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Abstract
In this paperweconsider the 3DEuler equations andwefirst prove a criterion for energy
conservation for weak solutions, where the velocity satisfies additional assumptions
in fractional Sobolev spaces with respect to the space variables, balanced by proper
integrability with respect to time. Next, we apply the criterion to study the energy
conservation of solution of the Beltrami type, carefully applying properties of products
in (fractional and possibly negative) Sobolev spaces and employing a suitable bootstrap
argument.
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1 Introduction

We consider the homogeneous incompressible 3D Euler equations

⎧
⎪⎨

⎪⎩

∂t u + (u · ∇) u + ∇ p = 0 (t, x) ∈ (0, T ) × T
3,

div u = 0 (t, x) ∈ (0, T ) × T
3,

u(0, x) = u0(x) x ∈ T
3,

(1.1)

where T
3 := (R/2πZ)3, while u : (0, T ) × T

3 → R
3 and p : (0, T ) × T

3 → R

represent respectively the velocity vector field and the kinematic pressure. It is well
known that for smooth solution to (1.1) (which are known to exist only locally in time)
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the kinetic energy

E(t) = 1

2

∫

T3
|u(t, x)|2 dx = 1

2
‖u(t)‖22,

is constant. Let u and p smooth enough to perform the following calculations: we
rewrite the convective term of (1.1)1 as follows

(u · ∇) u = div(u ⊗ u).

Multiplying (1.1)1 by the solution itself, and integrating over the domain, we get
‖u(t)‖22 = ‖u0‖22 since

∫

T3
div(u ⊗ u) : u dx = −

∫

T3
(u ⊗ u) : ∇u dx = −

∫

T3
u · ∇ |u|2

2
dx = 0.

We report this very basic calculation since we will use it several times and also since
we will show how it changes with a curl-formulation of the convective term.

Since physical experiments show that taking the limit as the viscosity vanishes, the
energy dissipation seems not to vanish (cf. Frisch [19]), it has been a subject of many
studies to understand whether this conservation remains valid, supposing certain (lim-
ited) regularity on the solution of the Euler equation, or not. In 1954, Lars Onsager [24]
conjectured that ifu is sufficiently regular in space, sayu ∈ L∞(0, T ;Cθ ),with θ > 1

3 ,
then the kinetic energy is preserved; on the other hand for θ < 1

3 a dissipation phe-
nomenon could be possible, even in absence of viscosity. The positive part of this
conjecture was solved 40 years later by Constantin, E, Titi (see [13]), where they
proved a slightly more general result in Besov spaces (which implies the Hölder case).
See also Eyink [18]. To be more precise, in [13] it is proved the conservation of energy
if u ∈ L3(0, T ; Bθ

3,∞), for θ > 1
3 . Sharp results were proved later on by Duchon and

Robert [16] and Cheskidov et al. [11]. Results in scales of classical Hölder functions
are proved in [7], while the boundary value problem is analyzed in Bardos and Titi [2].
In the last fifteen years –starting from the celebrated result by De Lellis and Székely-
hidi [14]– also the negative part of the Onsager conjecture has been addressed, with
an endpoint in the works by Isett [21] and Buckmaster et al. [10]. Nevertheless there
is still a strong activity to determine the minimal space-time assumptions which are
sufficient for the energy conservation, and some recent results are those in [9, 27].

Taking inspiration also from the work by De Rosa [15] and Liu et al. [22], we
consider here criteria in scales of fractional Sobolev spaces, instead of Besov orHölder
spaces. Thiswill allowus also to obtain sharp resultswhich reach the critical exponents,
see the discussion in Lemma 2.7.

The first result we prove concerns the conservation of energy in the fractional
Sobolev setting. We restrict to the Hilbertian case Ws,2(T3) = Hs(T3), but similar
results in scales of fractional Sobolev spacesWs,p(T3) can be obtained along the same
lines.
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Theorem 1.1 Let u ∈ L
5
2s (0, T ; Hs(T3)), with 5

6 ≤ s < 5
2 , be a weak solution to the

Euler equation (1.1). Then, the kinetic energy is conserved, that is

‖u(t)‖2 = ‖u0‖2 for a.e. t ∈ [0, T ].

Weobserve that the condition L3(0, T ; H5/6(T3)) is exactly the sameconditionproved
in Cheskidov et al. [12] for the Navier–Stokes equations (even if in a more technical
setting of the problem with boundaries), see also Beirão and Yang [5, Prop. 4.5], again
in the viscous case. In this paper we identify the same as a sufficient condition also
for the problem without viscosity. In this respect note also that the extension to the
Euler equations of results known for the Navier–Stokes equations is one of the results
proved in [9]. Moreover, similar to other observations in Nguyen et al. [23], Wang et
al. [27], the criteria involve the “critical spaces” and not slightly smaller spaces, as
when considering Besov or Hölder spaces (cf. [7, 13]), where the smooth functions
are not dense with respect to the norm of the space itself.

As an application of the criteria in Theorem 1.1 (which are obviously valid also
for periodic Leray-Hopf weak solutions to the Navier–Stokes equations), we analyze
the energy conservation of a family of solutions with a particular geometric meaning:
the Beltrami (also known as Trkal) flows. Beltrami solutions are well known in fluid
dynamics as they provide a family of stationary solutions to the Euler equations (1.1).
These are such that the curl of the velocity field, denoted byω := ∇×u, is proportional
to the field itself, i.e.

ω(x, t) = λ(x, t)u(x, t), (1.2)

where λ(·, ·) is a given scalar function of the time and/or space variables.
Note that these flows, despite being in some cases very simple and smooth (note

that for instance potential flows are Beltrami flows with λ ≡ 0) they are genuinely 3D
flows, since in 2D the (scalar) vorticity is orthogonal to the plane of motion.

In addition, we observe that, by using the so-called Lamb vector ω×u, it is possible
to write the alternative rotational formulation of the convective term

(u · ∇) u = ω × u + 1

2
∇|u|2.

This implies that in the case of Beltrami flows the convective term is equal to a gradient
(called Bernoulli pressure) which can be included in the pressure: Beltrami flows
(if smooth) satisfy linear (non-local) evolution equations, since the quadratic term
becomes simply a gradient and the nonlinearity disappears. This means that the flow
is laminar, but there are two caveat: (a) the numerical simulation of the pressure and
especially that of the Bernoulli pressure is particularly critical: if not using pressure-
robust numerical methods, the result at very high Reynolds numbers could be affected
by large oscillations (see Gauger et al. [20]); (b) more important from the theoretical
point of view is the fact that (ω × u) · u formally vanishes; for non-smooth functions
the fact (ω × u) · u = 0 (at most almost everywhere in T

3) does not directly imply
that ∫ t

0

∫

T3

(

ω × u + 1

2
∇|u|2

)

· u dxdτ = 0,
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since the integration could be not justified. One sufficient condition could be that of
showing that the above integral exists: then it will vanish, but unfortunately this is not
the case for weak solutions. At least with respect to the space variables, u ∈ L2(T3)

and the vorticity field is a distribution in H−1(T3) and so the term (ω × u) · u could
be not defined.

We start making some observations on the regularity which follows from the geo-
metric constraint (1.2). If λ(x, t) ≡ λ ∈ R (such a condition corresponds to the
circularly polarized plane waves used in electromagnetism), then u is smooth and the
conservation of energy is an obvious consequence. This follows by a standard boot-
strap argument using the Biot-Savart formula: in fact using that −�u = curl ω, from
u ∈ L∞(0, T ; L2(T3)) we can infer by elliptic regularity in the space variables that
then ω = λu ∈ L∞(0, T ; L2(T3)), which implies u ∈ L∞(0, T ; H1(T3)). Iterating
we get u ∈ L∞(0, T ; H3(T3)), which is a class of classical solutions. This implies
that a continuation argument for smooth solutions is valid, provided that the initial
datum is smooth.

The second observation comes from a simple computation in the case in which
λ(x, t) = λ(t) ∈ L p(0, T ), for some p ≥ 1. Observe that in this case∇ ·ω = λ(t)(∇ ·
u) = 0, so the divergence-free constraint is satisfied, without any further assumption
on λ(t). Then, condition (1.2) implies that ω ∈ L p(0, T ; L2(T3)), and consequently
we have more regularity on u, indeed u ∈ L p(0, T ; H1(T3)). Iterating this procedure
we get that if λ(t) ∈ L p(0, T ), for some p ≥ 1, and u ∈ L∞(0, T ; L2(T3)) then

ω ∈ L
p
3 (0, T ; H2(T3)) ↪−→ L

p
3 (0, T ; L∞(T3)).

Hence, if p ≥ 3, this is the Beale–Kato–Majda [3] criterion for continuation of smooth
solutions (which conserve the energy), and a first elementary results is the following.

Proposition 1.2 Let u be a weak solution to the Euler equations, which is a Beltrami
solution with λ ∈ L p(0, T ), for p ≥ 3. Let u0 ∈ H3(T3), with ∇ · u0 = 0, then u is
the unique classical solution of (1.1) in [0, T ] and conserves the energy.

If λ depends also on the space variables a compatibility condition to preserve the
divergence condition is that ∇λ · u = 0. This has some consequences on the effective
velocity fields to be considered, especially if the solutions are classical, seeBeltrami [6]
and Trkal [26]. For recent results on possible existence of non-trivial Beltrami fields,
see Enciso and Peralta [17] and Abe [1]. In our case we suppose to have a weak
solution, which is also a Beltrami field, and work directly on it.

The second Theorem we prove is about the conservation of energy when u is a
Beltrami field.

Theorem 1.3 Let u be a weak solution to the Euler equation (1.1), such that it is a
Beltrami field, i.e. (1.2) is satisfied. If λ ∈ Lβ(0, T , H τ (T3)), with β > 5

2τ−1 , for
1
2 < τ ≤ 3

2 , or if λ ∈ L5/2(0, T ; H τ (T3)), with τ > 3
2 , then the kinetic energy is

conserved.

This result derives from Theorem 1.1 after a proper (even iterated) use of some
precise results about the continuity of themultiplication operator in (negative) Sobolev
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spaces, see the results summarized in the next section, and see also [8] for related results
in a bounded domain and/or in presence of viscosity in the setting of Lebesgue spaces.

Plan of the paper: In Sect. 2we give some basic definition and introduce functional
spaces we will work with, recalling different results that will be used later on in the
paper. In Sect. 3 wewill give the proofs of the twomain results, namely Theorems 1.1–
1.3.

2 Preliminaries

In this section we give the main definitions, notation, and preliminary results that we
will employ later on.

2.1 Functional Spaces andWeak Solutions

In this paper we will use the classical periodic Lebesgue spaces (L p(T3), ‖ · ‖p) and
Sobolev spaces (Wk,p(T3), ‖ · ‖Wk,p ) of natural order k ∈ N, all considered with zero
mean value. When p = 2 we also use the notation Hk(T3) = Wk,2(T3). Here we will
denote by (·, ·) and ‖ · ‖ the scalar product and the norm in L2(T3) respectively. In
addition, we do not distinguish norm of scalar or vector valued functions.

A central role in this paper will be played by the fractional Sobolev spaces that we
define in the following (see [4]).

Definition 2.1 (Fractional Sobolev spaces) Let s ∈ R and 1 ≤ p ≤ ∞. We define the
Sobolev–Slobodeckij spaces as follows

• Let s ∈ (0, 1), then we will say that u ∈ Ws,p(T3) if

‖u‖Ws,p := ‖u‖p + [u]Ws,p < ∞,

where

[u]Ws,p =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

( ∫

T3

∫

T3

|u(x) − u(y)|p
|x − y|n+sp

dxdy

) 1
p

p ∈ [1,+∞)

ess sup
x,y∈T3

x �=y

|u(x) − u(y)|
|x − y|s p = ∞;

• Let s = θ + k, with θ ∈ (0, 1) and k ∈ N0. Then, we will say that u ∈ Ws,p(T3)

if
‖u‖Ws,p := ‖u‖Wk,p +

∑

|r |=k

[∂r u]W θ,p < ∞;

• If s < 0, and p′ is the Sobolev conjugate exponent of p, then

Ws,p(T3) = (W−s,p′
(T3))∗,
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where ∗ denotes the topological dual space.

Remark 2.2 Note that for p = 2 one can use also an equivalent semi-norm [u]Wα,2 =
‖(−�)α/2u‖L2 .

In the case of thewhole space (but also for bounded domainswith a proper definition
of the restriction) fractional spaces can be defined even by means of Bessel potentials,
and in this case the space is denoted in literature by Hs,p(�). For our purposes, we
do not give this definition since for s ∈ R and p = 2, the two definitions coincide, see
Triebel [25]. That is why we will denote Ws,2(�) as Hs(�).

We state some propositions that will be useful when considering the product of two
fractional Sobolev functions u ∈ Hs1(T3), λ ∈ Hs2(T3) (see [4, Theorems 6.1, 7.3,
8.1, 8.2] for the whole space case and the results in the periodic setting follow along
the same lines. Here results are rephrased in the simpler case pi = p = 2).

The first proposition regards the case of non-negative exponents.

Proposition 2.3 Let s, si ∈ R be parameters such that for i = 1, 2

1. s ≥ 0;
2. si ≥ s;
3. s1 + s2 − s > 3

2 .

If u ∈ Hs1(T3) and λ ∈ Hs2(T3), then λu ∈ Hs(T3) and the map of pointwise
multiplication

Hs1(T3) × Hs2(T3) → Hs(T3),

is continuous and bilinear. Moreover if s ∈ N0, the strictness of inequalities (2) and
(3) can be interchanged.

In the case of more general exponents we have the following proposition

Proposition 2.4 Let s, si ∈ R be parameters such that for i = 1, 2

1. si ≥ s;
2. min{s1, s2} < 0;
3. s1 + s2 ≥ 0;
4. s1 + s2 − s > 3

2 .

If u ∈ Hs1(T3) and λ ∈ Hs2(T3), then λu ∈ Hs(T3) and the map of pointwise
multiplication

Hs1(T3) × Hs2(T3) → Hs(T3),

is continuous and bilinear. Moreover if we substitute the condition (2) by the condition

5. min{s1, s2} ≥ 0 and s < 0

and the inequality (3) is strict, the same result holds.

Additionally, if s /∈ N0, proposition 2.3 is valid even in open and bounded set with
Lipschitz boundary.
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To complete these definitions we will say that the Bochner measurable function u
belongs to Lq(0, T ,Ws,p(�)) if the following norm

‖u‖Lq (Ws,p) :=

⎧
⎪⎪⎨

⎪⎪⎩

(
∫ T
0 ‖u(t)‖qWs,p dt

) 1
q

if q < ∞,

ess sup
t∈[0,T ]

‖u(t)‖Ws,p if q = ∞,

is finite.
We introduce now the notion of a weak solution to the Euler equations. To this aim,

it is necessary to introduce the spaces H and V , which are respectively the closure in
L2(T3) and W 1,2(T3) of the smooth, periodic, divergence-free and with zero mean-
value vector fields. The space of test functions will be the following

DT = {ϕ ∈ C∞
0 ([0, T [;C∞(T3)) : ∇ · ϕ = 0}.

Now we are able to define the notion of weak solutions for the Euler equations con-
sidered in the rest of the paper.

Definition 2.5 Let v0 ∈ H . A measurable function v : (0, T ) × T
3 → T

3 is called a
weak solution to the Euler equation if v ∈ C(0, T ;w-H) (continuous w.r.t. the weak
topology) is such that

∫ ∞

0
[(v, ∂tϕ) + ((v ⊗ v),∇ϕ)] dt = −(v(0), ϕ(0)) ∀ϕ ∈ DT .

2.2 Mollification

A fundamental tool in the sequel will be that of mollification and we recall the most
relevant properties, stated for periodic functions. Let us consider a centrally symmetric
function ρ ∈ C∞

0 (R3), such that ρ ≥ 0, supp ρ ⊂ B1(0) and ‖ρ‖L1(R3) = 1. Let ε ∈
(0, 1], we define the family of Friederichs mollifiers as follows ρε(x) = ε−3ρ(ε−1x).
Then, for every f ∈ L1

loc(T
3) we can define the well-posed mollification of f , that is

fε(x) =
∫

R3
ρε(x − y) f (y) dy =

∫

R3
ρε(y) f (x − y) dy,

which is nothing else than the convolution of ρε and f .
Since for small ε > 0, supp ρε ⊂ Bε(0) ⊂] − π, π [3, then we can say that

fε(x) =
∫

T3
ρε(y) f (x − y) dy.

We note that if f ∈ L1(T3), then f ∈ L1
loc(T

3) and fε is 2π -periodic along the
xi -axis, for i = 1, 2, 3.
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Apart classical result on mollification in Lebesgue, Hölder, and Sobolev spaces,
most of the results can be extended to fractional Sobolev spaces. An useful Lemma,
contained in [15], can be summarized as follows.

Lemma 2.6 Let f , g : T3 → T
3 be such that f ∈ Wα,p(T3) and g ∈ Wβ,q(T3), for

some 0 < α, β < 1 and p, q ≥ 1 such that 1
p + 1

q = 1. Then, besides the classical
estimate

‖∇ fε‖p ≤ Cεα−1[ f ]Wα,p , (2.1)

with C = C(p), it holds that for every 1 ≤ m < +∞, there exists a constant
C = C(m), such that

‖( f ⊗ g)ε − fε ⊗ gε‖m ≤ Cεα+β [ f ]Wα,p [g]Wβ,q . (2.2)

Moreover, in the case α = β = 0 it also follows that

lim sup
ε→0+

‖( f ⊗ g)ε − fε ⊗ gε‖m = 0. (2.3)

We end this section with a Lemma whose proof comes from the estimate (2.1) and
the fact that, for 1 ≤ p < ∞, the space C∞(T3) is dense in Wα,p(T3), as it is done
in [23, Lemma 2.1] for the case α = 0.

Lemma 2.7 Let f : T3 → T
3 be a function in Lq(0, T ;Wα,p(T3)), for some α ∈

]0, 1[. Then, for every 1 ≤ p, q < ∞, we have

lim sup
ε→0+

ε1−α‖∇ fε‖Lq (L p) = 0.

Moreover if f ∈ Lq(0, T ; L p(T3)), then

lim sup
ε→0+

‖ fε − f ‖Lq (L p) = 0.

Proof The proof of this result is based on the observation that, if f ∈ Wα,p(T3),
then fε is infinitely smooth but higher norms are not uniform bounded in ε > 0. In
particular, from (2.1) one can deduce immediately the boundedness

sup
ε>0

ε1−α‖∇ fε‖L p ≤ C[ f ]Wα,p < +∞.

To prove the Lemma it is enough to observe that for each λ > 0 we can find g ∈
C∞(T3) such that ‖ f − g‖Wα,p < λ. Then, applying again the estimate (2.1) to f − g
one gets

ε1−α‖∇ fε‖p ≤ ε1−α‖∇gε‖p + C[ f − g]Wα,p ≤ ε1−α‖∇gε‖p + Cλ.

Since λ can be chosen arbitrarily small and since lim supε→0+ ε1−α‖∇gε‖p = 0
(being g smooth and fixed) we get the proof. The need for the density of smooth
function excludes the case p = ∞ and, more generally excludes from this type of
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results Nikol’skiı̆ and Hölder spaces. Then, the extension to f in the Bochner space
Lq(0, T ;Wα,p(T3)) is simply obtained by raising to the q-th power the above estimate
and integrating over (0, T ). ��

3 Main Results

In this section we give the proof of the main results of the paper. We start with the
proof of a criterion about conservation of energy for velocities in fractional Sobolev
spaces.

Proof of Theorem 1.1 By following a very standard procedure to deal with non-smooth
functions we use as test function in the definition of weak solutions ρε ∗ (ρε ∗u). To be
precise the argument will also need another smoothing in time which is nevertheless
standard to justify, see [2]. By using the identity

∫ t

0

∫

T3
(uε ⊗ uε) : ∇uε dxdτ = 0,

being uε smooth and divergence-free, we get the equality

1

2
‖uε(t)‖2 − 1

2
‖u0,ε‖2 =

∫ t

0

∫

T3
((u ⊗ u)ε − uε ⊗ uε) : ∇uε dxdτ.

If we manage to estimate the integrand of the previous equality in such a way the
right-hand side goes to zero, we have finished since the L2-convergence of uε(t) to
u(t) as ε → 0+ holds almost everywhere in t ∈ (0, T ), by the properties of smoothing.
The proof will be slightly different depending on the values of the exponent “s ∈ R”
in the extra-assumption in the fractional space Hs(T3). For this reason we split the
proof in two parts but in all cases the main step is a proper estimation of the integral

Iε :=
∫ t

0

∫

T3
|uε ⊗ uε − (u ⊗ u)ε||∇uε| dxdτ.

The case 5
6 ≤ s < 1. By, applying Hölder inequality and the convex interpolation

inequality in Lebesgue spaces we get

Iε ≤
∫ t

0
‖uε ⊗ uε − (u ⊗ u)ε‖2 ‖∇uε‖2 dτ

≤
∫ t

0
‖uε ⊗ uε − (u ⊗ u)ε‖1−θ

1 ‖uε ⊗ uε − (u ⊗ u)ε‖θ
p ‖∇uε‖2 dτ,

where
θ = p

2(p − 1)
,

and clearly p ≥ 2.

123
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Note that the L1-norm of both uε(τ ) ⊗ uε(τ ) and (u(τ ) ⊗ u(τ ))ε can be easily
estimated by using the properties of mollifiers as follows

‖uε ⊗ uε − (u ⊗ u)ε‖1 ≤ ‖uε‖22 + ‖(u ⊗ u)ε‖1 ≤ c1‖uε‖22 ≤ c2‖u‖22 ≤ C,

hence proving an uniform bound since u is a weak solution to (1.1).
Next, we fix p = 5−2s

5−4s , hence θ = 5−2s
4s , to get

Iε ≤ C
∫ t

0
‖uε ⊗ uε − (u ⊗ u)ε‖

5−2s
4s

5−2s
5−4s

‖∇uε‖2 dτ.

It only remains to estimate the term involving the L
5−2s
5−4s -norm. Using (2.2), and the

assumption u ∈ Hs(T3) we have

‖uε ⊗ uε − (u ⊗ u)ε‖p ≤ Cε2α[u]2
W

α,2 5−2s
5−4s

≤ Cε2α‖u‖2Hs ,

for α = 2(1−s)s
5−2s , fixed in such a way that

1

2
− s

3
= 1

2p
− α

3
�⇒ α = 3 − 3p + 2ps

2p
,

since this is the value for which the (fractional) Sobolev embedding Hs(T3) =
Ws,2(T3) ↪−→ Wα,2p(T3), holds true. Putting all together, since 2αθ = 1 − s we
arrive to the following estimate

Iε ≤ C
∫ t

0
‖u‖

5−2s
2s

Hs ε1−s‖∇uε‖2 dτ.

Hence, by Hölder inequality with exponents x = 5
5−2s and x ′ = 5

2s we get

Iε ≤ C‖u‖
5−2s
2s

L5/2s (Hs )
ε1−s‖∇uε‖L5/2s (L2).

Finally by using the assumptions of Theorem 1.1 and Lemma 2.7 we get

lim sup
ε→0+

Iε ≤ C lim sup
ε→0+

ε1−s‖∇uε‖L5/2s (L2) = 0.

This is enough to end the proof since uε(t) → u(t) for almost all t ∈ (0, T ).
The case 1 ≤ s < 5/2. In the case s ≥ 1 the proof is a little different since now we
can estimate directly the term ∇uε. Observe also that for s > 5

2 , then Hs(T3) ↪−→
W 1,∞(T3) and so in this case, by Sobolev embedding, one recovers the Beale-Kato-
Majda criterion for regularity if u ∈ L1(0, T ; Hs(T3))
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We first recall that, for 1 ≤ s < 3
2 we have the following embedding Hs(T3) ↪−→

W 1,p(T3), where p is such that 1
2 + 1−s

3 = 1
p , and so

p = 6

5 − 2s
and p′ = p

p − 1
= 6

1 + 2s
. (3.1)

We distinguish two further sub-cases.

The sub-case 1 ≤ s < 3
2 . With this position we have 2 ≤ p < 3. Moreover the bound

s < 3
2 , gives even the following embedding Hs(T3) ↪−→ L p∗

(T3), where

p∗ = 6

3 − 2s
.

Applying to Iε Hölder inequality with conjugate exponents p and p′, and an inter-
polation inequality with suitable exponents (always possible since p∗/2 > p′) we
get

Iε ≤
∫ t

0
‖uε ⊗ uε − (u ⊗ u)ε‖1−θ

1 ‖uε ⊗ uε − (u ⊗ u)ε‖θ
p∗
2

‖∇uε‖p dτ,

with θ satisfying the following equality 1+2s
6 = 1 − θ + θ

p∗
2

, that is if

θ = 5 − 2s

4s
.

As in the previous case we have ‖uε ⊗ uε − (u ⊗ u)ε‖1 ≤ C .
Moreover, by Hs(T3) ↪−→ W 1,p(T3) and Hölder inequality with exponents 5/(5−

2s) and 5/2s we have

Iε ≤ C‖uε ⊗ uε − (u ⊗ u)ε‖
5−2s
4s

L
5
4s (0,T ;L p∗

2 )

‖u‖
L

5
2s (0,T ;Hs )

.

Next, we observe that

uε ⊗ uε − (u ⊗ u)ε = uε ⊗ (uε − u) + (uε − u) ⊗ u + u ⊗ u − (u ⊗ u)ε,

and, since u ∈ L
5
2s (0, T ; Hs(T3)) implies u ⊗ u ∈ L

5
4s (0, T ; L p∗

2 (T3)), then esti-
mate (2.3) from Lemma 2.7 implies again that lim supε→0 Iε = 0, ending the proof.
The sub-case 3

2 ≤ s < 5
2 .Again,we applyHölder inequalitywith conjugate exponents

p and p′ defined in (3.1) and interpolating the L p′
-norm between 1 and q/2 = 3 we

get

Iε ≤
∫ t

0
‖uε ⊗ uε − (u ⊗ u)ε‖

2s−1
4

1 ‖uε ⊗ uε − (u ⊗ u)ε‖
5−2s
4

3 ‖∇uε‖p dτ.
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We use the same control as before for the L1(T3) norm and considering the interpo-
lation of H1(T3) between L2(T3) and Hs(T3) and the uniform L2-bound, we have

‖u‖H1 ≤ ‖u‖1−1/s
L2 ‖u‖1/sHs ≤ C‖u‖1/sHs .

This implies also that from u ∈ L
5
2s (0, T ; Hs(T3)) it follows –by interpolation with

L∞(0, T ; L2(T3))– that u ∈ L
5
2s (0, T ; H1(T3)) ↪→ L

5
2s (0, T ; L6(T3)), hence u ⊗

u ∈ L
5
4s (0, T ; L3(T3)). Finally, by using the Hölder inequality we get

Iε ≤ C‖uε ⊗ uε − (u ⊗ u)ε‖
5−2s
4s

L
5
4s (L3)

‖u‖
L

5
2s (Hs )

,

and Lemma 2.7 implies again that lim supε→0+ Iε = 0. This ends the proof of the
conservation of energy. ��

After having finished the proof of the criterion for energy conservation in fractional
spaces, we can pass to prove to a criterion for energy conservation who employs
vorticity/velocity in a sort of “geometric” special situation. This should be compared
with the results in [15] where an “analytic” combination of the two quantities is
considered.

Proof of Theorem 1.3 Let u ∈ L∞(0, T ; L2(T3)) be a weak solution to the Euler equa-
tion (1.1) and let us consider λ ∈ Lβ(0, T ; H τ (T3)), for some β ≥ 1 and τ ∈ R.
Moreover, we are assuming that u is a Beltrami field, i.e. its curl can be written as the
product of λ and itself as in (1.2). We want to apply Proposition 2.3-2.4 in order to
infer sharp regularity for the vorticity ω, which –in turn– would give additional regu-
larity for the velocity u. Doing so, possibly iterating, we try to show that u belongs to
some of the spaces as those in the hypotheses of Theorem 1.1 to have conservation of
energy.

Following the notation of Propositions 2.3 and 2.4, we have s1 = 0, s2 = τ and, in
both statements, it is required si ≥ s, i = 1, 2, which gives

s ≤ 0.

Moreover, a further requirement is that

s < τ − 3

2
.

We have to distinguish different cases.
The case 0 ≤ τ ≤ 3

2 . In this case, we have s < 0 and we fall in the hypotheses of
Proposition 2.4. Consequently we get

ω ∈ Lβ(0, T ; H τ− 3
2−ε(T3)), for any arbitrarily small ε > 0,

where the integrability in time remains unchanged since u is essentially bounded in
time.
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But again, ω is the curl of u, so that by elliptic regularity

u ∈ Lβ(0, T ; H τ− 1
2−ε(T3)), for any arbitrarily small ε > 0.

Wefirst note that this will give an improvement in the known regularity for the velocity
of a weak solution only if τ > 1/2, hence from now on we consider τ in the restricted
range τ ∈]1/2, 3/2].

Next, we can directly apply Theorem 1.1 to prove conservation of energy, provided
that

5

6
< τ − 1

2
≤ 5

2
,

which holds if τ ∈]4/3, 3/2], and if in addition

β >
5

2τ − 1
.

Within this range for both τ and β, the weak solution u satisfies the hypotheses of
Theorem 1.1.

Let us now see what we can infer for smaller τ , that is τ ∈]1/2, 4/3]: We iterate the
same process with a bootstrap argument. We start the iteration of the result on product

in Sobolev spaces from u ∈ Lβ(0, T ; H τ− 1
2−ε(T3)), λ ∈ Lβ(0, T ; H τ (T3)), and for

this reason we define two sequences {βn}, {σn}, as follows:

β1 = β, and σ1 = τ − 1

2
.

Next, we define by recursion (which follows as a formal application of Proposition 2.3
in the limiting case ε = 0)

βn+1 := βnβ

βn + β
and σn+1 := min

{

σn, τ, σn + τ − 3

2

}

+ 1.

Remark 3.1 The real index s for the space regularity of the velocity field after n appli-
cations of the product theorem will be any number strictly less than σn . While βn will
be the exact Lebesgue index with respect to the time variable.

Note that, since τ < 3
2 and if σn ≤ 3

2 then

min

{

σn, τ, σn + τ − 3

2

}

= σn + τ − 3

2
.

These relations imply, that

βn = β

n
and σn = n(τ − 1

2
) ∀ n ∈ N.
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By a now rigorous application of Proposition 2.3 this finally proves that

u ∈ L
β
n (0, T ; Hn(τ− 1

2 )−ε(T3)), for any arbitrarily small ε > 0,

and this argument can be iterated as long as n(τ − 1/2) − ε < n(τ − 1/2) ≤ 3
2 .

Since we are considering the range τ ∈]1/2, 4/3] we have now τ − 1/2 ≤ 5
6 . We

then fix n0 ∈ N such that

n0(τ − 1

2
) ≤ 5

6
< (n0 + 1)(τ − 1

2
),

and iterate till reaching the regularity

u ∈ L
β

n0+1 (0, T ; H (n0+1)(τ− 1
2 )−ε(T3)), for any arbitrarily small ε > 0,

which is a suitable class for energy conservation. In fact, since n0(τ −1/2)−ε < 5
6 the

iteration is well-defined andmoreover τ < 3/2 implies (n0+1)(τ −1/2) < 5/6+1 <

5/2. Finally we observe that if β > 5
2τ−1 , then βn0+1 = β

(n0+1) > 5
(n0+1)(2τ−1) ,

showing that the hypotheses of Theorem 1.1 are then satisfied.
The case τ > 3

2 . In this case note that H
τ (T3) ⊂ L∞(T3), hence we get immediately

that ω ∈ Lβ(0, T ; L2(T3)), which implies

u ∈ Lβ(0, T ; H1(T3)),

and if β ≥ 5
2 we are done, since it falls within the assumptions of Theorem 1.1. Note

that the result will not be improved with a further iteration. At least in the case τ > 5
2

(but the other case τ ∈ [3/2, 5/2[ is similar) one will get ω ∈ Lβ/2(0, T ; H1(T3)),
which gives u ∈ Lβ/2(0, T ; H2(T3)) ↪→ Lβ/2(0, T ;C1/2(T3)), which is an energy
conservation class if β ≥ 4, see [7]. ��
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