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Abstract
The increased ultraviolet radiation (UV) due to the altered stratospheric ozone leads to multiple plant physiological and biochemi-
cal adaptations, likely affecting their interaction with other organisms, such as pests and pathogens. Arbuscular mycorrhizal fungi 
(AMF) and UV-B treatment can be used as eco-friendly techniques to protect crops from pests by activating plant mechanisms of 
resistance. In this study, we investigated plant (Lactuca sativa) response to UV-B exposure and Funneliformis mosseae (IMA1) 
inoculation as well as the role of a major insect pest, Spodoptera littoralis. Lettuce plants exposed to UV-B were heavier and taller 
than non-irradiated ones. A considerable enrichment in phenolic, flavonoid, anthocyanin, and carotenoid contents and antioxidant 
capacity, along with redder and more homogenous leaf color, were also observed in UV-B-treated but not in AMF-inoculated plants. 
Biometric and biochemical data did not differ between AMF and non-AMF plants. AMF-inoculated plants showed hyphae, arbus-
cules, vesicles, and spores in their roots. AMF colonization levels were not affected by UV-B irradiation. No changes in S. littoralis-
feeding behavior towards treated and untreated plants were observed, suggesting the ability of this generalist herbivore to overcome 
the plant chemical defenses boosted by UV-B exposure. The results of this multi-factorial study shed light on how polyphagous 
insect pests can cope with multiple plant physiological and biochemical adaptations following biotic and abiotic preconditioning.

Keywords Anthropogenic change · Chemical ecology · Priming · Spodoptera littoralis · Noctuidae · Plant nutraceutical · 
Feeding behavior · Plant–insect tolerance

Introduction

Insect-plant interactions are routed by a hierarchy of physi-
cal and chemical cues, and their full understanding repre-
sents a fascinating ecological challenge (Braga and Janz 

2021). For instance, host plants can induce chemical and 
morphological responses to face insect attacks (Sharma 
et al. 2021). Although this appears to be a bi-directional 
relationship, numerous abiotic and biotic factors can medi-
ate it, further complicating the interactions (Sharma et al. 
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2021). Many microorganisms (e.g., arbuscular mycorrhizal 
fungi, AMF) can stimulate plant growth by facilitating the 
absorption of nutrients, enhancing the efficient use of soil 
natural resources, and promoting plant resistance to biotic 
and abiotic factors (Smith and Read 2008). In addition, AMF 
can alter plant secondary metabolism, leading to higher syn-
thesis of antioxidant metabolites (Agnolucci et al. 2020); as 
such, AMF are increasingly considered a biotechnological 
tool for the sustainable production of safe and healthy plant 
foods, especially horticultural crops (Zhu et al. 2022; Messa 
& Savioli 2021; Fusco et al. 2022). AMF-related effects on 
the plant are commonly beneficial for both the insect and the 
plant itself (Sharma et al. 2017; Yu et al. 2022). Plant quality 
improves as a food source for insects when plant nutrient 
content is increased (Vannette and Hunter 2011). On the 
other hand, AMF may induce plant resistance by priming the 
jasmonic acid-dependent plant responses to phytophagous 
insects and changing the concentration and composition of 
terpenoids (Barber et al. 2013; Sharma et al. 2017). Such 
modifications may alter the plant attractiveness to insects, 
as well as insect behavior (Agathokleous et al. 2017; Masui 
et al. 2021; Sharma et al. 2017).

High intensity UV radiation, in particular the UV-B com-
ponent (280–315 nm), can have a strong impact on several 
morphophysiological, molecular, and biochemical traits of 
plants (Jaiswal et al. 2022; Pandey et al. 2022a, 2022b; Rai 
and Agrawal 2021, 2022). Therefore, plants have evolved a 
fine UV-B perception mechanism and transduction pathway 
(Kliebenstein et al. 2002; Rizzini et al. 2011) to avoid intra-
cellular impairments. Such responses lead to the increased 
content of reactive oxygen species (ROS)-scavenging and 
UV-B absorbing compounds, such as phenolic compounds 
(Brown et al. 2005; Favory et al. 2009; Santin et al. 2019, 
2021a; Takshak and Agrawal 2019; Volkova et al. 2022). In 
addition, several studies reported a UV-B-triggered modu-
lation in the content of photosynthetic pigments, such as 
chlorophylls and carotenoids (Carletti et al. 2003; Jansen 
et al. 2008; Santin et al. 2018, 2021b; Schreiner et al. 2012). 
These mechanisms are now understood to occur within the 
context of hormesis, where mild sub-toxic stress driven by 
a mild elevation of ROS activate signaling pathways and 
initiate adaptive responses that allow plants to cope with and 
prevent further harmful stress (Agathokleous 2021; Erofeeva 
2022; Moustakas et al. 2022; Volkova et al. 2022). Due to 
the strong health-promoting properties of the bioactive com-
pounds enhanced by the UV-B exposure, UV-B radiation 
has gained great attention as a green technology to improve 
the nutraceutical quality of agricultural plants in the last 
decades (Neugart and Schreiner 2018; Schreiner et al. 2012). 
Application of UV-B has been observed to have a positive 
effect on, e.g., basil (Mosadegh et al. 2018; Nascimento et al. 
2020), rice (Faseela and Puthur 2018), chili pepper (Dolz-
henko et al. 2010), mung bean (Wang et al. 2017), and wheat 

(Chen et al. 2019). Besides, UV-B radiation impacts insect-
plant interactions, directly by affecting herbivore behavior 
or indirectly by altering plant biochemistry and morphol-
ogy (Bornman et al. 2019; Prieto-Ruiz et al. 2019). In addi-
tion, the use of light-emitting diode (LED) illumination in 
the horticultural field is constantly expanding. Due to their 
energy efficiency, low radiant heat and durability as well 
as the possibility of customization in terms of wavelength 
emission and spectral composition, LED light represents an 
eco-friendly and economically sustainable solution as artifi-
cial lighting source (Bourget 2008; Bantis et al. 2018).

In addition, the secondary metabolites are major drivers 
of plant–insect herbivore interactions too, and the effects 
of such hormetic priming on plant–insect interactions are 
poorly understood even though UV priming is among the 
most promising priming approaches (Christou et al. 2022). 
Recently, UV-B radiation has also evolved as an environ-
ment friendly technology, with the potential of improving 
crop protection against agricultural insect pests, mainly 
by boosting both constitutive and inducible plant defenses 
(Escobar-Bravo et al. 2021; Qi et al. 2018). Studies on the 
influence of UV-B radiation on the production of volatile 
compounds are quite scarce (Jaiswal and Agrawal 2021; 
Johnson et al. 1999). Moreover, the use of UV-B LED light 
for horticultural purposes is at its infancy, with most cur-
rent studies involving the use of UV-B fluorescent tubes 
for UV-B treatments. However, LEDs represent a valuable 
option, compared to UV-B fluorescent tubes, considering 
their longer lifespan, the higher energy efficiency, the neg-
ligible heat loss, and the higher customizability in terms of 
power and wavelength.

It is urgently necessary to reduce pesticide use in agricul-
tural settings to avoid adverse effects on human health and 
the environment, as well as the rapid emergence of resist-
ance in targeted species (Pavela and Benelli 2016). As a 
result, developing novel and eco-friendly pest management 
tools through habitat manipulation is a worthwhile research 
endeavor. Previous research has shown that both plant UV-B 
light exposure and mycorrhizal symbiosis can influence the 
arthropod feeding activity (Barber et al. 2013; Qi et al. 2018). 
However, little has been done to shed light on the potential 
effects of the interaction between UV-B radiation and AMF 
colonization of horticultural crops and their key arthropod 
pests (Zeni et al. 2023). In this framework, one may question 
whether UV radiation exposure and mycorrhizal symbionts 
can boost plant tolerance to polyphagous insect pests attack-
ing horticultural crops. Therefore, the present study aims at 
unraveling the role of the combination of plant above- and 
below ground treatments (UV-B exposure and mycorrhiza-
tion) in the feeding activity of key arthropod pests. To this 
end, we evaluated biochemistry, morphology, and physiology 
of Lactuca sativa L. plants with or without AMF and exposed 
or not to UV-B radiation as well as the feeding behavior of 
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larvae of Spodoptera littoralis (Boisduval) (Lepidoptera: 
Noctuidae), a highly polyphagous insect that attacks over 40 
plant families. We hypothesized that UV-B priming and AMF 
inoculation could enhance leaf defense potential and improve 
the performance of plants under herbivory.

Materials and methods

Insects

The insects tested here were mass-reared at the Entomology 
Lab of the Department of Agriculture, Food and Environ-
ment (DAFE), University of Pisa (Italy), under controlled 
conditions [27 ± 1 °C, 75% R.H., and 16:8 (L:D)-h photo-
period]. Batches of S. littoralis eggs were placed on filter 
paper in a plastic container. Newly hatched larvae were 
gently transferred on a semi-synthetic bean-based (Sorour 
et al. 2011). The larval development on semi-synthetic diet 
takes 18–20 days and includes 6 larval stages. In our feeding 
bioassay, we used  3rd–4th instar larvae.

Plant and fungal material

Organic seeds of the red leaf lettuce (L. sativa L. var. 
crispa) cv. Red Salad Bowl were bought from Landen 
company (Blumen Group, Milan, Italy). The research was 
carried out at DAFE, University of Pisa. The seeds were 
sterilized in a 5% sodium hypochlorite solution for 15 min 
with magnetic stirring, and then rinsed thoroughly with 
distilled water. The seeds were then sown on moistened 
filter paper in plastic trays (25 × 40 cm, 2 seeds  cm−2). The 
trays were placed in climate-controlled chambers and kept 
in the dark at 24 °C for 72 h, followed by 16:8 (L:D)-h 
photoperiod. Blue/red (1:2 ratio) and green (10%) LEDs 
(C-LED, Imola, Italy) provided photosynthetic active 
radiation (PAR), with a photosynthetic photon flux density 
(PPFD) of 225 ± 5 μmol  m−2  s−1.

The AMF species Funneliformis mosseae (T.H. Nicol-
son & Gerd.) C. Walker & A. Schüßler, isolate IMA1, was 
used in the experiment. The AMF isolate was obtained 
from pot cultures in the DAFE Microbiology Laboratory’s 
collection. The fungal inoculum was grown in a green-
house for 6 months on Trifolium alexandrinum L. as a host 
plant in a mixture (1:1 by volume) of sterilized soil and 
calcined clay (OILDRI Chicago, IL, USA). At harvest, 
roots were cut into approximately 1-cm fragments and 
mixed with the substrate to form a homogeneous crude 
inoculum mixture, which was then air-dried and stored 
until use. Prior to the experiment, the biological activity of 
the inoculum was assessed using the mycorrhizal inoculum 
potential (MIP) bioassay described in Njeru et al. (2014), 
and a level of 50–60% was considered optimal.

Mycorrhizal and UV‑B treatments

Once the cotyledons were fully expanded (about 5 days 
after sowing), the sprouts were transferred to polystyrene 
plug trays (16 mL per cell, one sprout per cell) with a 
sterilized calcined clay as substrate. The substrate of half 
cells (120) was mixed (1:1) with F. mosseae IMA1 crude 
inoculum. To ensure a common AMF-associated micro-
biota to uninoculated control plants, the other half of the 
cells (120) received the same amount of sterilized crude 
inoculum (mock inoculum), and each cell received 2 mL 
of a filtrate obtained by sieving a mixture of mycorrhizal 
inocula through a 50-µm pore diameter sieve and a What-
man paper no. 1 (Whatman International Ltd, Maidstone, 
Kent (Koide and Li 1989).

The seedlings were irrigated twice a week with half-
strength Hoagland’s nutrient solution (pH 6, 1.15 mS  cm–1 
electrical conductivity (EC)). Furthermore, plantlets were 
irrigated with distilled water (10 mL per pot) as needed. 
After 1 week in the growth chamber, mycorrhizal (+ M) 
and non-mycorrhizal (− M) plantlets were exposed or not to 
supplemental UV-B radiation for 2 weeks. UV-B radiation 
was provided by UV-B LEDs (High Power UV-B LTPL-
G35UVB308GH, LITE-ON Technology, Inc., Taipei City, 
Taiwan) assembled by C-LED company (C-LED, Imola, 
Italy). The emission peak of the LEDs was 308 nm (half 
band width, 15 nm). The output power per LED was 62 mW, 
and the view angle was 120°. The UV-B irradiance at the 
top of the plants was 0.4 W  m–2, and the treatment lasted 
16 h per day (equivalent to a daily UV-B dose of 23 kJ  m–2). 
Irradiance was measured using the spectrometer (FLAME-
T-XR1-ES S/N: FLMT07829, Ocean Insight, Maybach-
strasse 11, Ostfildern, D-73760 Germany) with fiber optics 
(QP400-1-UV-BX; Ocean Insight) and cosine corrector 
(CC-3-UV-S; Ocean Insight). During the treatment period 
and prior to sampling, both the + UV-B and − UV-B groups 
of plants were also exposed to PAR with a 16:8 (L:D)-h 
photoperiod, as indicated in the previous paragraph. Prelimi-
nary tests on lettuce plants were used to determine the UV-B 
dose. UV-B irradiation was carried out during the photo-
period’s 16-h light cycle, as previously described. To avoid 
the transfer of mycorrhizal fungi, the + M and − M plants in 
both the UV-B treatment and control chambers were placed 
in separate plastic trays. Two weeks after the start of the 
UV-B treatment (3 weeks after mycorrhizal inoculation), 
plants from all four groups (− M/ − UV-B; − M/ + UV-B; 
+ M/ − UV-B; + M/ + UV-B; 60 plants per treatment) were 
randomly divided and sampled for further analysis.

Biometric indexes

Five different plants (biological replicates) per experi-
mental condition were harvested, and the total number of 
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fully expanded leaves per plant (n) and plant height (cm) 
were determined. In addition, same plants were weighed 
to measure the fresh (FW; g) and dry weight (DW; 60 °C 
until constant weight). DW/FW ratio was also calculated 
and expressed as a percentage.

Total phenolic, flavonoid, and anthocyanin 
extraction and determination

Total phenolics, flavonoids, and anthocyanins were measured 
in three separated groups of plants per treatment; each group 
consisted in five randomly selected freeze-dried plants (fifteen 
plants per group per treatment totally). Extraction was performed 
on 50 mg of freeze-dried sample using the method described by 
Tavarini et al. (2019) with few modifications. Briefly, samples 
were extracted with 1.5 mL of 80% methanol, and then sonicated 
for 30 min. After stirring for 30 min, the samples were centri-
fuged, and the supernatant was collected and stored at 4 °C. The 
pellet was subjected to a further extraction with 1 mL of 80% 
methanol, and the supernatants were combined and stored at 
4 °C prior to the assays above.

The total phenolic content was determined using the 
Folin–Ciocalteau method (Borbalàn et al. 2003), with the 
absorbance at 750  nm through an Ultrospec 2100 pro-
UV–vis spectrophotometer (Amersham Biosciences). The 
concentration of total phenolics was expressed as mg of gal-
lic acid equivalents (GAE)  g−1 FW.

Flavonoid concentration was measured, according to Kim 
et al. (2003), and the absorbance at 510 nm was recorded. 
The concentration of flavonoids was expressed as mg of 
catechin equivalents (CAE)  g−1 FW. Commercial standards 
were used to create standard curves for total phenolic and fla-
vonoid evaluation (Sigma-Aldrich Chemical Co., St. Louis, 
MO, USA).

Total anthocyanins were extracted and determined using 
the pH differential method described by Giusti and Wrolstad 
(2001). In brief, 50 mg freeze-dried samples were extracted 
in acidified methanol (1% HCl), and absorbance at 530 and 
700 nm was measured. The following formula is used to 
calculate the final absorbance (Af) of the samples:

Total anthocyanin concentration was expressed as µg of 
cyanidin-3-O-glucoside (molar extinction coefficient 26,900 
L  cm−1  mol−1; molecular weight 449.2 g  mol−1) equivalents 
(C3GE).

Total antioxidant activity evaluation

Total antioxidant activity was measured in freeze-
dried phenolic extracts using the ABTS (2,2-azinobis 

Af =
(

A
530

− A
700

)

pH 1.0 −
(

A
530

− A
700

)

pH 4.5

(3-ethylbenzothiazoline-6-sulfonic acid) and the ferric 
reducing antioxidant power (FRAP) assays, as described by 
Re et al. (1999) and Benzie and Strain (1996), respectively. 
According to the ABTS assay, the absorbance was meas-
ured at 734 nm, and the antioxidant activity was expressed 
as μmol of Trolox equivalent antioxidant capacity (TEAC) 
 g−1 FW. According to the FRAP assay, the absorbance was 
read at 593 nm, and the antioxidant activity was expressed 
as μmol of Fe (II)  g−1 FW. Through the calculation of stand-
ard curves, the respective commercial standards (Trolox and 
 FeSO4, considering the ABTS and FRAP assays, respec-
tively; Sigma-Aldrich Chemical Co., St. Louis, MO, USA) 
were used in both antioxidant activity determinations.

Chlorophyll and carotenoid determination

Chlorophylls a and b and total carotenoids were extracted 
and quantified spectrophotometrically (Ultrospec 2100 pro-
UV–vis spectrophotometer, Amersham Biosciences) from 
three groups of five plants per group, following the method 
reported by Wellburn (1994) with few modifications. In 
brief, 150-mg samples were homogenized with 80% (w/v) 
cold acetone before being centrifuged (5500 × g per 5 min at 
4 °C), and the supernatant was collected. A second volume 
of 80% cold acetone was added to the pellet, centrifuged 
(5500 × g per 5 min at 4 °C), and the resulting supernatant 
was combined with the first. This procedure was repeated 
until the supernatant after centrifugation was clear. The 
absorbance of the combined supernatant was read at 663, 
648, and 470 nm.

Color measurement

Color was measured on three different fully expanded leaves 
per plant, five plants per experimental condition, using a 
Konica Minolta CR-600 portable colorimeter (Holdings, 
Inc., Osaka, Japan). Color was determined using the CIELab 
system (CIE 1977), where L* (lightness), a* (redness), 
and b* (yellowness) were used to calculate chroma (C*; 
(a*2 + b*2)1/2) and hue angle (H*;  tan−1 (b*/a*)) indexes 
(Priolo et al. 2000). Measurements were conducted in an 
8-mm area diameter, specular component included, and 0% 
UV, D65 standard illuminant, observer angle 10°, and zero 
and white calibration.

Analyses of AMF root colonization

For each treatment, the percentage of mycorrhizal coloni-
zation on the total root system of 12 plants was calculated. 
Following Phillips and Hayman (1970) method, each root 
system was rinsed with tap water, clarified, and dyed with 
0.05% Trypan blue in lactic acid rather than phenol. The grid 
line intersection method was used to calculate the percentage 
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of colonized roots length (Giovannetti and Mosse 1980). To 
check for the presence of intraradical AM fungal structures 
(e.g., appressoria and arbuscules), roots were mounted on 
slides with lactic acid and examined using a Reichert-Jung 
(Wien, Austria) Polyvar light microscope.

Feeding assay with Spodoptera littoralis larvae

To determine the feeding preference of S. littoralis larvae 
towards different treated/untreated lettuce plants, a no-choice 
test was performed following the method of Vandenbussche 
et al. (2018) with slight modifications. A  3rd–4th instar larva 
was isolated and gently transferred to a Petri dish contain-
ing a leaf of treated/untreated lettuce. To absorb the excess 
moisture released by the leaf, a filter paper was placed on the 
bottom of the Petri dish. The Petri dishes were stored in the 
dark to avoid the larvae visual orientation. The acceptability 
of the leaves to the larvae was evaluated by noting the pro-
portion of consumed leaves after 18 h. A total of 40 leaves 
were used per treatment, with two leaves chosen at random 
for each plant. To evaluate the amount of consumed leaf, 
a picture of each leaf has been taken before the introduc-
tion into the Petri dish and after 18 h, using a Nikon D5300 
digital camera (Tokyo, Japan). The leaves were placed on a 
square of white paper of a known area (10 cm × 10 cm). Each 
picture was cut out to the size of a square and converted to 
an 8-bit black-and-white image. ImageJ software was used 
to calculate the size of the leaf area (black area) in relation 
to the paper square (white area). Therefore, the percentage of 
the consumed leaf was assessed by comparing the initial leaf 
area to the remaining leaf area after 18 h of larval feeding.

Statistical analysis

Differences in the biochemical parameters analyzed between 
the different groups of plants, considering both the mycor-
rhization (− M and + M) and the UV-B treatment (+ UV-B 
and − UV-B) were assessed with a two-way ANOVA fol-
lowed by post hoc Tukey–Kramer test (p < 0.05) to eval-
uate significant interactions, and data are reported as 
mean ± standard error (SE). JMP software (JMP®, Version 
16. SAS Institute Inc., Cary, NC, 1989–2021) was used to 
perform both the two-way ANOVA and a multivariate sta-
tistic with an unsupervised approach, a principal compo-
nent analysis (PCA), and a two-way hierarchical clustering 
analysis (HCA). PCA combines all the n measured variables 
simultaneously (biometric, biochemical, and color param-
eters investigated in this study) to display possible clustering 
patterns according to newly generated p variables (p < n), 
the so-called principal components (PCs). In this study, the 
first two PCs, which explain most of the differences, were 
considered. The HCA (Euclidean distance, Ward’s linkage) 
was used to underline the similarity among the groups and 

the parameters considered. Data of mycorrhizal coloniza-
tion were analyzed by independent Student’s t-test to assess 
the effect of UV-B treatment on inoculated plants, using 
SPSS statistical package v. 23.0. GraphPad Prism (v. 9.5.1, 
GraphPad Software, San Diego, California, USA) was used 
to analyse data collected from the no-choice assays on S. 
littoralis. The data were previously transformed with arc-
sine√ to evaluate their distribution. As the goodness-of-fit 
test evaluating the data distribution outlined that they were 
not normally distributed (Shapiro–Wilk test, p < 0.01), dif-
ferences in larval acceptance of leaves were analyzed using 
the Kruskal–Wallis test. A probability level of p < 0.05 was 
used for the significance of differences between means.

Results

Mycorrhizal status of experimental plants

Lettuce plants inoculated with F. mosseae IMA1, collected 
21 days post-inoculation, independently of UV-B treat-
ment, showed in their roots the typical symbiotic structures 
of AMF, such as hyphae, arbuscules, vesicles, and spores, 
detected under the optical microscope (Fig. 1).

On the contrary, control plants did not show any colo-
nization, as expected, since they were mock inoculated. 
UV-B treatment did not significantly affect AMF coloni-
zation in inoculated plants (t = 1.66, p = 0.11). Mycorrhizal 
root length independent of UV-B treatment was 27.7 ± 9.3% 
(mean ± SD).

Biometric indexes and dry matter content

Weight and length of the plants, number of leaves per plant, 
and dry matter content were evaluated (Table 1). The inter-
action between UV-B exposure and mycorrhization did not 
significantly affect any of the aforementioned traits. Consid-
ering only the mycorrhization, − M and + M plants did not 
show any significant difference in the parameters analyzed, 
except for the plant length; − M plants were on average 6.8% 
higher than the + M plants. UV-B radiation was effective in 
increasing both the plant weight and length (by 26.7% and 
20.8%, respectively), while no significant differences were 
observed in terms of the number of leaves and dry matter 
percentage between − UV-B and + UV-B plants.

Total phenolic, flavonoid, anthocyanin contents 
and antioxidant capacity

The interaction between the mycorrhization and UV-B treat-
ment did not produce statistically significant results in terms 
of total phenolics, flavonoids, antioxidant capacity, and total 
anthocyanins. Mycorrhizal and non-mycorrhizal lettuce plants 
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did not significantly differ in total phenolics, flavonoids, and 
total anthocyanin contents, as well as in the antioxidant capac-
ity measured with either ABTS or FRAP assay (Fig. 2). Con-
versely, UV-B exposure enhanced the content of these second-
ary metabolites. Specifically, lettuce plants exposed to UV-B 

radiation displayed a 53, 37, and 102% higher content of total 
phenolics, flavonoids, and anthocyanins, respectively. Simi-
larly, the antioxidant activity of UV-B irradiated plants was 
significantly higher (28% in ABTS assay and 62% in FRAP 
assay), compared to the non-irradiated plants.

Fig. 1  Light photomicrographs 
of fungal structures formed by 
Funneliformis mosseae IMA1 
on the roots of Lactuca sativa L. 
(+ M) exposed or not to UV-B 
light (+ UV-B or − UV-B). 
a, b. Fungal extraradical and 
intraradical hyphae and appres-
soria formed on the root surface 
(scale bars: a, 30 µm; b, 20 µm); 
c, d. Arbuscules produced 
within cortical root cells (scale 
bar 15 µm)

Table 1  Weight, length, number 
of fully-expanded leaves per 
lettuce plant, and dry matter 
content of mycorrhizal (+ M) 
or non-mycorrhizal (− M) 
lettuce plants, treated with 
UV-B radiation (+ UV-B) or not 
(− UV-B)

The data show the mean ± SE (n = 5). Two-way ANOVA (p < 0.05) was used to determine statistically 
significant differences, and different letters indicate significantly different values according to the Tukey–
Kramer test. Data related to the mean effects, as well as the respective statistics, are obtained by consider-
ing each factor (UV-B or mycorrhization) individually, merging the data corresponding to the other, not 
considered, factor
n.s. not significant

UV-B exposure Mycorrhization Weight (g) Length (cm) Leaves (n) DW/FW (%)

 − UV-B  − M 0.80 ± 0.08 4.32 ± 0.08 4.60 ± 0.19 10.08 ± 0.47
 + M 0.92 ± 0.10 3.96 ± 0.05 4.20 ± 0.30 10.81 ± 0.97

 + UV-B  − M 1.13 ± 0.08 5.12 ± 0.08 4.80 ± 0.16 10.14 ± 0.28
 + M 1.06 ± 0.07 4.88 ± 0.09 4.60 ± 0.19 9.67 ± 0.07

Mean effect
 − UV-B 0.86 ± 0.08 b 4.14 ± 0.08 b 4.40 ± 0.22 10.45 ± 0.51
 + UV-B 1.09 ± 0.06 a 5.00 ± 0.08 a 4.70 ± 0.15 9.90 ± 0.17

 − M 0.97 ± 0.09 4.72 ± 0.15 a 4.70 ± 0.15 10.11 ± 0.25
 + M 0.99 ± 0.08 4.42 ± 0.17 b 4.40 ± 0.22 10.24 ± 0.50

ANOVA (p-values)
Mycorrhization (A) n.s 0.0065 n.s n.s
UV-B exposure (B) 0.0352  < 0 .0001 n.s n.s
A × B n.s n.s n.s n.s
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Chlorophyll and carotenoid content

The interaction between UV-B exposure and mycorrhi-
zation did not significantly impact the chlorophylls a/b 

ratio, the sum of chlorophylls a + b or the total carotenoid 
concentrations (Table 2). No statistically differences were 
found between mycorrhizal and non-mycorrhizal plants 
in terms of all the photosynthetic pigments measured. 

Fig. 2  Determination of (a) total phenolics; (b) flavonoids; antioxi-
dant capacity measured through (c) ABTS, and (d) FRAP assays; (e) 
total anthocyanins of mycorrhizal (+ M) or non-mycorrhizal (− M) 
lettuce plants, UV-B-treated (+ UV-B) or untreated (− UV-B). The 

two-way ANOVA results are shown in the box below each histogram. 
n.s., not significant. According to two-way ANOVA, there were no 
significant interaction effects (n = 3, p > 0.05)
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However, UV-B radiation increased the concentration of 
total carotenoids by 45%, compared to the non-irradiated 
plants. No significant differences between UV-B irradi-
ated and unirradiated plants were observed considering the 
chlorophylls a/b ratio and the sum of chlorophylls a + b.

Color determination

UV-B exposure was the only factor significantly affecting the 
color of lettuce leaves (Table 3). Particularly, UV-B-treated 
plants showed 46, 44, and 45% smaller values of lightness 

(L*) and blue-yellow (b*) coordinates, and hue angle (H*), 
respectively, and 135% larger values of red-green (a*) coor-
dinate. The mycorrhization and the interaction of mycorrhi-
zation and UV-B exposure were ineffective in significantly 
changing the aforementioned color parameters. To better 
visualize the clustering pattern according to the L*, a*, and 
b* coordinates, a 3D scatter chart was created (Fig. 3). The 
two main clusters detected in Fig. 3 corresponded to − UV-B 
(in the upper right portion of the space) and + UV-B (in the 
lower-left portion of the space) groups, regardless of the 
mycorrhization. Indeed, no clusters could be identified 

Table 2  Chlorophyll a/b, 
chlorophyll a + b, and total 
carotenoid concentration of 
mycorrhizal (+ M) or non-
mycorrhizal (− M) lettuce 
plants, treated with UV-B 
radiation (+ UV-B) or not 
(− UV-B)

The data show the mean ± SE (n = 3). Two-way ANOVA (p < 0.05) was used to determine statistically sig-
nificant differences
n.s. not significant

UV-B exposure Mycorrhization Chl. a/b ratio Chl. a + b Carotenoids
(µg g − 1 FW) (µg g − 1 FW)

 − UV-B  − M 1.73 ± 0.15 52.42 ± 7.92 4.90 ± 1.12
 + M 1.47 ± 0.17 54.50 ± 7.20 5.25 ± 0.10

 + UV-B  − M 1.48 ± 0.12 55.50 ± 3.87 7.03 ± 0.69
 + M 1.46 ± 0.07 47.22 ± 4.84 7.66 ± 0.86

Mean effect
 − UV-B 1.60 ± 0.12 53.46 ± 4.81 5.07 ± 0.51
 + UV-B 1.47 ± 0.06 51.36 ± 3.33 7.35 ± 0.51

 − M 1.60 ± 0.10 53.96 ± 4.00 5.96 ± 0.76
 + M 1.47 ± 0.08 50.86 ± 4.21 6.46 ± 0.66

ANOVA (p-values)
Mycorrhization (A) n.s n.s
UV-B exposure (B) n.s 0.0204
A ˂ B n.s n.s

Table 3  Color parameters 
(L*, a*, b*, H*, and C*) in 
mycorrhizal (+ M) or non-
mycorrhizal (− M) lettuce 
plants, treated with UV-B 
radiation (+ UV-B) or not 
(− UV-B). Lightness (L*), 
redness (a*), and yellowness 
(b*) were used to calculate 
chroma (C*; (a*2 + b*2)1/2) 
and hue angle (H*;  tan−1 
(b*/a*)) indexes

Data represent the mean ± SE (n = 5). Statistically significant differences were evaluated by two-way 
ANOVA (p < 0.05), and different letters indicate significantly different values according to Tukey–Kramer 
test
n.s. not significant

UV-B exposure Mycorrhization L* a* b* H* C*

 − UV-B  − M 23.2 ± 1.7 9.0 ± 1.1 20.9 ± 3.0 60.8 ± 3.9 22.7 ± 1.6
 + M 28.4 ± 1.4 5.9 ± 1.5 24.3 ± 2.1 70.6 ± 4.7 24.5 ± 1.6

 + UV-B  − M 14.4 ± 1.6 18.8 ± 1.7 12.2 ± 1.8 33.1 ± 6.0 23.1 ± 0.7
 + M 13.6 ± 2.0 16.5 ± 1.9 13.2 ± 2.5 38.6 ± 8.1 22.4 ± 0.7

Mean effect
 − UV-B 25.8 ± 1.3 a 7.5 ± 1.0 b 22.6 ± 1.8 a 65.7 ± 3.3 a 23.6 ± 1.1
 + UV-B 14.0 ± 1.2 b 17.6 ± 1.3 a 12.7 ± 1.5 b 35.9 ± 4.8 b 22.7 ± 0.5

 − M 18.8 ± 1.8 13.9 ± 1.9 16.5 ± 2.2 47.0 ± 5.7 22.9 ± 0.8
 + M 21.0 ± 2.7 11.2 ± 2.1 18.7 ± 2.4 54.6 ± 6.9 23.5 ± 0.9

ANOVA (p-values)
Mycorrhization (A) n.s n.s n.s n.s n.s
UV-B exposure (B)  < 0.0001  < 0.0001 0.0007 0.0001 n.s
A × B n.s n.s n.s n.s n.s
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according to − M and + M plants, confirming that the myc-
orrhization did not modify the color parameters studied.

Feeding assay with Spodoptera littoralis larvae

Since UV-B exposure increased the contents of total phe-
nolics, flavonoids, and anthocyanins, we evaluated whether 
these conditions could influence the feeding preference of S. 
littoralis larvae. Caterpillars fed with treated lettuce plants 
(i.e. − M/ + UV-B; + M/ − UV-B; + M/ + UV-B) behave simi-
larly to caterpillars fed with control plants (i.e. − M/ − UV-B) 
(Kruskal–Wallis, χ2 = 1.49, d.f. = 3, p = 0.68). In addition, 
the combination of both UV-B and AMF treatments did not 
significantly affect S. littoralis feeding behavior (Fig. 4). 
These results suggested that AMF inoculation and UV-B 
radiation had no indirect effects on the caterpillars.

Discussion

UV‑B and mycorrhizal effect on lettuce plants

The potential of UV-B radiation and/or the use of AMF inoc-
ula to enhance the nutraceutical value of agricultural plants 
by increasing the content of health-promoting secondary 
metabolites has been investigated in several species, such as 
flaxseed (Santin et al. 2022), basil (Mosadegh et al. 2018; 
Nascimento et al. 2020, Battini et al. 2016), broccoli (Mewis 

et al. 2012; Moreira-Rodríguez et al. 2017a, 2017b), wheat 
(Chen et al. 2020), rice (Faseela and Puthur 2018), lettuce 
(Baslam et al. 2013; Avio et al. 2017), and others (Santin et al. 
2021a, 2021b; Avio et al. 2018; Agnolucci et al. 2020). How-
ever, many studies are conducted using UV-B lamps as a light 
source (Assumpção et al. 2019; Aksakal et al. 2017; Basahi 
et al. 2014; Esringu et al. 2016; Lee et al. 2021; Park et al. 
2007; Rajabbeigi et al. 2013; Rodriguez et al. 2014; Zhang 
et al. 2019), but research employing UV-B LEDs is scanty.

In this study, the lettuce plants exposed to UV-B from 
LED sources were 26.7% heavier and 20.8% taller than 
their control counterparts, suggesting a positive role of the 
irradiation on such biometric indexes. This observation 
contrasted with that of Tsormpatsidis et al. (2008), whose 
lettuce plants were cultivated in tunnels with or without 
UV (280–400 nm)-blocking filters. The authors found a 
lower vegetative growth (in terms of dry weight and leaf 
number) with the progressive increase in UV proportion. 
Similar to Tsormpatsidis et al. (2008), other studies reported 
a reduction in fresh and/or dry weight in UV-exposed let-
tuce (16–18 μmol  m−2  s−2), although they used different 
lettuce cultivars (Diaz et al. 2006). UV-B irradiation neg-
atively affected plant growth also in other plants of food 
interest, such as basil (18.7 kJ  m−2  h−1), potato (10 kJ  m−2 
 d−1), flaxseed 1.33 (W  m−2), radish 7.2 (kJ  m−2  d−1), rice 
(15.7 kJ  m−2), barley (0.60–2.30 W  m−2), bean (0.60–2.30 
W  m−2), and others (Chen et al. 2020; Dou et al. 2019; 
Santin et al. 2022; Singh et al. 2011; Teramura et al. 1991; 

Fig. 3  3D scatter chart setting 
L*, a*, and b* as coordinates, 
according to the CIE L*a*b* 
system. Different symbols refer 
to individual lettuce plants from 
the different groups referred 
to the mycorrhizal (+ M) or 
non-mycorrhizal (− M) lettuce 
plants, treated with UV-B radia-
tion (+ UV-B) or not (− UV-B). 
Lightness (L*), redness (a*), 
and yellowness (b*) values for 
each plant are the mean of three 
independent measurements on 
three fully expanded leaves
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Tevini et al. 1981). UV-B-related reduction in plant growth 
might be due to impairments in the cell cycle caused by 
DNA photo dimers (Biever et al. 2014; Yadav et al. 2020), 
and the likely damages to the photosynthetic apparatus and 
the consequent photosynthetic processes (Cuzzuol et al. 
2020; Kosobryukhov et al. 2020; Piccini et al. 2020). In the 
current study, the increase of weight and height in the UV-
B-exposed plants might be due to the lower UV-B irradiance 
compared to other studies, which might have lessened the 
appearance of UV-B-related stress-like symptoms. Indeed, 
in the present work, lettuce plants were exposed to low, eco-
logically relevant UV-B doses; therefore, it is reasonable to 
assume that the irradiation provided did not induce signifi-
cant impairments in the plant growth and development, as 
conversely observed in other studies.

It is widely known from the literature that UV-B expo-
sure can be associated with increased ROS levels, with 

consequent oxidative damage in plants (Gao and Zhang 
2008). However, in case of moderate irradiation, plants can 
control oxidative stress by ROS-scavenging mechanisms that 
can prime plants, thus activating their pathways of defense 
and protecting against both abiotic and biotic stresses (Chris-
tou et al. 2022; Volkova et al. 2022). These indicate the hor-
metic-biphasic property of radiation and numerous chemical 
agents, with this dose-dependency explaining the contradic-
tory findings between studies (Christou et al. 2022; Volkova 
et al. 2022). Recently, UV-B-induced oxidative stress was 
studied through histochemical detection of hydrogen perox-
ide and lipid peroxidation, as well as defense-related callose 
deposition in lettuce plants (Zeni et al. 2023); the authors 
also showed that the UV-B-induced stress was partially 
mitigated by the presence of AMF. Herein, the UV-B-trig-
gered increase in the content of total phenolics, flavonoids, 
anthocyanins, as well as the higher antioxidant capacity, is 
in accordance with the results reported by Aksakal et al. 
(2017) and Esringu et al. (2016), who found that a 12- and 
18-h UV-B irradiation (3.3 W  m−2) effectively enhanced 
the contents of total phenolics and the antioxidant activity 
in lettuce seedlings, respectively. Similarly, a study carried 
out on the same lettuce cultivar (Red Salad Bowl) subjected 
to a 2-week UV-B radiation exposure (1 h daily, 1.69 W 
 m−2) found a significantly higher flavonoid concentration. 
The ability of UV-B radiation to increase the content of 
phenolic compounds, particularly flavonoids, is mainly due 
to the activation of the UV-B photoreceptor UVR8, whose 
signaling cascade results in the upregulation of genes 
involved in the phenylpropanoid pathway, as observed in 
Arabidopsis (Heijde and Ulm 2012; Stracke et al. 2010) and 
in many other plant species (Giuntini et al. 2008; Hu et al. 
2020; Santin et al. 2019, 2021b; Sheng et al. 2018; Ubi et al. 
2006). The higher UV-B-triggered phenolic compounds, and 
consequently an enhanced antioxidant capacity, as acclima-
tion response towards high UV-B conditions (Cloix et al. 
2012; Rizzini et al. 2011) is due to the ROS-scavenging 
potential of such phytochemical, which can effectively pre-
vent eventual damages to macromolecules by neutralizing 
the likely UV-B-induced ROS (Czégény et al. 2016; Hideg 
et al. 2013). In our study, we also found a significantly 
higher (+ 102%) concentration of total anthocyanins in the 
UV-B-treated plants, accompanied with a significantly red-
der and more homogeneous color of the leaves, as resulted 
from the parameters according to the CIE L*a*b* system. 
An enhanced content of anthocyanins was also observed by 
Assumpção et al. (2019), who reported a 101.35% increase 
of cyanidin glucoside in the UV-B-treated lettuce plants 
(cv. Red Salad Bowl). In line with our results, Park et al. 
(2007) reported that a UV-B irradiation (5-min pulse daily, 
10 days totally, 0.26 kJ  m−2  d−1) was effective to develop 
a red coloration in the leaves or red lettuce, likely due to a 
transcriptional activation of several flavonoid-related genes. 

Fig. 4  Boxplot showing the percentage of leaf area  (cm2) con-
sumed by larvae of Spodoptera littoralis in differently treated lettuce 
plants. + M/ + UV-B = lettuce plants exposed to UV-B radiation and 
inoculated with the arbuscular mycorrhizal symbiont Funneliformis 
mossae; − M/ + UV-B = UV-B-exposed plants not inoculated with F. 
mossae; + M/ − UV-B = plants inoculated with F. mosseae and not 
exposed to UV-B; − M/ − UV-B = untreated lettuce plants, unexposed 
and not mycorrhizal inoculated (control). Each box plot indicates the 
median (lower, upper quartile and extreme values, outliers); n.s., not 
significant (Kruskal–Wallis test, p > 0.05)
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A UV-B-induced activation of some anthocyanin biosyn-
thetic genes was observed also with a transcriptome analysis 
by another study (Zhang et al. 2019), indicating that the 
accumulation of anthocyanin pigments in lettuce leaves 
occurs via transcriptional regulation through the UVR8 sign-
aling pathway. Contrarily to our observations, Rajabbeigi 
et al. (2013) did not find any significant change in terms of 
total phenolic and anthocyanin concentration of lettuce in 
response to the UV-B treatment. However, the UV-B irra-
diation described by the authors was conducted with a much 
higher UV-B fluence rate (8.2 W  m−2) and in a shorter time 
(5 days), indicating also a much greater dose rate; therefore, 
the biochemical effects triggered might be considerably dif-
ferent, since they are strictly dependent to both the UV-B 
irradiation and time of exposure (Jenkins 2017). Besides, 
the lettuce cultivar used (L. sativa var. capitata cv. Teodore 
RZ®) was different from that of our study, and physiologi-
cal and biochemical responses to UV-B exposure are spe-
cies- and cultivar-dependent (Rajabbeigi et al. 2013). Also, 
a UV-B exposure (10 h daily, 10 kJ  m−2  d−1) of lettuce plants 
cv. Romaine was ineffective in increasing flavonoid content, 
although anthocyanins and total phenolics were significantly 
enhanced by the UV-B irradiation (Basahi et al. 2014). Pho-
tosynthetic pigments of lettuce plants were also found to be 
affected by the UV-B treatment in the present study. Par-
ticularly, total carotenoid concentration was increased in the 
UV-B-treated plants, regardless the mycorrhization, while 
no changes were found in the content of chlorophyll a + b 
or their ratio. Our findings partially agreed with the find-
ings of Lee et al. (2021), who treated lettuce plants of New 
Red Fire and Two Star cultivars with 5 days of UV-B (24 h 
daily; 1.97 W  m−2). The authors found no changes in chlo-
rophyll a concentration in the New Red Fire cultivar, while 
both chlorophylls a and b were unaltered due to the irradia-
tion in Two Star cultivar. Similarly, Li and Kubota (2009) 
did not find any modification in the chlorophyll content of 
lettuce (cv. Red Cross) plants grown under supplemental 
UV-B irradiation, while a significant increase in xantho-
phyll and β-carotene was detected. Consistent results were 
obtained also when lettuce was grown in boxes covered with 
either UV-B transparent or UV-B blocking films. Krizek 
et al. (1998) found that chlorophyll a and b contents were 
unchanged between lettuce plants (New Red Fire lettuce cul-
tivar) receiving or not the UV-B solar component. Similar 
to our findings, Assumpção et al. (2019) reported no differ-
ences in chlorophyll and carotenoid concentration between 
UV-B-treated and untreated plants in the same cultivar (Red 
Salad Bowl) as in the present work. UV-B-induced increase 
of carotenoids, as reported in the present manuscript, was 
found also in other plant species, e.g., broccoli (Moreira-
Rodríguez et al. 2017a, b), tomato (Perez et al. 2008), and 
canola (Qaderi et al. 2010). However, UV-B-related modula-
tion of photosynthetic pigments is also genotype-dependent 

(Santin et al. 2021a; Schreiner et al. 2012). Carotenoids were 
found to increase by various stressors other than radiation 
and act as precursors of abscisic acid and some volatiles, 
among others, and are important for plant–insect interactions 
(Agathokleous 2021).

In this work, no changes in biometric and biochemical 
parameters were observed in mycorrhizal lettuce plants, 
except for a reduction in plant length. Arbuscular mycorrhi-
zal symbiosis generally enhances plant growth; nevertheless, 
a reduction in plant length during symbiosis establishment 
may be linked to a modulation of hormonal balance during 
the development of fungal colonization (Liao et al. 2018). 
Here, colonization levels (approximately 30%) were similar 
to or even higher than those observed in other studies in 
the roots of different lettuce cultivars (Baslam and Goicoe-
chea 2012; Avio et al. 2017). However, the sampling time 
(3 weeks post-inoculation), was not sufficient to detect dif-
ferences in biochemical parameters between mycorrhizal 
and control plants. Most studies analyzing antioxidant com-
pounds in mycorrhizal lettuce were carried out 7–8 weeks 
post-inoculation (Avio et al. 2017; Baslam et al. 2011a, 
2011b, 2013; Goicoechea et al. 2015), when the symbiosis 
is generally well established with marked effects on plant 
secondary metabolism. Baslam et al. (2013) demonstrated 
that mycorrhizal inoculation increased not only lettuce 
growth, but also chlorophyll and/or carotenoid contents, 
particularly in the leaves that were most exposed to light, at 
such a sampling time. However, as observed in other food 
plants, a differential modulation of the expression patterns 
of genes encoding for key enzymes involved in secondary 
metabolite production cannot be ruled out, even 3 weeks 
after inoculation (Vangelisti et al. 2018). The statistically 
not significant results in terms of antioxidant activity, total 
phenolics, flavonoids, anthocyanins, and photosynthetic 
pigments between mycorrhizal and not-mycorrhizal lettuce 
plants used in the present work may be also explained by the 
lettuce cultivar used (Red Salad Bowl), which belongs to L. 
sativa var. crispa. Indeed, most data were obtained from cul-
tivars, such as Batavia Rubia Munguía, Maravilla de Verano, 
Cogollos de Tudela, belonging to different botanical varie-
ties, capitata or longifolia. For example, anthocyanin and 
carotenoid concentrations were usually shown to increase 
in the leaves of such cultivars (Baslam et al. 2011a, 2013; 
Goicoechea et al. 2015; Avio et al. 2018). Conversely, no 
effects on the enhancement of total phenolic concentration 
were observed in diverse investigations (Baslam et al. 2011a, 
2011b, 2013), except for leaves of the cv. Batavia Rubia 
Munguía under optimal irrigation, in association with AMF 
(Baslam and Goicoechea 2012). The only study using two L. 
sativa var. crispa cultivars (Eluarde and Panisse) showed an 
increase of phenolics and antioxidant activity in the leaves 
of plants inoculated with different AMF isolates (Avio et al. 
2017). Such data confirm that the production of antioxidant 
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compounds is modulated by both plant genotype and AMF 
identity (Avio et al. 2018; Fusco et al. 2022).

UV‑B and mycorrhizal effects on caterpillar feeding 
behavior

Insect-plant interactions result in a wide range of outcomes 
depending on a variety of both abiotic and biotic factors. 
For instance, both UV-B treatment and AMF inoculation 
have been observed to stimulate plant defense mechanisms 
by impacting plant physiology and biochemistry (Qi et al. 
2018; Zeni et al. 2023). All these changes can affect the 
following trophic levels, such as the interaction between 
treated plants and herbivore insects (Gange 2007; Qi et al. 
2018). Interestingly, no treatment alone or in combination 
affected the food preferences of S. littoralis larvae. Con-
cerning the UV-B treatment alone, our results are consistent 
with those reported by Vandenbussche et al. (2018). Indeed, 
S. littoralis caterpillars performed equally well when fed 
with UV-B-treated plant material as when fed with not UV-
B-treated ones. This occurred despite an increase in plant 
antioxidant capacity due to a higher total phenolic and fla-
vonoid contents. As reported by Qi et al. (2018) in a study 
on Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) 
feeding activity, the UVR8-related downstream responses 
are not necessarily associated with plant resistance to chew-
ing insects. Other studies reported the marginal effect of 
UV-B treatment on different Spodoptera species (Lindroth 
et al. 2000; Wargent and Jordan 2013). Our findings support 
the hypothesis that generalist herbivores, such as lepidop-
teran caterpillars or polyphagous aphids [e.g., Myzus per-
sicae (Sulzer)] (Zeni et al. 2023), have evolved the ability 
to withstand the chemical defense mechanisms of a wide 
range of plant species. However, it is important to consider 
that higher UV-B doses than the one used in this work could 
further enhance the biochemical defenses in terms of phe-
nolic accumulation, without impairing plant growth and 
development. Therefore, deeper investigations are encour-
aged to study the effects of stronger UV-B irradiation on 
the feeding behavior of such generalist herbivores. As to the 
effects of AMF on S. littoralis feeding behavior, we can state 
that our results fit the analysis conducted by Heinen et al. 
(2018). According to their literature review, 75% of relevant 
papers reported no effect, and 25% reported negative effects 
of AMF on generalist chewing herbivores like S. littoralis 
larvae (Gange and West 1994; Vicari et al. 2002). In conclu-
sion, the effects of UV-B exposition and AMF inoculation 
on foraging S. littoralis caterpillars may be highly depend-
ent on the degree of specialization of the insect species. 
Furthermore, the responses might also depend on the plant 
developmental stage and on the degree of insect adaptation 
to variation in host plant quality due to the treatments.

Conclusions

Overall, UV-B irradiation priming over AMF inoculation 
of the most suitable plant genotype may represent a promis-
ing approach to increase the nutraceutical and commercial 
quality of lettuce plants. The enhanced chemical defenses 
of plants did not impact the feeding behavior of S. littoralis 
larvae, probably due to (i) the generalist feeding traits of 
such herbivores, (ii) the mild UV-B treatments, and (iii) the 
limited time for the induction of mycorrhizal effects on plant 
secondary metabolism (see also Zeni et al. 2023). Therefore, 
further investigations are needed to assess whether differ-
ent doses of UV-B/AMF and exposure durations (smaller 
or greater) that increase plant antioxidant defenses within a 
hormetic framework may alter the feeding behavior of oli-
gophagous insect pests.
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