal distributed variables with zero mean

and variance γ δt , and 〈·〉t = 〈ψt | · |ψt 〉. To a good ap-
proximation, for small enough δt this Trotterized evolution
faithfully describes the real dynamics [13] and preserves
the Gaussianity of the state (for technical details, see Ap-
pendix C).

064305-3



PICCITTO, RUSSOMANNO, AND ROSSINI PHYSICAL REVIEW B 105, 064305 (2022)

2. Quantum jumps

Another possibility we consider is an occasional, yet
abrupt, measurement of the quantum state. This is what hap-
pens, for instance, to the electromagnetic field coupled to a
photodetector. Namely, at each time interval, there is a chance
for the state to be measured (i.e., the detector clicks) and
projected, thus undergoing a so-called quantum jump [7]. An
interpretation of this process is given by rewriting Eq. (7) as

d

dt
ρ(t ) = −i(Ĥeff ρ(t ) − ρ(t ) Ĥ†

eff ) + γ
∑

j

m̂ jρ(t ) m̂ j, (9)

with

Ĥeff = Ĥ − i
γ

2

∑
j

m̂2
j . (10)

The dynamics can be thought of as a deterministic non-
Hermitian evolution driven by Ĥeff plus a stochastic part
generated by the possibility of measuring m̂ j . In order to
preserve the Gaussian form of the state, we choose a slightly
different form of the measurement operators

m̂ j �→ (1̂ + αn̂ j ), (11)

with α > 0 real and 1̂ being the identity operator. Substituting
these operators in Eq. (9), we easily see that the Lindblad
master equation has the form of Eq. (7) with m̂ j given by
αn̂ j . So, for α = 1, the master equation is the same as in the
quantum-state-diffusion case above, although the measure-
ment operators are different. Now, defining the quantity

p j = γ [1 + α(α + 2) 〈n̂ j〉t ], (12)

and discretizing the time with intervals δt , the quantum-jump
evolution |ψt 〉 → |ψt+δt 〉 can be obtained by applying at each
step δt

(i) with probability π j = p j δt , the jump operator

|ψt 〉 → (1̂ + αn̂ j )

p j
|ψt 〉 ; (13)

(ii) with probability p = 1 − ∑
j π j , the evolution

operator associated to non-Hermitian Hamiltonian
Ĥeff = Ĥ − iγα(2+α)

2

∑
j n̂2

j :

|ψt 〉 → e−iĤeff δt |ψt 〉 . (14)

Obviously, operation (2) preserves the Gaussianity, since
Ĥeff is quadratic in the ĉ(†)

j fermions of Sec. II A. The same
holds for operation (1), since the identity

1̂ + αn̂ j = elog10(1+α)n̂ j (15)

guarantees that the operator applied to |ψt 〉 in (13) is the
exponential of an operator which is quadratic in the ĉ(†)

j
fermions, thus preserving Gaussianity (see Appendix D). In
order to have the same Lindbladian for both unravelings, in
the following we will always consider α = 1.

We conclude this section by remarking that the form of
the quantum-jump operator in (11) is quite general. Indeed,
due to the property n̂2

j = n̂ j holding for spinless fermions,
any operator of the form Ô j = f (n̂ j ) can be written as
Ô j = [ f (0)]1̂ + [ f (1) − f (0)]n̂ j , which is the same as (11),
provided that f (0) 	= 0 and f (0) 	= f (1).

C. Entanglement entropy

We probe the entanglement properties of |ψt 〉 in the dif-
ferent trajectories using the entanglement entropy, a widely
used entanglement monotone [54]. We divide the system in
two partitions A and B, so that the Hilbert space has a tensor-
product structure H = HA ⊗ HB, and define the entanglement
entropy of a state as the von Neumann entropy of the density
matrix ρA reduced to subsystem A:

SA(|ψt 〉〈ψt |)=−TrA[ρA ln ρA] with ρA =TrB[|ψt 〉〈ψt |],
(16)

where TrB is the partial trace over HB. The entanglement
entropy quantifies the mixedness of the reduced density ma-
trix ρA, thus capturing correlations, since the reduced density
matrix is mixed if the full system is correlated. When the
full system is in a pure state, correlations are only quantum;
therefore the entanglement entropy quantifies entanglement.
In contrast, for global mixed states, correlations are both
classical and quantum: In order to spotlight genuine quantum
correlations one must resort to other quantities, like the two-
qubit concurrence [67] or the quantum discord [11], which are
notoriously known to be hardly accessible for systems with
more than two or three qubits.

In our case we have a random process giving rise to a statis-
tical ensemble of quantum trajectories. This means that, at any
time t , we have a distribution of pure states. This distribution
is classical, there being no interference between the states in
different trajectories [61]. In order to evaluate entanglement at
some time t , we first evaluate the entanglement entropy over
the single pure-state realizations |ψt 〉, and then average over
the distribution. The two operations do not commute, due to
the fact that the entanglement entropy is a nonlinear function
of |ψt 〉〈ψt |, and one has

SA(|ψt 〉 〈ψt |) � SA(|ψt 〉 〈ψt |). (17)

The second term of this inequality is larger because also clas-
sical correlations arising from the average over the classical
distribution of states appear in the system. We are interested
only in the quantum correlations, the ones leading to entan-
glement, so we consider SA(|ψt 〉 〈ψt |).

We emphasize that for quantities linear in |ψt 〉〈ψt |, like
the expectation values of observables Â, everything commutes

and one has 〈ψt |Â|ψt 〉 = Tr[Â ρ(t )], where ρ(t ) = |ψt 〉 〈ψt |
is the averaged density matrix in Eq. (6). So, linear quantities
depend only on the averaged density matrix obeying the Lind-
blad equation and are not able to disclose differences between
the various unravelings. In order to see such differences, one
must resort to nonlinear quantities. In the main text we focus
on the entanglement entropy and in Appendix A we show
that the other two such quantities—the second Rényi entropy
and the square equal-time correlation function—are able to
detect the entanglement transition occurring in the quantum
state diffusion.

For the evaluation of the entanglement entropy, we choose
as subsystem A an �-site long subchain, with � = L/4. For
simplicity of notation we write Sl (t ) ≡ SA(|ψt 〉〈ψt |). Due to
the Gaussian nature of the state, we can evaluate the entangle-
ment entropy in a simple way, from the computational point
of view (see Appendix E).
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FIG. 2. Ensemble-averaged entanglement entropy versus time
during a quantum-state-diffusion process, for different system
sizes L, with � = L/4, hf = 1.0, and γ = 1.0. The red line at
t = t  = 60 marks the time from which we evaluate the time-
averaged entanglement entropy. Data are plotted in a semilog scale.

III. QUANTUM STATE DIFFUSION: RESULTS

We now present the results obtained under the assumption
that the system is continuously monitored. As detailed below,
the entanglement entropy S�(L) of a subsystem of size �

undergoes a measurement-induced transition from subexten-
sive to area-law growth with the global system size L; the
crossover point strongly depends on the system parameters.

We prepare the system in the ground state of the Ising
Hamiltonian (1) with a transverse field hi = +∞, and then
we quench it to a value h f finite. We monitor the dynamics
of S�(t ) for a subsystem of length � = L/4 [68]. S�(t ) is a
nonlinear function of the reduced density matrix, as discussed
in Appendix E; we evaluate it over Nrand stochastic trajectories
and then perform an ensemble average. For the rest of this
paper, we set Nrand = 102 and, for quantum state diffusion,
we take an integration step δt = 0.05. Such values of Nrand

and δt have been selected after careful testing that the numer-
ical errors introduced by these cutoffs are not affecting the
results, on the scales of the figures presented in this work. We
explicitly checked that, by increasing Nrand over an order of
magnitude, the results remain stable. Since we consider global
quantities, where an average over sites is implicit, fluctuations
average out and Nrand = 102 is enough to reach good conver-
gence.

In Fig. 2 we show some prototypical trajectories of the
entanglement entropy in time. The various colors refer to
different system sizes, as indicated in the legend. The data
have been taken with h f = 1 and γ = 1, but the qualitative
behavior is not affected by this specific choice: After a tran-
sient time t(h f , γ , L) that depends on the quench amplitude,
the measurement rate, and the system size, the entanglement
entropy reaches an asymptotic value that may obey a subvol-
ume or an area-law behavior. We assume t = 60 (red line in
Fig. 2), after a careful a posteriori check that, for t > t, all
the trajectories have converged to the asymptotic value.

FIG. 3. Asymptotic entanglement entropy S̄� (obtained by aver-
aging over times larger than t  = 60; see red line in Fig. 2) versus
the postquench transverse field hf for the measurement rates γ =
1, 2, 3, 4 [panels (a), (b), (c), (d), respectively]. The various colors
correspond to different system sizes.

We define the asymptotic entanglement entropy

S̄� = 1

T − t

∫ T

t

dt S�(t ) (18)

as the long-time-averaged entanglement entropy, where t is
the transient time and T the total simulation time, chosen
long enough that convergence is reached. The behavior of S̄�

is reported in Fig. 3, as a function of h f and for different
measurement rates γ . For small values of γ , the curves at
different system sizes are well separated, thus suggesting a
size dependence of the entanglement entropy. As we will
show later, this dependence agrees with the conformal scaling
S̄�(L) ∼ log10(L). For larger γ values, even though the subex-
tensive behavior survives when considering small system
sizes and small transverse fields, a collapse of the curves
emerges. We emphasize that the peak at h f ≈ 1, reminiscent
of the unitary dynamics discussed in Sec. II A, appears for
small values of γ in correspondence with the quantum critical
point. Because of the competition between the Hamiltonian
evolution and the random measurements, when increasing the
measurement rate γ , this peak progressively shifts toward
smaller transverse fields and eventually disappears. We re-
mark that a similar behavior is observed in the ground-state
entanglement of the quantum Ising chain at finite temperature
[69].

Figure 4 displays the asymptotic entanglement entropy S̄�

as a function of the system size L (notice the logarithmic scale
on the x axis), for different values of γ (cf. different panels)
and h f (cf. different colors). We distinguish two behaviors:
Some trajectories show a logarithmic growth S̄� with L. In
this case, the data points follow a linear fit, whose slope
determines the central charge of the associated conformal
description. When increasing h f , the trajectories bend to even-
tually settle on a constant value, i.e., an area-law behavior.
The bending point, corresponding to the crossover point from
the subextensive regime to the area-law one, strongly depends
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FIG. 4. Top panels: Asymptotic entanglement entropy S̄� versus the system size L (in semilog scale) for several values of hf (different
colors), at fixed measurement rates γ = 0.5, 1, 1.25, 1.5 [panels (a), (b), (c), (d), respectively]. We identify two behaviors: either S̄� grows
logarithmically with L, or it settles on a constant value. The crossover between these two regimes locates a measurement-induced phase
transition. Dashed lines are obtained by fitting the data up to the largest available size, Lmax = 256, with the function in Eq. (19). Bottom
panels: λ versus hf , for γ = 0.5, 1.0, 1.25, 1.5 [panels (e), (f), (g), (h), respectively]. The color of the points refers to the corresponding
entanglement trajectory in the top panels. The red line highlights the value 1/ log10 Lmax, corresponding to the validity bound of the fit: anytime
λ log10 Lmax is of order 1 or larger, we consider the fit reliable and the curve follows a hyperbolic tangent behavior (i.e., the entanglement shows
an area-law behavior). In contrast, for λ log10 Lmax  1 the behavior is indistinguishable from a straight line marking a subextensive scaling of
the entanglement.

on h f , γ , and L. We define hc
f as the critical transverse

field where the crossover between area-law and logarithm-law
takes place.

The dashed lines in the top panels of Fig. 4 are obtained by
fitting the data up to Lmax = 256 with

f (L) ∼ tanh[λ(h f , γ ) log10(L)]. (19)

In the bottom panels of Fig. 4 we show λ(h f , γ ) as a function
of h f , for fixed γ . The color of each point refers to that
of the corresponding trajectory in the associated top panels.
Anytime the fit is reliable, the curve follows a hyperbolic
tangent behavior, meaning that the entanglement entropy will
eventually attain an area-law regime. The fit is not reliable
when λLmax  1 and the curve is indistinguishable from a
straight line, suggesting a logarithm-law behavior. In practice,
we consider the fit to be reliable whenever λ(h f , γ ) log10 Lmax

is of order 1 or larger. Therefore we take the relation

λ(hc
f , γ ) log10 Lmax ∼ 1 (20)

as a qualitative estimate of the crossover transverse field hc
f

for the given γ [this condition is marked by the red horizontal
lines in Figs. 4(e)–4(h)]. Hereafter, for simplicity of notation,
we set λ(h f , γ ) ≡ λ.

In Fig. 1 we sketch the phase diagram obtained by carrying
out the above analysis for two values of Lmax = 192 (small
empty circles) and Lmax = 256 (big filled circles) [70]. We
identify three regions in the phase diagram corresponding to
an extensive, a subextensive, and an area-law regime. For
γ = 0, the dynamics is unitary and the asymptotic entan-
glement entropy obeys a volume-law scaling. For γ � 4,
the entanglement entropy follows an area law, as predicted
in Ref. [53]. For 0 < γ < 4, there exists a critical line
hc

f (Lmax, γ ) dividing a region where the entanglement grows

subextensively from another region where it exhibits an area-
law scaling. We notice that the smaller the measurement rate
γ , the higher the critical transverse field hc

f . Moreover, at fixed
γ , the critical transverse field reduces while increasing the
system size. In principle, this leaves open the possibility that,
in the thermodynamic limit, the subextensive region might
eventually fade away, despite that a numerical proof of this
conjecture appears out of reach.

IV. QUANTUM JUMPS: RESULTS

We now compare the results in the previous section with
those obtained by using a quantum-jump protocol. We put the
emphasis on some discrepancies between the results obtained
with the two unravelings (Sec. IV A). Finally, we compare
the results of the stochastic evolutions with those coming
from non-Hermitian Hamiltonian evolution, showing that this
approximation does not capture many features of the entan-
glement entropy (Sec. IV B).

A. Jump evolution

Let us consider the quantum-jump dynamics described in
Sec. II B. We discretize the time in steps separated by δt and,
at each time step, we extract a random number r ∈ [0, 1].
If r >

∑
j π j we do not perform any measure; otherwise, if

π j < r � π j+1 we measure m̂ j according to Eq. (13). Atten-
tion must be paid to the choice of δt : In fact, if the time
step is too large, the probabilities π j might exceed 1. After
a convergence check, we fixed the time step δt−1 ∝ 8Nγα.

Although the dynamics is different from the quantum-
state-diffusion one, we fix α = 1 in order to recover the same
master equation for the averaged density matrix. In Fig. 5
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FIG. 5. Panels (a), (b), (c): Quantum-jump-dynamics entangle-
ment entropy S�(t ) versus time, for hf = 0.5, 1.0, 2.0 [panels (a),
(b), (c), respectively] and γ = 0.5. The various colors correspond
to different system sizes L. Panel (d) shows the asymptotic value S̄�,
obtained by averaging on times larger than t  = 160 [cf. red line in
panels (a), (b), (c)], for the three considered values of hf , versus L
(in semilog scale). The inset of panel (d) shows the asymptotic en-
tanglement entropy versus the postquench transverse field evaluated
at L = 16, 32, 64 [legend in panel (a)].

we show the entanglement entropy trajectories for γ = 0.5,
h f = 0.5, 1.0, 2.0, and various system sizes [panels (a), (b),
(c), respectively]. Despite the differences in the asymptotic
value, the entanglement entropy in time follows similar tra-
jectories to those in Fig. 2. In Fig. 5(d) we plot the value of
the asymptotic entanglement entropy S̄� versus the system size
L, showing that S̄� is experiencing a logarithmic growth with
L. We notice that the entanglement entropy for h f = 1.0 is
comparable with that at h f = 2.0, suggesting a possible role
of the ground-state critical point of the unitary dynamics also
on the quantum-jump dynamics. The inset of Fig. 5(d) shows
the asymptotic entanglement entropy as a function of the final
transverse field for different system sizes. We observe that,
at fixed L and for h f approaching hc from the ferromagnetic
phase, S̄� grows, while it does not depend on h f in the param-
agnetic region.

Despite giving rise to the same Lindbladian, the quantum-
jump dynamics does not provide the same phase diagram as
the quantum diffusion protocol (Fig. 1). In all the cases we
check, the scaling of the asymptotic entropy is logarithm law
[Figs. 5(d) and 6], also in the cases where the quantum diffu-
sion provides an area-law scaling. To better clarify this point,
we fix γ = 1.5 and pick up three representative points of the
quantum diffusion phase diagram, in the subextensive region
(h f = 2.0; blue circle in Fig. 1), on the crossover line (h f =
5.0; orange circle in Fig. 1), and in the area-law phase (h f =
8.0; light-green circle in Fig. 1), and we plot the asymptotic

FIG. 6. (Filled dots) Asymptotic entanglement entropy S̄� versus
the system size in the quantum-jump dynamics for hf = 2, 5, 8, and
γ = 1.5 (blue, orange, and light-green circles in Fig. 1, respectively).
Note the subextensive growth, although hf = 5, 8 correspond to
area-law behavior in the quantum-state-diffusion phase diagram . For
comparison, the empty dots show the corresponding results obtained
in the quantum-state-diffusion scheme. Since errors are comparable
with the point size, we decided to not show them. Data are plotted in
semilog scale.

entropy versus L in Fig. 6. All the curves obey the logarithm
law. As a comparison, we also plot the same curves obtained
in the quantum state diffusion approximations (empty points
and dashed lines). The curves for h = 5.0, 8.0 saturate, in
contrast with the quantum-jump logarithmic growth obtained
for the same parameters. From these data it is impossible
to state whether the transition is suppressed (because of the
choice of the unraveling or the jump operators) or whether it
shifts to different measurement rates and system sizes, due to
limits in the numerically accessible system sizes.

B. Non-Hermitian Hamiltonian approximation

Finally, we consider the entanglement dynamics in the so-
called no-click limit, meaning that the entanglement entropy
is evaluated over postselected trajectories that did not jump
during the evolution. This class of trajectories follows a deter-
ministic dynamics driven by the non-Hermitian Hamiltonian
in Eq. (10). There are some results in the literature showing
that sometimes it is possible to find a correspondence be-
tween the measurement-induced entanglement transition and
the purely non-Hermitian dynamics [53,71–73].

As an example, the authors of Ref. [53] show that the
entanglement transition of the Ising chain in the absence of
transverse field (h = 0) can be quantitatively located also by
looking at the non-Hermitian dynamics of the entanglement
entropy. This result is corroborated by some observations on
the spectrum of Eq. (10),

ωn-H
k

(
h = iγ

4

)
= 2J

√
1 − γ 2

16J2
− i

γ

2J
cos k, (21)

obtained by substituting h = iγ /4 in Eq. (4). In fact, the criti-
cal rate γc = 4 is the one at which the real part of the spectrum
vanishes and the imaginary part becomes gapped. Despite
this, the non-Hermitian evolution fails to predict the entan-
glement entropy dynamics, as soon as a finite transverse field
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FIG. 7. Panels (a), (b), (c): Non-Hermitian-dynamics entangle-
ment entropy S�(t ) versus time, for hf = 0.5, 1.0, 2.0 [panels (a),
(b), (c), respectively], and γ = 0.5. The various colors correspond
to different system sizes. Panel (d) shows the asymptotic value S̄�

[obtained by averaging on times larger than t  = 160—the red line
in panels (a), (b), (c)] for the three hf versus L. The curves in
panel (a) show a larger transient than the others; therefore, before
evaluating the S̄�, we carefully checked for their behavior at later
times.

is considered. To prove this, we simulate the non-Hermitian
dynamics for quenches toward h f > 0. In order to have the
same non-Hermitian Hamiltonian of Ref. [53] and to simplify
the comparison, for these simulations we set α(2 + α) = 1,
i.e., α = √

2 − 1 ≈ 0.41. We point out that, even though
the Lindblad equation for the averaged density matrix with
α ∼ 0.41 is different from that considered in Sec. II B, in the
no-click limit the evolution of the state is fully determined by
the non-Hermitian dynamics. We checked the non-Hermitian
evolution with α = 1.0 without finding qualitative differences
with the other case.

In Figs. 7(a), 7(b), and 7(c) we show non-Hermitian evolu-
tion trajectories with the same parameters as Figs. 5(a), 5(b),
and 5(c), respectively. We notice that not only the entangle-
ment follows qualitatively different time traces, but also the
convergence is much slower than in the quantum-jump case.
In Fig. 7(d) we show the asymptotic entanglement entropy as
a function of the system size for the three values of h f consid-
ered so far. What emerges is that this approximate dynamics
predicts a different entanglement scaling than the quantum
state diffusion and the quantum jumps. For instance, while
the curve at h f = 2.0 in Fig. 7(d) is constant in L, the same
curve obtained with the quantum-state-diffusion dynamics at
the same γ grows logarithmically with L [Fig. 4(a)]. More-
over, the asymptotic entanglement entropy obtained from the
non-Hermitian evolution is monotonically decreasing with
h f . As a consequence, we do not find any evidence of the

critical point for small measurement rates, in contrast with
the quantum-state-diffusion model (see Fig. 3). Interestingly,
the considerations done on the spectrum of the non-Hermitian
Hamiltonian at h f = 0 [53] cannot be extended to the case of
a complex transverse field, namely h f > 0. In fact, as emerges
by substituting h = h f + iγ /4 in Eq. (4), it is not possible to
find a k-independent γ that makes the real part of the spectrum
vanishing, while keeping the imaginary part gapless.

V. DISCUSSION AND CONCLUSION

We focused on measurement-induced entanglement phase
transitions in the quantum Ising chain, subject to different
measurement processes resulting in the same Lindblad mas-
ter equation for the averaged density matrix. We chose two
different unraveling modeling measurements: (i) the quantum-
state-diffusion model, occurring weakly but continuously in
time, and (ii) quantum-jump description, occurring abruptly
but randomly in time. In doing this, to allow simulations for
larger systems, we paid attention in choosing measurement
operators which preserve the Gaussianity of the evolving
quantum state.

From one side we found that the quantum-state-
diffusion dynamics predicts a crossover form a subextensive
(logarithm-law) phase of the entanglement entropy to an area-
law one. From the other side, the quantum-jump dynamics
shows always a logarithm law of the asymptotic entanglement
entropy, and predicts no crossover, although the Lindblad
equation is the same. As expected, we never recover the
volume-law growth typical of the unitary evolution.

Our results emphasize the fact that the entanglement en-
tropy is determined by the quantum correlations contained
in the single quantum trajectory, that strongly depend on the
choice of the unraveling. During the averaging process leading
to the Lindblad equation, classical correlations appear as well.
The resulting correlations in the averaged density matrix are
of both types and cannot be disentangled from each other.
Different unravelings provide different amounts of quantum
correlations in the single quantum trajectories—and then dif-
ferent behaviors of the entropy—although the average density
matrix is always the same.

In this framework, different behaviors of entanglement
come from the competition between unitary dynamics and
random measurement process’. According to the environment
measurement process over which the quantum-trajectory av-
eraging is performed, the same Lindblad equation—and the
same average density matrix—can come from a “more quan-
tum” evolution, where the constructive effect of the unitary
dynamics leads to large entanglement, or from a “more clas-
sical” one, where the destructive effect of the measurements
prevails. The same competition gives rise to the transitions
between different entanglement dynamical phases, when the
unraveling is fixed and the coupling with the environment is
varied (as occurs in the quantum-state-diffusion case).

Even though, to the best of our knowledge, for integrable
fermionic models there are no examples of measurements
preserving the volume-law scaling, some results in the lit-
erature propose more complicated models displaying it, as
for the case of measurements performed at discrete pe-
riodic times in the ergodic phase [14] or in integrable
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many-body-localization systems, provided appropriate mea-
surement operators are chosen [38]. It would be tempting
to check whether it is possible to find a set of continuously
measured operators which can provide, in our framework, a
volume-law asymptotic entanglement entropy. In this respect,
an interesting possibility would be to exploit, for instance,
long-range interactions in the definition of the measurement
operators [74].

Finally, we comment on the experimental relevance of the
results presented above. In fact, even though we are not aware
of a genuine detection of the entanglement entropy, there are
some experimental works which discuss the possibility of
measuring the Rényi entropy [75,76], another entanglement
monotone that is expected to capture the entanglement transi-
tions (for a more quantitative discussion, see Appendix A 1).
Interestingly, some recent experimental proposals for mea-
suring the entanglement in measurement-driven dynamics
similar to ours have been put forward [77] and realized [78].
Moreover, as discussed in Appendix A 2, information on the
entanglement can be inferred also by looking at the asymptotic
correlations, suggesting a different way to detect such transi-
tions. Further experimental advances in this direction could
help to open new directions in this field, shedding some light
on the problem of the unraveling dependence of entanglement
transitions.

Note added. Recently, we became aware of a related
manuscript [79] discussing the emergence of entanglement
transitions in free-fermion models evolving under quantum
jumps.
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APPENDIX A: ENTANGLEMENT-RELATED QUANTITIES

In this Appendix we provide some examples of other
entanglement-related quantities to explore. First we discuss
the possibility of detecting entanglement transitions by look-
ing at the second-order Rényi entropy and then we consider
the equal-time square correlations.

1. Second-order Rényi entropy

The Rényi entropies are a class of entanglement monotones
widely diffused in the quantum-information field [54]. Given a
pure state |ψt 〉 and a partition of the system in two subsystems
A and B, the Rényi entropy of order β is defined as

Hβ (|ψt 〉 〈ψt |) = 1

1 − β
ln TrA[(ρA)β], (A1)

where ρA = TrB[|ψt 〉 〈ψt |] is the reduced density matrix of
subsystem A [see Eq. (16)]. The Rényi entropy can be nu-
merically evaluated in an efficient way for fermionic Gaussian
states (see Appendix E) and the nontrivial limit for β → 1
corresponds to the von Neumann entropy discussed in the

FIG. 8. Asymptotic second-order Rényi entropy [panel (a)] and
entanglement entropy [panel (b)] versus the system size for γ = 3.0
and h = 0.5, 1.0, 1.5, 2.0. The two entropies are in good agreement.
Data are plotted in semilog scale.

main text. Of particular interest is the second-order (β = 2)
Rényi entropy

H2(|ψt 〉 〈ψt |) = − ln Tr[(ρA)2]. (A2)

This quantity is experimentally achievable [75,76] and is re-
lated to the purity of the state, which has an important role
in the study of decoherence [11]. As in the case of the en-
tanglement entropy, we consider as the subsystem A an �-site
long subchain with � = L/4 and define SR(t ) ≡ H2(|ψt 〉 〈ψt |).
We consider the time average in the asymptotic state using a
formula similar to Eq. (18), S̄R = 1

T −t

∫ T
t dt SR(t ), with the

total simulation time T chosen long enough that convergence
is reached.

Since the Rényi entropy is an entanglement quantifier, we
expect it to behave in a way similar to the entanglement en-
tropy. Here we do not carry out an analysis as detailed for the
entanglement entropy, but we are only interested in checking
that the behavior of the two quantities is similar. In particular,
considering the quantum-state-diffusion unraveling (Sec. III),
we expect to recover the same entanglement transition in its
behavior. As an example, in Fig. 8 we show the asymptotic
time-averaged entanglement entropy S� and Rényi entropy SR

versus the system size L, for different parameters. In fact the
two quantities behave in a similar way, and when one displays
an area-law scaling, the other follows the same scaling. This
result suggests that the Rényi entropy reasonably behaves area
law in the same region where the von Neumann entropy does.
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FIG. 9. Asymptotic square equal-time correlation function C(r)
versus the site distance r. When the entanglement scales subexten-
sively (curves with warm tones), the correlations display an algebraic
decaying. When the entanglement scales as an area law, the corre-
lations seem to undergo a superalgebraic decay (curves with cool
tones). Here we set L = 128 and averaged over Nrand = 100 trajecto-
ries. Data are plotted in log-log scale, to better highlight power-law
decays.

2. Correlations

Still focusing on the quantum-state-diffusion case, we can
observe signatures of the entanglement transition also by
looking at the square equal-time correlation. This quantity has
been introduced in [22] and is defined as

Cj (t, r) = | 〈ψt |ĉ†
j ĉ j+r |ψt 〉 |2 (A3)

(note that in the limit Nrand → ∞ there is no dependence on j,
due to translation invariance). Intuitively, we may expect that
a more entangled system is more correlated than a less entan-
gled one. In particular, C(t, r) should decay algebraically with
r in a state with subextensive entanglement, while it should
decay exponentially when the entanglement entropy obeys an
area-law scaling [22].

The data reported in Fig. 9 hint at this kind of behavior,
where we show the asymptotic correlation

C(r) ≡ 1

L(T − t)

∫ T

t

dt
L∑

j=1

Cj (t, r) (A4)

versus the site distance r. The average over time in this for-
mula is as in Eq. (18), and we average also over sites in order
to reduce the noise, and allow convergence of the average also
for Nrand not larger than 102. Comparing these results with
those plotted in Figs. 3(a) and 3(c), we can make the following
observations. For parameters in the regime of subextensive en-
tanglement scaling (i.e., curves with warm tones) we observe
a slow power-law decay. In contrast, in the area-law regime
for the entanglement (i.e., curves with cool tones) we notice a
much faster drop, which seems to considerably deviate from
power law.

APPENDIX B: DIAGONALIZATION OF THE ISING
MODEL

In this Appendix we recall how to diagonalize the quantum
Ising chain, described by the Hamiltonian in Eq. (1). First we

introduce the Jordan-Wigner transformation,

σ̂+
j = (

eiπ
∑ j−1

�=1 n̂�
)

ĉ†
j , (B1)

where σ̂±
j = 1

2 (σ̂ x
j ± iσ̂ y

j ) are the raising and lowering opera-
tors of the jth spin, that maps Eq. (1) into the spinless-fermion
Hamiltonian

Ĥ = −J
L−1∑
j=1

(ĉ†
j ĉ j+1 + ĉ†

j ĉ
†
j+1 + H.c.) + h

L∑
j=1

(2n̂ j − 1)

+ (−1)N J (ĉ†
Lĉ1 + ĉ†

Lĉ†
1 + H.c.). (B2)

In this expression, ĉ(†)
j denote anticommuting fermionic anni-

hilation (creation) operators, n̂ j = ĉ†
j ĉ j is the corresponding

local number operator, and N = ∑
j〈ĉ†

j ĉ j〉 is the total number
of fermions. The last term in Eq. (B2) accounts for the peri-
odic boundary conditions and, because of the highly nonlocal
character of the transformation (B1), is strongly affected by
the parity sector in which one is working. In our case we fix
N even; hence we assume antiperiodic boundary conditions in
Eq. (B2). The Hamiltonian (B2) can be written in the compact
form

Ĥ = 1
2 �̂†H�̂ + const., (B3)

where �̂ = (ĉ1, . . . , ĉL, ĉ†
1, . . . , ĉ†

L )T is the Nambu spinor in-
troduced in the main text, while

H =
(

A B
−B −A

)
(B4)

is the so-called Bogoliubov–de Gennes Hamiltonian matrix,
with entries

Aj, j = h, Aj, j+1 = Aj+1, j = −J/2,

Bj, j = 0, Bj, j+1 = −Bj+1, j = −J/2,

AL,1 = A1,L = BL,1 = −B1,L = (−1)N+1J/2. (B5)

We now define a set of new fermions γ̂k (k = 1, . . . , L),
obeying canonical anticommutation rules, as follows:

γ̂k =
L∑

j=1

(U ∗
jk ĉ j + V ∗

jk ĉ†
j ). (B6)

The associated Nambu spinor is given by
�̂ = (γ̂1, . . . , γ̂L, γ̂

†
1 , . . . , γ̂

†
L )T = U†�̂, with

U =
(

U V ∗
V U ∗

)
. (B7)

The U matrix implements the so-called Bogoliubov trans-
formation, which makes the Hamiltonian diagonal in the γk

fermions [cf. Eq. (3)], with a dispersion relation given by
Eq. (4).

APPENDIX C: CONTINUOUS-MEASUREMENT
DYNAMICS

In this Appendix we discuss more technical details of the
dynamics in presence of continuous measurements.

As stated in the main text, the dynamics of these kinds
of measurements is captured by a collection of Wiener pro-
cesses. A Wiener process is an ideal quantum walk with
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arbitrary small, independent, steps taken arbitrarily often, that
is normally distributed with zero mean and variance growing
linearly in time. The resulting stochastic Schrödinger equa-
tion reads

d |ψt 〉 = −iĤdt |ψt 〉 +
{ ∑

j

√
γ (n̂ j − 〈n̂ j〉)dW j

t

}
|ψt 〉

− 1

2

{ ∑
j

γ (n̂ j − 〈n̂ j〉)2dt

}
|ψt 〉 , (C1)

with W j
t independent Wiener processes. By Trotterizing

Eq. (C1), we obtain the approximate evolution in Eq. (8).
For a Gaussian state, this evolution reduces to that of the

correlation matrices U,V defined in Eq. (B7). In particular,
it can be written as a two-step evolution driven first by the
Hamiltonian part, which is given by the unitary transformation[

U ′(t + δt )
V ′(t + δt )

]
= e−2iH δt

[
U (t )
V (t )

]
, (C2)

and then by the dissipative part

W = exp

[
T 0
0 −T

][
U ′(t + δt ) [V ′(t + δt )]∗
V ′(t + δt ) [U ′(t + δt )]∗

]
, (C3)

where T is a L × L diagonal matrix defined as

Tj j = δW j
t + (2 〈n̂ j〉t − 1)γ δt . (C4)

Since the dissipative part does not conserve the norm of the
state, to keep it normalized we have to perform a QR decom-
position W = Q · R, with Q an orthogonal matrix and R an
upper triangular one. Thus the time-evolved state is simply
U (t + δt ) ≡ Q [13,53].

APPENDIX D: QUANTUM-JUMP DYNAMICS

In this Appendix we give some technical details on the
quantum-jump evolution described in the main text. This pro-
tocol is quite different from the continuous-measurement one,
since we choose m̂ j = √

γ (1̂ + αn̂ j ) as measurement opera-
tors. By exploiting the operator identity

n̂ j = exn̂ j − 1̂

ex − 1
, (D1)

it is easy to be convinced that these operators preserve the
Gaussianity of the state. In fact, once fixed x = ln(1 + α), we
have

m̂ j = √
γ

(
1̂ + α

exn̂ j − 1̂

ex − 1

)
= √

γ exn̂ j . (D2)

This quantum-jump dynamics is well described by the
stochastic equation

d |ψt 〉 = −iĤdt |ψt 〉 − γ

2

{∑
j

(m̂ j − 〈m̂ j〉)dt

}
|ψt 〉

+
{ ∑

j

(
m̂ j√〈m̂ j〉t

− 1

)
dN j

t

}
|ψt 〉 , (D3)

where Nt are Poisson processes with dN j
t = 0, 1;

(dN j
t )2 = dN j

t ; and dN j
t = γ dt 〈n j〉t . The evolution driven

by the non-Hermitian Hamiltonian in Eq. (10) is obtained by

solving the equation

i
d

dt

[
U (t )
V (t )

]
= 2Heff

[
U (t )
V (t )

]
, (D4)

with Heff the non-Hermitian Bogoliubov–de Gennes Hamil-
tonian (defined in analogy with the Hermitian one). The
exponential operator m̂ j = exn̂ j can be applied to a Gaussian
state by simply applying to U the matrix M, which is defined
as follows:

Mi,i = 1, for i 	= j, j + L,

M j, j = M−1
j+L, j+L = ex. (D5)

APPENDIX E: ENTANGLEMENT AND RÉNYI ENTROPY
IN FERMIONIC GAUSSIAN STATES

The entanglement entropy of a subsystem of dimension �

is defined as

S� = −ρ� ln ρ�, with ρ�(t ) = TrL/�[|ψt 〉 〈ψt |] (E1)

being the reduced density matrix of the subsystem. Finding
ρ�(t ) is usually a computationally hard task, in particular for
spin systems whose Hilbert space grows exponentially with
the system size L. Luckily, when dealing with Gaussian states
(such as in the case of the Ising chain) the possibility of
exploiting Wick’s theorem remarkably reduces the computa-
tional effort. In fact, it is possible to write ρ� by defining �

appropriate uncorrelated fermionic operators [48,82]. Below
we provide details on the procedure to follow to write down
these operators.

First, we need the 2L × 2L correlation matrix

G(t ) = U (t )

(
I 0
0 0

)
U†(t ) =

(
G(t ) F (t )
F †(t ) 1 − GT (t )

)
,

(E2)
with Gj j′ (t ) ≡ 〈ĉ j ĉ

†
j′ 〉t

and Fj j′ (t ) ≡ 〈ĉ j ĉ j′ 〉t . We now intro-
duce the Majorana fermions

č j,1 = ĉ†
j + ĉ j, č j,2 = i(ĉ†

j − ĉ j ). (E3)

Analogously to the Nambu spinors, the Majorana column vec-
tor is defined as č = (č1,1, . . . , čL,1, č1,2, . . . , čL,2)T , through
the relation

č = W �̂, with W =
(

I I
−iI iI

)
. (E4)

Using this relation, we can evaluate the Majorana correla-
tion matrix Mnn′ (t ) = 〈čnčn′ 〉 as

M(t ) = WG(t )W †. (E5)

We can decompose the matrix M(t ) = I + iA(t ). The re-
duced Majorana correlation matrix M� can be then con-
structed according to

M�
n,n′ = δn,n′ + iAn,n′ ,

M�
n,l+n′ = iAn,L+n′ ,

M�
l+n,n′ = iAL+n,n′ ,

M�
l+n,l+n′ = δn,n′ + iAL+n,L+n′ , (E6)

with n, n′ ∈ {1, . . . , �}.

064305-11



PICCITTO, RUSSOMANNO, AND ROSSINI PHYSICAL REVIEW B 105, 064305 (2022)

At each time step t , one can transform the matrix A�(t )
to a canonical form, by a (real) orthogonal transformation R
(Schur’s decomposition)

A�(t ) = R(t )Ã(t )R†(t ), with Ã =
�⊕

q=1

(
0 λq

−λq 0

)
. (E7)

This rotation defines a new (nonlocal) combination of Ma-
jorana fermions ďq = ∑2�

n=1 Rnq(t )č. Transforming back and
defining � fermionic operators d̂q = W −1ďq, it can be shown
that, in this basis, the reduced density matrix factorizes in �

blocks of size 2 × 2, having eigenvalues

Pq(t ) = 1 + λq(t )

2
,

1 − Pq(t ) = 1 − λq(t )

2
. (E8)

The entanglement entropy is thus given by

S�(t ) = −
�∑

q=1

Pq(t ) ln Pq(t )

+ [1 − Pq(t )] ln[1 − Pq(t )]. (E9)

In an analogous way, we can also evaluate the Rényi en-
tropy of Eq. (A1) as

Hβ (t ) = 1

1 − β

�∑
q=1

ln
{
Pβ

q (t ) + [1 − Pq(t )]β
}
. (E10)
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