
UPSCALING OF SCREW DISLOCATIONS WITH INCREASING

TANGENTIAL STRAIN

ILARIA LUCARDESI, MARCO MORANDOTTI, RICCARDO SCALA, AND DAVIDE ZUCCO

Abstract. The upscaling of a system of screw dislocations in a material subject to an external

strain is studied. The Γ-limit of a suitable rescaling of the renormalized energy is characterized

in the space of probability measures. This corresponds to a discrete-to-continuum limit of
the dislocations, which, as a byproduct, provides information on their distribution when the

circulation of the tangential component of the external strain becomes larger and larger. In
particular, dislocations are shown to concentrate at the boundary of the material and to

distribute as the limiting external strain.
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1. Introduction

Dislocations are line defects in the lattice structure of crystalline materials, that have been
first observed in metals by electron microscopy in 1956 by Hirsch, Horne, and Whelan [15],
thus providing experimental support to the theoretical work of Volterra [36]. The literature on
dislocations is vast, including physical, engineering, and mathematical approaches; we refer the
reader to the classical monographs [16, 18, 22] for general treaties. From the mechanical point
of view, dislocations are of the utmost importance to understand some properties of materials,
especially those related to their plastic behaviour: in 1934, Orowan [23], Polanyi [24], and
Taylor [31] theorized that dislocations are the ultimate cause of plasticity, thus proposing that
the presence and motion of defects at the atomic scale is responsible for macroscopic effects.

It is therefore relevant to bridge phenomena happening at different length scales by means of
a suitable limiting process which allows one to derive an averaged, macroscopic quantity from
discrete, microscopic ones. A macroscopic strain gradient theory for plasticity from a model of
discrete dislocations was obtained by Garroni, Leoni, and Ponsiglione [11]. Further and more
recent results include [1], where the dynamics of topological singularities in two dimensions
is studied and compared to that of Ginzburg-Landau vortices, and [20], where a discrete-to-
continuum limit for particles with an annihilation rule in dimension one is obtained.

In this paper we focus our attention on an isotropic crystal which occupies a vertical cylindrical
region Ω×R and which undergoes antiplane shear. In this case, the dislocation lines are parallel
to the lattice mismatch, here vertical, and the dislocations are called of screw type. According
to the model proposed by Cermelli and Gurtin in [7], the system is fully described by the cross
section of the material. This allows us to work in Ω ⊂ R2 so that dislocations are represented
by points {ai}i ⊂ Ω, corresponding to the intersections of the dislocation lines with the cross
section. Throughout the paper, without any further explicit reference, we assume Ω to be a
bounded open domain with Lipschitz boundary and the lattice spacing of the material to be 2π.

The stressed material is described by the strain field, a vector field with curl concentrated on
the discrete set of dislocations {ai}i, and minimizing the energy

F 7→
∫

Ω

|F (x)|2 dx.

Due to the singularity of the curl, such energy is not finite. The usual strategy to circumvent
this obstruction consists in avoiding the dislocation cores, small disks {Bε(ai)}i around each
dislocation ai with radius ε > 0 sufficiently small, and then computing the energy in the resulting
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perforated domain, i.e.,

Eε(a1, . . . , an) := min
1

2

∫
Ω\

⋃
i Bε(ai)

|F (x)|2 dx,

where the minimum is taken among all vector fields in L2(Ω \
⋃
iBε(ai);R2), with zero curl in

the sense of distributions D′
(
Ω \

⋃
iBε(ai)

)
, and satisfying the condition 〈F · τ, 1〉γ = 2πm for

an arbitrary simple closed curve γ in Ω \
⋃
iBε(ai) winding once counterclockwise around m

dislocations. Here and henceforth τ denotes the tangent unit vector to γ, F · τ must be intended
in the sense of traces, and 〈·, ·〉γ denotes the pairing between H−1/2(γ) and H1/2(γ) (see [9]).

Once the non-integrability of the strain field around the dislocations is removed, classical
variational techniques can be applied. For this reason, the core radius approach is standard in
the literature and it is employed in different contexts, such as linear elasticity (see, for instance,
[22, 30, 35]; also [1, 4, 7, 25] for screw dislocations and [8] for edge dislocations), the theory of
Ginzburg-Landau vortices (see, for instance, [2, 27] and the refereces therein), and liquid crystals
(see, for instance, [12]).

In the setting above, the dynamics of dislocations is determined by the Neumann boundary
condition satisfied by the strain field (the natural boundary conditions coming from the Euler-
Lagrange equation associated to the energy above), implying that the energy of the system
decreases as the dislocations approach the boundary of the domain. In other words, as time
passes, dislocations move towards the boundary and leave the domain in finite time (see [3, 17]).

Different types of boundary condition can be imposed if one is interested in the confinement
of the dislocations inside the material. We impose a Dirichlet boundary condition for the strain
field: physically, this corresponds to stressing the material by means of a prescribed external
strain (see [2, 19, 29]). More specifically, given n ∈ N we prescribe the tangential strain on the
boundary of the exterior domain ∂Ω to be a distribution fn ∈ H−1/2(∂Ω) such that 〈fn, 1〉∂Ω =
2πn. Then, in the minimization problem above, we also require that F · τ = fn on ∂Ω \⋃n
i=1Bε(ai), where τ denotes the tangent unit vector to ∂Ω (which exists H1-a. e. on ∂Ω thanks

to the regularity assumption on Ω). This Dirichlet boundary condition reflects in confinement
and separation effects: for every ε sufficiently small one can observe n distinct dislocations
(a1, . . . , an) inside Ω (see, e.g., [2, 27] for a comment on the topological necessity of the presence
of exactly n defects). Indeed, for ε sufficiently small, it can be shown (see [19] and also [2, 27])
that the energy behaves like

Eε(a1, . . . , an) = −πn log ε+ E0(a1, . . . an) + o(1),

which is infinity whenever one dislocation is on the boundary ∂Ω or when two dislocations
collide. The renormalized energy E0 is also related to the so-called Hadamard finite part of a
divergent integral (see [14]) and keeps into account the energetic dependence of the position of
the dislocations {ai}i inside Ω. One has in particular that

E0(a1, . . . , an) =

n∑
i=1

Eself(ai) +
∑
i6=j

Eint(ai, aj) (1.1)

where the self energy Eself, responsible for the contribution of individual dislocations, is given by

Eself(ai) := π log d(ai) +
1

2

∫
Ω\Bd(ai)(ai)

|∇φi(x) +∇wi(x)|2 dx+
1

2

∫
Bd(ai)(ai)

|∇wi(x)|2 dx,

with d(ai) := dist(ai, ∂Ω), while the interaction energy Eint, which encodes the mutual position
of two dislocations, is

Eint(ai, aj) :=

∫
Ω

(∇φi(x) +∇wi(x)) · (∇φj(x) +∇wj(x)) dx.

Here the functions φi and wi are the solutions (wi is defined up to an additive constant) to{
∆φi = 2πδai in Ω,

φi(x) = log |x− ai| for x ∈ ∂Ω,
and

{
∆wi = 0 in Ω,

∂νwi = 1
nf

n − ∂νφi on ∂Ω.
(1.2)

Notice that the solution φi, which in principle is searched only in Ω, is well defined also in the
complement R2 \ Ω: clearly its explicit formula is φi(x) = log |x − ai| so that, given a regular
bounded domain B containing Ω, we have φi ∈W 1,p(B) for every 1 ≤ p < 2 (the value p = 2 is
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excluded, due to the singularity of the logarithm). Without loss of generality, we always consider
wi as the solution with zero average in Ω.

Apart from the following existence result, that has been proved in [19] (see also [2, 27] for re-
lated results for Ginzburg-Landau vortices), nothing is known on the positions of the dislocations
minimizing the energy functional (1.1).

Theorem 1.1 (Existence). Given n ∈ N, the minimization problem

min E0(a1, . . . , an) (1.3)

among all n-tuples of distinct points in Ω has a solution.

Note that the lack of compactness of the underlying space where the minimization problem is
set makes the result highly non trivial. In this paper we address the upscaling problem: we study
the asymptotic distribution in Ω, as n→∞, of the minimizing configurations of the renormalized
energy E0. As the number of dislocations increases, it is not practical anymore to describe them
as individual particles, but it is necessary to associate them a probability measure describing
their distribution in Ω. This is usually achieved (see, e.g, [5, 20, 21, 34]) by considering the
empirical measures

µn :=
1

n

n∑
i=1

δai , (1.4)

with δai denoting the Dirac measure centered at ai, and studying the Γ-limit of the sequence of
functionals Fn : P(Ω)→ R ∪ {+∞} defined by

Fn(µn) :=


1

n2
E0(a1, . . . , an) if µn is of the form (1.4),

+∞ otherwise.
(1.5)

Notice that the rescaling by 1/n2 does not affect the solution to the minimization problem (1.3).
Moreover, it is the natural one in order to prevent the renormalized energy to diverge in the limit
when n→∞. This is evident from the expression (1.1) of the energy E0, since the contribution
Eself is the sum of n quadratic terms and the contribution Eint involves n×n pairwise interactions.

We are now ready to state the main result of the paper.

Theorem 1.2 (Upscaling). Let n ∈ N and fn ∈ H−1/2(∂Ω) with 〈fn, 1〉∂Ω = 2πn. Assume that
1
nf

n → f strongly in H−1/2(∂Ω) as n→∞. Then the functionals Fn in (1.5) Γ-converge, with

respect to the weak-* convergence in P(Ω), as n → ∞, to the functional F∞ : P(Ω) → [0,+∞]
defined by

F∞(µ) :=


1

2

∫
Ω

|∇U(x)|2 dx if µ ∈ H−1(B),

+∞ otherwise,
(1.6)

where B is any regular bounded domain containing Ω and the function U ∈ H1(Ω) solves{
∆U = 2πµ in Ω,

∂νU = f − 2πµ ∂Ω on ∂Ω,
(1.7)

in the sense that ∫
Ω

|∇U(x)|2 dx = 2π〈f, U〉∂Ω − 2π

∫
Ω

U(x) dµ(x).

Remark 1.3. We notice that the energy F∞ defined in (1.6) is independent of the set B. This
is trivial, since the support of µ is contained in Ω. Therefore, in the sequel we choose a particular
regular bounded domain B such that Ω ⊂ B and we call it box.

Remark 1.4. Notice that problem (1.7) is well defined in H1(Ω), since the boundary datum
f −2πµ ∂Ω belongs to H−1/2(∂Ω). This fact follows from the assumption on f and by the fact
that µ ∂Ω is the jump of the normal derivative across ∂Ω of an H1 function. More precisely,

2πµ ∂Ω = ∂νφ+ − ∂νφ−, (1.8)

with

φ(x) :=

∫
R2

log |x− y|dµ(y). (1.9)
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Here and henceforth ∂νφ+ and ∂νφ− denote the normal traces of ∇φ from the exterior and from
the interior of Ω, respectively, and are defined in the natural way by duality: for any ψ ∈ H1(B),
we set

〈∂νφ+, ψ〉∂Ω := −
∫
B\Ω
∇φ · ∇ψ dx+

∫
∂B

ψ ∂νφdH1, (1.10a)

〈∂νφ−, ψ〉∂Ω := 2π

∫
Ω

ψ dµ+

∫
Ω

∇φ · ∇ψ dx, (1.10b)

where we have taken into account that ∆φ = 2πµ and that µ has support in Ω. Notice that in
the right-hand side of (1.10a) we have replaced the pairing 〈∂νφ, ψ〉∂B by the integral over ∂B,
since φ is regular on ∂B. Clearly, if φ were regular also on ∂Ω, then both traces would coincide
with the standard normal derivative. Taking the difference of (1.10a) and (1.10b), by using the
divergence theorem and the fact that µ is concentrated in Ω, we obtain

〈∂νφ+ − ∂νφ−, ψ〉∂Ω = −
∫
B

∇φ · ∇ψ dx+

∫
∂B

ψ ∂νφ dH1 − 2π

∫
Ω

ψ dµ

= 2π

∫
B

ψ dµ− 2π

∫
Ω

ψ dµ = 2π〈µ ∂Ω, ψ〉∂Ω ,

which gives (1.8), by the arbitrariness of ψ.

As a consequence of Theorem 1.2 (see [10]), since P(Ω) is compact with respect to the weak-*
topology, we deduce the following result.

Corollary 1.5. Let n ∈ N and fn ∈ H−1/2(∂Ω) with 〈fn, 1〉∂Ω = 2πn. Assume that 1
nf

n → f

strongly in H−1/2(∂Ω) as n → ∞. If (a1, . . . , an) is a minimizer of (1.3), the corresponding
empirical measures µn defined by (1.4) weak-* converge to µ∞, where µ∞ ∈ P(Ω) is the unique
minimizer of the functional F∞ defined in (1.6). Moreover, Fn(µn)→ F∞(µ∞), as n→∞.

For particular choices of f we are able to characterize explicitly the measure µ∞ and then to
derive information on minima and minimizers of (1.3).

Corollary 1.6. Let n ∈ N and fn ∈ H−1/2(∂Ω) with 〈fn, 1〉∂Ω = 2πn. Assume that 1
nf

n → f

strongly in H−1/2(∂Ω) as n→∞. If f ∈ L1(∂Ω) and f ≥ 0 then if (a1, . . . , an) is a minimizer of
(1.3), the corresponding empirical measures µn defined by (1.4) weak-* converge to the measure
µ∞, which is absolutely continuous with respect to H1, and is defined by

µ∞ =
f

2π
H1 ∂Ω. (1.11)

Moreover, the energy vanishes in the limit, i.e.,

lim
n→∞

Fn(µn) = 0. (1.12)

A related result to Theorem 1.2 can be found in the framework of Ginzburg-Landau theory
[29], where the authors treated only the case fn = nf , for a fixed continuous function f , indepen-
dent of n. We point out that the interest in studying more general sequences fn of non constant
and non regular boundary data has been raised by Sandier and Soret in [28, Open Problem 1].
In light of these similarities, our results can be regarded as generalizations of those contained in
the papers [28, 29]. We underline that we also weaken the assumptions on the regularity of the
domain Ω and we do not require simple connectedness. For these reasons, the proof strategy of
[28, 29], based on the regularity of the domain and the boundary datum, does not seem easily
adaptable to the present case. In this respect, the introduction of the box B will be crucial in
the proof of the Γ-convergence result to recast the renormalized energy (1.5) and pass to the
limit in the annular region B \ Ω.

The starting point of our analysis is the rewriting of the energy Fn in Section 2. Then, in
Section 3 we prove some auxiliary lemmas for the proof of Theorem 1.2, which is finally addressed
in Section 4, togheter with the proofs of Corollaries 1.5 and 1.6.

Notation. The symbol H1 denotes the 1-dimensional Hausdorff measure, while ] the counting
measure. Given an open set with Lipschitz boundary, we denote by ν the outer unit normal
vector to the boundary, defined almost everywhere on it. We always use the symbols

∑
i6=j and∑

i<j to denote the summation over all indices i, j with i 6= j and i < j, respectively, ranging
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from 1 to some n ∈ N whose value is clear from the context. Recalling Remark 1.3, we fix once
and for all a box B containing Ω and we denote by 40 = {(y, z) ∈ B ×B : y = z} its diagonal.
Given x ∈ R2 and r ∈ R+, we denote by Br(x) the open disk centered at x with radius r, and by
Br(x) its closure. The duality product between H−1/2(∂Ω) and H1/2(∂Ω) is denoted by 〈·, ·〉∂Ω.
Given A ⊂ R2, we denote by 11A its characteristic function, namely 11A(x) = 1 if x ∈ A and
11A(x) = 0 if x /∈ A.

2. The renormalized energy

In this section we rewrite the energy functional Fn introduced in (1.5) in a more convenient
way. Let µn ∈ P(Ω) be the empirical measure associated to an n-tuple (a1, . . . , an) of distinct
points ai ∈ Ω according to (1.4). We define

φn :=
1

n

n∑
i=1

φi and wn :=
1

n

n∑
i=1

wi. (2.1)

In view of (1.2), these functions solve, respectively,{
∆φn = 2πµn in Ω,

φn(x) = 1
n

∑n
i=1 log |x− ai| on ∂Ω,

and

{
∆wn = 0 in Ω,

∂νw
n(x) = 1

nf
n − ∂νφn on ∂Ω.

(2.2)

Notice that φn belongs to W 1,p(B) for every 1 ≤ p < 2 (but not to H1(B)) and reads

φn(x) =

∫
Ω

log |x− y|dµn(y).

Moreover, since all the ai’s are inside Ω, the exterior and interior normal traces of φn coincide,
namely ∂νφ

n
+ = ∂νφ

n
− (and the same holds for all the φi’s as well, see Remark 1.4). As for wn,

since every wi has zero average, it is uniquely determined and has zero average in Ω. Performing
an integration by parts in (1.1) and exploiting (1.2), we get

Eself(ai) = π log d(ai) +
1

2

∫
Ω\Bd(ai)(ai)

(
|∇φi|2 + 2∇φi · ∇wi

)
dx+

1

2

∫
Ω

|∇wi|2 dx

= −1

2
〈∂νφi, φi〉∂Ω +

1

n
〈fn, φi〉∂Ω +

1

2

∫
Ω

|∇wi|2 dx,

so that the contribution of the self energy in (1.5) can be written as

1

n2

n∑
i=1

Eself(ai) = − 1

2n2

n∑
i=1

〈∂νφi, φi〉∂Ω +
1

n2
〈fn, φn〉∂Ω +

1

2n2

n∑
i=1

∫
Ω

|∇wi|2 dx. (2.3)

The terms in the interaction energy Eint(ai, aj), after expanding the power and integrating by
parts, read

1

2n2

∑
i 6=j

∫
Ω

∇φi · ∇φj dx =
1

2n2

∑
i6=j

〈∂νφj , φi〉∂Ω − π
∫

Ω×Ω

log |x− y|dµn � µn, (2.4a)

1

2n2

∑
i 6=j

∫
Ω

∇φi · ∇wj dx =
1

2n2

∑
i6=j

〈 1
nf

n − ∂νφj , φi〉∂Ω, (2.4b)

1

2n2

∑
i 6=j

∫
Ω

∇φj · ∇wi dx =
1

2n2

∑
i6=j

〈 1
nf

n − ∂νφi, φj〉∂Ω, (2.4c)

1

2n2

∑
i 6=j

∫
Ω

∇wi · ∇wj dx =
1

2

∫
Ω

|∇wn|2dx− 1

2n2

n∑
i=1

∫
Ω

|∇wi|2dx, (2.4d)

where we set

µn � µn :=
1

n2

∑
i 6=j

δ(ai,aj). (2.5)
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By grouping (2.4a), (2.4b), and (2.4c) together, recalling (2.2) and (2.5), we obtain the contri-
bution

1

2n2

∑
i6=j

(∫
Ω

∇φi · ∇φj dx+

∫
Ω

∇φi · ∇wj dx+

∫
Ω

∇φj · ∇wi dx

)

=
n− 1

n2
〈fn, φn〉∂Ω −

1

2
〈∂νφn, φn〉∂Ω +

1

2n2

n∑
i=1

〈∂νφi, φi〉∂Ω − π
∫

Ω×Ω

log |x− y|dµn � µn,

which combined with (2.4d) yields

1

n2

∑
i6=j

Eint(ai, aj) =
n− 1

n2
〈fn, φn〉∂Ω −

1

2
〈∂νφn, φn〉∂Ω +

1

2n2

n∑
i=1

〈∂νφi, φi〉∂Ω

− π
∫

Ω×Ω

log |x− y|dµn � µn +
1

2

∫
Ω

|∇wn|2dx− 1

2n2

n∑
i=1

∫
Ω

|∇wi|2dx.

Plugging this new expression together with (2.3) into (1.5) allows to rewrite the renormalized
energy functional as

Fn(µn)=
1

2

∫
Ω

|∇wn|2 dx+
1

n
〈fn, φn〉∂Ω −

1

2
〈∂νφn, φn〉∂Ω − π

∫
Ω×Ω

log |x− y|dµn � µn, (2.6)

which will be fundamental in the sequel.

3. Auxiliary lemmas

In the following, we prove some auxiliary lemmas which will play a crucial role in the proof
of the Γ-liminf inequality for Theorem 1.2. The first one concerns an equi-coercivity property of
the functionals Fn.

Lemma 3.1. For every n ∈ N, let µn be as in (1.4), let fn ∈ H−1/2(∂Ω) with 〈fn, 1〉∂Ω = 2πn,
and assume 1

nf
n be uniformly bounded in H−1/2(∂Ω). Let φn and wn be as in (2.1). Then there

exist two constants C1, C2 > 0 independent of n such that

Fn(µn) ≥ C1

(
‖wn‖2H1(Ω) + ‖φn‖2

H1(B\Ω)

)
− π

∫
Ω×Ω

log |x− y|dµn � µn(x, y)− C2. (3.1)

Proof. By hypothesis, Fn(µn) is of the form (2.6). We have assumed that each wi in (1.2), and
hence wn in (2.1), have zero average in Ω, thus, by the Poincaré-Wirtinger inequality, the first
term in the right-hand side of (2.6) is equivalent to the H1 norm of wn. As for φn, we note that
‖φn‖2

L2(B\Ω)
is uniformly bounded:

‖φn‖2
L2(B\Ω)

=

∫
B\Ω

∣∣∣∣ 1n
n∑
i=1

φi

∣∣∣∣2dx =
1

n2

∫
B\Ω

( n∑
i=1

|φi|2 + 2
∑
i6=j

φiφj

)
dx

≤ 2n+ 1

n2

n∑
i=1

∫
B\Ω
‖φi‖2L2(B) dx ≤ C,

for some positive constant C independent of n. In particular, we get

‖∇φn‖2
L2(B\Ω;R2)

≥ ‖φn‖2
H1(B\Ω)

− C. (3.2)

By using the divergence theorem in B \Ω, we can write the third term in the right-hand side of
(2.6) as

−〈∂νφn, φn〉∂Ω =

∫
B\Ω
|∇φn|2 dx−

∫
∂B

φn∂νφ
n dH1. (3.3)

Here the regularity of φn and ∂νφ
n on ∂B (in particular the fact that ∂B is disjoint from Ω,

where the measure µn concentrates) allows us to replace the duality brackets 〈∂νφn, φn〉∂B with
an integral over ∂B. By combining (3.3), (3.2), and the assumption on the uniform boundedness
of 1

nf
n, we obtain

1

n
〈fn, φn〉∂Ω −

1

2
〈∂νφn, φn〉∂Ω ≥

1

2
‖φn‖2

H1(B\Ω)
− C‖ 1

nf
n‖H−1/2(∂Ω)‖φn‖H1(B\Ω) − C2

≥ C1‖φn‖2H1(B\Ω)
− C2, (3.4)
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where C,C1, C2 > 0 are three constants independent of n, which may vary from line to line.
In the first inequality of (3.4) we have used the trace theorem in B \ Ω and the fact that φn

and ∂νφ
n are uniformly bounded in C∞(∂B); while in the second inequality we have used the

Young’s inequality ‖ 1
nf

n‖H−1/2(∂Ω)‖φn‖H1(B\Ω) ≤
1
2c‖

1
nf

n‖2
H−1/2(∂Ω)

+ c
2‖φ

n‖2
H1(B\Ω)

with a

suitable choice of c > 0, small enough. The lemma is proved, possibly by changing the constants
C1 and C2. �

As noticed in [13, Lemma 1] omitting the diagonal in the definition (2.5) of the measures
µn � µn does not change their limiting behavior.

Lemma 3.2. Let µn, µ ∈ P(Ω) be such that µn is of the form (1.4) for all n ∈ N and µn
∗
⇀ µ

as n→∞. Then, µn � µn
∗
⇀ µ⊗ µ.

Proof. Let ψ ∈ C(Ω× Ω) and write∫
Ω×Ω

ψ dµn�µn−
∫

Ω×Ω

ψ dµ⊗µ =

∫
Ω×Ω

ψ (dµn�µn−dµn⊗µn)+

∫
Ω×Ω

ψ (dµn⊗µn−dµ⊗µ).

Let us study the asymptotics as n→∞ of the two terms in the right-hand side: the modulus of
the first one is bounded above by ‖ψ‖∞/n, thus it converges to zero; as for the second term, it
vanishes thanks to the weak-* convergence of µn to µ. This concludes the proof, by definition
of weak-* convergence and by the arbitrariness of the continuous test function ψ. �

The previous two lemmas allows to transfer equiboundedness of the functionals Fn into in-
formation on the measure µ⊗ µ.

Lemma 3.3. Let µn, µ ∈ P(Ω) be such that µn
∗
⇀ µ as n→∞. Let us assume that Fn(µn) is

uniformly bounded. Then the measure µ ⊗ µ does not charge the diagonal 40. In particular, µ
does not charge points.

Proof. Let {ani } be the family of points defining the measure µn in (1.4) and consider, for every
ε ∈ (0, 1) and n ∈ N, the quantity

Nn,ε := ]{(ani , anj ) ∈ B ×B : ani 6= anj and |ani − anj | < ε}
= ]{(i, j) ∈ {1, . . . , n}2 : i 6= j and (ani , a

n
j ) ∈ 4ε},

where 4ε denotes the ε-neighborhood of the diagonal of B × B, namely the open set 4ε :=
{(y, z) ∈ B ×B : |y − z| < ε}. By Lemma 3.1, recalling (2.5) and using the monotonicity of the
logarithm, we have

Fn(µn) ≥ −π
∫
4ε

log |x− y|dµn � µn − C ≥ −πNn,ε log ε

n2
− C. (3.5)

By Lemma 3.2, the weak-* convergence µn � µn
∗
⇀ µ⊗ µ implies

lim inf
n→∞

Nn,ε
n2

= lim inf
n→∞

µn � µn(4ε) ≥ µ⊗ µ(4ε) ≥ µ⊗ µ(40).

Thus, taking the lim inf as n→∞ in (3.5) and recalling that for ε small − log ε > 0, we get

lim inf
n→∞

Fn(µn) ≥ −π
(
µ⊗ µ(40)

)
log ε− C.

Finally, the arbitrariness of ε ∈ (0, 1) and the uniform boundedness of Fn(µn) imply that
µ⊗ µ(40) = 0. The lemma is proved. �

We now prove a stability result for the functions φn introduced in (2.1).

Lemma 3.4. Let µn, µ ∈ P(Ω) be such that µn is of the form (1.4) for all n ∈ N, µ does not

charge points, and µn
∗
⇀ µ as n → ∞. Then the sequence of functions φn defined in (2.1)

converges strongly in L1(B) to the function

φ(x) :=

∫
Ω

log |x− y|dµ(y). (3.6)
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Proof. First, we notice that the function φ in (3.6) belongs to L1(B), since it can be written as
the convolution of an L1 function with a probability measure (recall that µ is concentrated on
Ω, thus the domain of integration Ω can be replaced by the entire plane R2). Let M > 0 and let
us consider the truncated functions

φM (x) :=

∫
Ω

log |x− y| ∨ (−M) dµ(y) and φnM (x) :=

∫
Ω

log |x− y| ∨ (−M) dµn(y).

A direct computation shows that ‖φnM − φn‖L1(B) ≤ π
2 e
−2M , uniformly with respect to n. In-

deed, if {ani } is the family of points defining the measure µn in (1.4), by the triangle inequality
we have

‖φnM − φn‖L1(B) =
1

n

∫
B

∣∣∣ n∑
i=1

log |x− ani | ∨ (−M)− log |x− ani |
∣∣∣ dx

≤ − 1

n

n∑
i=1

∫
{x∈R2: log |x−ai|<−M}

(M + log |x− ani |) dx.

The latter integrals can be computed in polar coordinates, so that, by taking ρ = |x− ai|,

‖φnM − φn‖L1(B) ≤ −2π

∫ e−M

0

(M + log ρ)ρdρ = −πMe−2M + πMe−2M +
π

2
e−2M ,

which gives the uniform bound claimed above.
Moreover, since for every x ∈ B the function log |x − ·| ∨ (−M) is a continuous function on

Ω, by the weak-* convergence µn
∗
⇀ µ we deduce that φnM (x)→ φM (x) as n→∞. Then, since

‖φn‖∞ ≤ M ∨ | log(diamB)| by the Dominated Convergence Theorem we obtain φnM → φM
strongly in L1(B) as n→∞.

Finally, since µ does not charge points, log |x− y| ∨ (−M)→ log |x− y| as M → +∞, for all
x ∈ B and for all µ-a. e. y ∈ B. This with the fact log |x− y| < log(diamB) allows us to use the
Monotone Convergence Theorem and obtain φM (x) → φ(x) as M → +∞ for all x ∈ B. Since
also φM (x) ≤ log(diamB), by using again the Monotone Convergence Theorem, we obtain that
φM → φ strongly in L1(B) as M → +∞.

Therefore, by the triangle inequality,

‖φn − φ‖L1(B) ≤
π

2
e−2M + ‖φnM − φM‖L1(B) + ‖φM − φ‖L1(B),

and the result follows from letting first n→∞ and then M → +∞. �

Lemma 3.5. Let y, z ∈ B with y 6= z. There exists a positive constant C independent of y and
z such that ∫

B

1

|x− y|
1

|x− z|
dx ≤ C

(∫
B

x− y
|x− y|2

· x− z
|x− z|2

dx+ 1

)
. (3.7)

Proof. Let 2d := |y−z| and let us considers the two discs B3d(y) and B3d(z) of radius 3d centered
at y and z, respectively. Let us denote B3d(y) ∪B3d(z) =: D = D(y) ∪D(z) ∪ `, where D(y) and
D(z) are the two disjoint parts of D on the y and z side of the (open) segment ` given by the
intersection of the axis of yz with D (see Fig. 1). By symmetry of the set D, for every A ⊆ B
we have∫

A

1

|x− y|
1

|x− z|
dx

=

∫
A\D

1

|x− y|
1

|x− z|
dx+

∫
D(y)∩A

1

|x− y|
1

|x− z|
dx+

∫
D(z)∩A

1

|x− y|
1

|x− z|
dx

≤
∫
A\D

1

|x− y|
1

|x− z|
dx+ 2

∫
D(y)

1

|x− y|
1

|x− z|
dx

≤
∫
A\D

1

|x− y|
1

|x− z|
dx+

2

d

∫
B3d(y)

1

|x− y|
dx.

By computing the last integral over B3d(y) in polar coordinates centered at y we obtain∫
A

1

|x− y|
1

|x− z|
dx ≤

∫
A\D

1

|x− y|
1

|x− z|
dx+ 12π.
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y z

D(y) D(z)

`

Figure 1. The sets D(y), D(z) and `.

If we take A = B in the above inequality, we get∫
B

1

|x− y|
1

|x− z|
dx ≤

∫
B\D

1

|x− y|
1

|x− z|
dx+ 12π, (3.8)

if instead we take A = B ∩D, we obtain the estimate∣∣∣∣∫
B∩D

x− y
|x− y|2

· x− z
|x− z|2

dx

∣∣∣∣ ≤ ∫
D

1

|x− y|
1

|x− z|
dx ≤ 12π. (3.9)

Moreover, we notice that

x− y
|x− y|2

· x− z
|x− z|2

=
cosα(x)

|x− y||x− z|
, (3.10)

where α(x) is the angle centered at x formed by the vectors z − x and y − x. Since there exists
an angle 0 ≤ α0 < π/2 such that |α(x)| < α0 for all x ∈ B \ D, then integrating (3.10) over
B \D leads to∫

B\D

x− y
|x− y|2

· x− z
|x− z|2

dx =

∫
B\D

cosα(x)

|x− y||x− z|
dx ≥

∫
B\D

cosα0

|x− y||x− z|
dx. (3.11)

Therefore, by combining (3.8) with (3.11), we obtain∫
B

1

|x− y|
1

|x− z|
dx ≤ 1

cosα0

∫
B\D

x− y
|x− y|2

· x− z
|x− z|2

dx+ 12π,

which, together with (3.9), gives∫
B

1

|x− y|
1

|x− z|
dx ≤ 1

cosα0

∫
B

x− y
|x− y|2

· x− z
|x− z|2

dx−
∫
B∩D

x− y
|x− y|2

· x− z
|x− z|2

dx+ 12π

≤ 1

cosα0

∫
B

x− y
|x− y|2

· x− z
|x− z|2

dx+ 24π,

which is (3.7) with the constant C = max{1/ cosα0, 24π}. �

We prove now some summability properties of the functions appearing in Lemma 3.5.

Lemma 3.6. Let µ ∈ P(Ω) be such that

−
∫

Ω×Ω

log |y − z|dµ⊗ µ(y, z) < +∞. (3.12)

Then

(i) the functions (y, z) 7→
∫
B

x− y
|x− y|2

· x− z
|x− z|2

dx and (y, z) 7→
∫
B

1

|x− y|
1

|x− z|
dx belong

to L1(B ×B,µ⊗ µ);

(ii) the function x 7→
∫
B

x− y
|x− y|2

dµ(y) belongs to L2(B;R2).
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In particular, the function φ defined in (3.6) belongs to H1(B).

Proof. First we notice that (3.12) yields that µ⊗ µ does not charge the diagonal 40 in B ×B.
Indeed, by (3.12), we have that, for ε > 0 small enough,

+∞ > −
∫
4ε

log |y − z|dµ⊗ µ(y, z) ≥ −(log ε)µ⊗ µ(4ε) ≥ −(log ε)µ⊗ µ(40),

where 4ε := {(y, z) ∈ B × B : |y − z| < ε} and where we have used the monotonicity of µ ⊗ µ
in the last inequality. By taking the limit ε→ 0 we conclude that µ⊗ µ(40) = 0.

For brevity, we set

β(y, z) :=

∫
B

x− y
|x− y|2

· x− z
|x− z|2

dx and γ(y, z) :=

∫
B

1

|x− y|
1

|x− z|
dx.

Since |β(y, z)| ≤ γ(y, z) and µ does not charge 40, we have∫
B×B

|β(y, z)|dµ⊗ µ(y, z) ≤
∫
B×B

γ(y, z) dµ⊗ µ(y, z) = lim
ε→0

∫
(B×B)\4ε

γ(y, z) dµ⊗ µ(y, z).

The last estimate, together with Lemma 3.5 and the fact that µ concentrates only on Ω, yields
the estimate∫

B×B
|β(y, z)|dµ⊗ µ(y, z) ≤ C lim

ε→0

∫
(B×B)\4ε

β(y, z) dµ⊗ µ(y, z) + C

= C lim
ε→0

∫
(Ω×Ω)\4ε

β(y, z) dµ⊗ µ(y, z) + C.

(3.13)

Taking into account that by the divergence theorem

β(y, z) =

∫
∂B

x− y
|x− y|2

· ν(x) log |x− z|dH1(x)− 2π log |y − z|

for µ⊗ µ-a. e. (y, z) ∈ B ×B, the estimate (3.13) becomes∫
B×B

|β(y, z)|dµ⊗ µ(y, z)

≤ C
∫
B×B

(∫
∂B

x− y
|x− y|2

· ν(x) log |x− z|dH1(x)− 2π log |y − z|
)

dµ⊗ µ(y, z) + C.

The boundary integral on ∂B can be easily bounded by max{| log d|, | log(diamB)|}/d where
d = dist(∂B,Ω), so that the iterated integral over B × B is finite. Moreover, the term with
the logarithm belongs to L1(B × B,µ ⊗ µ) thanks to hypothesis (3.12). Therefore (i) follows

for the function (y, z) 7→
∫
B

x− y
|x− y|2

· x− z
|x− z|2

dx. The L1 integrability of the function (y, z) 7→∫
B

1

|x− y|
1

|x− z|
dx follows in a similar way, again by applying Lemma 3.5.

To show (ii), we use (i) and the Fubini Theorem [26, Theorem 8.8 and the following Notes
therein] applied to the function (x, y, z) 7→ 1/(|x − y||x − z|) and to the measure spaces (B ×
B,µ⊗ µ) and (B,L). First, we deduce that the iterated integrals∫
B×B

(∫
B

1

|x− y|
1

|x− z|
dx

)
dµ⊗ µ(y, x) and

∫
B

(∫
B×B

1

|x− y|
1

|x− z|
dµ⊗ µ(y, x)

)
dx

are finite and equal. This implies that the function (y, z) 7→ (x − y) · (x − z)/(|x − y||x − z|)
belongs to L1(B × B,µ ⊗ µ) for a. e. x ∈ B. Similarly, by (i) and Fubini Theorem applied to
the function (x, y, z) 7→ (x− y) · (x− z)/(|x− y||x− z|), we infer that∫
B×B

(∫
B

x− y
|x− y|2

· x− z
|x− z|2

dx

)
dµ⊗ µ(y, z) =

∫
B

(∫
B×B

x− y
|x− y|2

· x− z
|x− z|2

dµ⊗ µ(y, z)

)
dx

is finite. In particular, the function x 7→
∫
B×B

x− y
|x− y|2

· x− z
|x− z|2

dµ⊗ µ(y, z) belongs to L1(B),

so that its value is finite for a. e. x ∈ B. As a consequence, we can apply again Fubini Theorem
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for a. e. x ∈ B to the function (y, z) 7→ x− y
|x− y|2

· x− z
|x− z|2

∈ L1(B ×B,µ⊗ µ), so we can write

∫
B

(∫
B×B

x− y
|x− y|2

· x− z
|x− z|2

dµ⊗ µ(y, z)

)
dx =

∫
B

∣∣∣∣ ∫
B

x− y
|x− y|2

dµ(y)

∣∣∣∣2 dx < +∞.

This proves (ii).
It remains to show the H1 regularity of φ: on the one hand, it is easy to see that φ belongs

to W 1,p(B) for every 1 ≤ p < 2; on the other hand, a direct computation proves that its
distributional gradient agrees with the function defined in (ii). The claim follows by Poincaré-
Wirtinger inequality combined with the integrability provided in (ii). This concludes the proof
of the lemma. �

4. Proofs of the main results

We are now ready to prove Theorem 1.2 and Corollaries 1.5 and 1.6.

Proposition 4.1 (Γ-liminf inequality). Let n ∈ N and fn ∈ H−1/2(∂Ω) with 〈fn, 1〉 = 2πn.

Assume that 1
nf

n → f strongly in H−1/2(∂Ω) as n → ∞. Then, for every µn
∗
⇀ µ in P(Ω) as

n→∞, there holds

lim inf
n→∞

Fn(µn) ≥ F∞(µ). (4.1)

Proof. Up to the extraction of a subsequence, we can consider a sequence {µn} along which the
lim inf in (4.1) is a finite limit. This implies that each µn is of the form

µn =
1

n

n∑
i=1

δani ,

for some distinct points an1 , . . . , a
n
n ∈ Ω and, by Lemma 3.3, that µ does not charge points.

Since the logarithmic term in the right-hand side of (3.1) is bounded below, by Lemma 3.1
we infer that ‖wn‖H1(Ω) and ‖φn‖H1(B\Ω) are bounded. Therefore (up to subsequences) wn

converges weakly to some w ∈ H1(Ω) and φn converges weakly to φ ∈ H1(B \Ω), where φ is the
L1-limit found in Lemma 3.4. By the divergence theorem and (2.2), recalling (1.10a), for every
test function ψ ∈ H1(B \ Ω), we have

〈∂νφn, ψ〉∂Ω = −
∫
B\Ω
∇φn∇ψ dx+

∫
∂B

ψ ∂νφ
n dH1 n→∞−→ 〈∂νφ+, ψ〉∂Ω. (4.2)

In other words, on the boundary ∂Ω, the sequence of normal traces ∂νφ
n converges to the exterior

normal trace ∂νφ+, weakly in H−1/2(∂Ω). These convergences, together with the definition (3.6)
of φ, the system (2.2) satisfied by wn, and the assumption on fn, imply that the limits φ and w
solve

∆φ = 2πµ in B and

{
∆w = 0 in Ω,

∂νw = f − ∂νφ+ on ∂Ω.
(4.3)

Let us first analyze the logarithmic term in the energy: using a truncation argument as in [21,
formula (3.26)] we can prove that

lim inf
n→∞

−π
∫

Ω×Ω

log |x− y|dµn � µn ≥ −π
∫

Ω×Ω

log |x− y|dµ⊗ µ,

so that the equicoercivity of the energy (3.1) guarantees that the right-hand side above is
bounded. As a consequence, thanks to Lemma 3.6, the equation for φ in (4.3) implies in partic-
ular that µ ∈ H−1(B).

By (3.3), we can write the energy (2.6) as

Fn(µn) =
1

2

∫
Ω

|∇wn|2 dx+
1

2

∫
B\Ω
|∇φn|2 dx− π

∫
Ω×Ω

log |x− y|dµn � µn

− 1

2

∫
∂B

φn∂νφ
n dH1 +

1

n
〈fn, φn〉∂Ω,
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and taking the lim inf as n→∞, we obtain

lim inf
n→∞

Fn(µn) ≥ 1

2

∫
Ω

|∇w|2 dx+
1

2

∫
B\Ω
|∇φ|2 dx− π

∫
Ω×Ω

log |x− y|dµ⊗ µ

− 1

2

∫
∂B

φ∂νφ dH1 + 〈f, φ〉∂Ω.

(4.4)

Here we have used the assumption 1
nf

n → f strongly in H−1/2(∂Ω), the lower semicontinuity

of the H1 norm, and that of the term with the logarithm. Recalling (3.6) and (4.3), integrating
by parts the term with the logarithm we have

−π
∫

Ω×Ω

log |x− y|dµ⊗ µ = −π
∫
B×B

log |x− y|dµ⊗ µ

=
1

2

∫
B

|∇φ|2 dx− 1

2

∫
∂B

φ∂νφ+ dH1

=
1

2

∫
Ω

|∇φ|2 dx+
1

2

∫
B\Ω
|∇φ|2 dx− 1

2

∫
∂B

φ∂νφ+ dH1

=
1

2

∫
Ω

|∇φ|2 dx− 1

2
〈∂νφ+, φ〉∂Ω,

(4.5)

where in the last equality we have used (4.2). Moreover, integrating by parts in B \ Ω, we have

1

2

∫
B\Ω
|∇φ|2 dx− 1

2

∫
∂B

φ∂νφdH1 = −1

2
〈∂νφ+, φ〉∂Ω, (4.6)

so that, by adding (4.5) and (4.6), the right-hand side of (4.4) becomes

1

2

∫
Ω

|∇w|2 dx+
1

2

∫
Ω

|∇φ|2 dx+ 〈f − ∂νφ+, φ〉∂Ω.

Defining U := w + φ and using (4.3) and Remark 1.4, we have that U solves (1.7) and the
expression above is precisely the functional F∞(µ) defined in (1.6). This concludes the proof of
(4.1) and of the proposition. �

Proposition 4.2 (Γ-limsup inequality). Let n ∈ N and fn ∈ H−1/2(∂Ω) with 〈fn, 1〉 = 2πn.
Assume that 1

nf
n → f strongly in H−1/2(∂Ω) as n → ∞. Let µ ∈ P(Ω). Then there exists a

sequence of measures µn ∈ P(Ω) such that µn
∗
⇀ µ in P(Ω) as n→∞ and

lim sup
n→∞

Fn(µn) ≤ F∞(µ). (4.7)

Proof. In the case µ /∈ H−1(B) the inequality is trivially satisfied by choosing µn = µ. Therefore,
let us assume that µ ∈ H−1(B). Since F∞(µ) < +∞, in order to prove (4.7) we look for a
sequence of approximating measures µn of the form (1.4), for n distinct points an1 , . . . , a

n
n ∈ Ω,

which implies that Fn(µn) is finite and can be written as in (2.6).
Step 1. We first prove the lim sup inequality assuming that µ is absolutely continuous with

respect to the Lebesgue measure and is of the form

dµ =
∑
j

αj11Ωjdx, (4.8)

where Ωj is a finite family of pairwise disjoint Borel sets defined as follows. For a fixed parameter
h > 0, we define Qj as the collection of all open squares with corners on the lattice hZ2 such that

Qj ∩Ω 6= ∅. Denoting by Γj the closure of the right and top sides of ∂Qj , we set (see Figure 2)

Ωj := (Qj ∩ Ω) \ (Γj \ ∂Ω). (4.9)

The coefficients αj in (4.8) are such that αj ∈ [0, 1] for all j, αj = 0 whenever Ωj∩∂Ω 6= ∅, and∑
j αj |Ωj | = 1. With this choice of the αj ’s, the measure µ is a piecewise constant probability

measure with compact support in Ω.
For every n, we construct µn := 1

n

∑n
i=1 δani , for some distinct points an1 , . . . , a

n
n ∈ Ω, such

that µn
∗
⇀ µ, by placing a suitable number of dislocations of the order of bnαj |Ωj |c in each Ωj

(this is a standard construction, see, e.g., [5, 21] and also [6, 32, 33]). Since the dislocations
remain at positive distance to ∂Ω we have that the functions φn associated with µn via (2.2)
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Ω

(a)

(b)

(c)
Ωj

∂Ω

Ωj

Figure 2. (a) Dashed, the family of open squares Qj . (b) Definition of the

Borel sets Ωj when Qj ∩ ∂Ω = ∅. (c) Definition of the Borel sets Ωj when

Qj ∩ ∂Ω 6= ∅.

converge strongly in H1(B \Ω) to the function φ defined in (3.6); hence the first three terms in
(2.6) converge. Moreover, by [21, formula (3.32)] it follows that

lim sup
j
−π
∫

Ω×Ω

log |x− y|dµn � µn ≤ −π
∫

Ω×Ω

log |x− y|dµ⊗ µ.

Therefore, (4.7) is proved when µ is a piecewise constant measure with compact support in Ω.
Step 2. By [10], to obtain (4.7) for a general µ ∈ H−1(B), it is enough to prove that the

class of piecewise constant measures with compact support in Ω is dense in energy, namely that
there exists a sequence of piecewise constant measures µh ∈ P(Ω) with compact support in Ω

such that µh
∗
⇀ µ and

lim sup
h→∞

F∞(µh) ≤ F∞(µ). (4.10)

We construct the approximating measures µh of the form (4.8), by choosing coefficients αhj and

sets Ωhj as follows. We consider a parameter h > 0 and we define the collection {Qhj }j of open

squares intersecting Ω as in Step 1. Accordingly, we define the Γhj ’s, and the Ωhj ’s as in (4.9),

namely Ωhj := (Qhj ∩Ω) \ (Γhj \ ∂Ω). We observe that, for every h > 0, Ωhj ∩Ωhk = ∅ if j 6= k, that

Ω =
⋃
j Ωhj , and that for any j we have |Ωhj | > 0.

For every j, we define βhj := µ(Ωhj )/|Ωhj |, so that the approximating measure µh of the form
(4.8) is constructed as follows: for each j

(i) if Ωhj ∩ ∂Ω = ∅ then we set αhj := βhj .

(ii) otherwise, if Ωhj ∩ ∂Ω 6= ∅ we set αhj = 0 and transfer the mass βhj to ΩhK , where ΩhK is a

square such that ΩhK ∩ ∂Ω = ∅ and is the closest to Ωhj (clearly, there can be more than

one such ΩhK), that is

αhK := βhK + βhj
|Ωhj |
|ΩjK |

.

We finally define µh as dµh :=
∑
j α

h
j 11Ωhj

dx and notice that it has compact support in Ω, as

desired.
We claim that these measures µh converge strongly to µ in H−1(B). We first observe that

2πµh(x) = ∆φh, where φh(x) =
∫
B

log |x − y|dµh(y), and similarly 2πµ = ∆φ, where φ is

defined in (1.9). By using the definition of the H−1 norm, proving the convergence of µh to µ is
equivalent to proving that ∇φh → ∇φ strongly in L2(B;R2). Since∫

B

|∇φh|2 dx =

∫
∂B

φh ∂νφh dH1 − 2π

∫
B×B

log |x− y|dµh ⊗ µh

and the boundary term converges to
∫
∂B

φ∂νφdH1, invoking the lower semincontinuity of the

L2 norm, we are left with proving that

lim sup
h→∞

−
∫
B×B

log |x− y|dµh ⊗ µh ≤ −
∫
B×B

log |x− y|dµ⊗ µ.

This can be proved using a truncation argument as in [21, equation (3.27)], so that we obtain

‖∇φh‖L2(B;R2) → ‖∇φ‖L2(B;R2). (4.11)
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The boundedness of ‖∇φh‖L2(B;R2) implies that ∇φh converges weakly in L2(B;R2) to its dis-
tributional limit ∇φ, so that (4.11) allows us to conclude that the convergence of ∇φh to ∇φ is
indeed strong in L2(B;R2).

Thus the solutions Uh associated with µh by (1.7) converge strongly in H1(Ω) to the solution
U associated with µ. Then (4.10) follows by definition of F∞. �

Proof of Theorem 1.2. Propositions 4.1 and 4.2 imply that the functionals Fn defined in (1.5)
Γ-converge to the functional F∞ defined in (1.6) (see [10]). Theorem 1.2 is then proved. �

Proof of Corollary 1.5. The proof follows from [10, Corollary 7.20]. The strict convexity of
F∞ implies that its minimizer is unique (and thus the convergence holds without extracting
subsequences). �

Proof of Corollary 1.6. The uniqueness of the minimizer of F∞ obtained in Corollary 1.5 and
the fact that F∞(µ) ≥ 0 for any µ ∈ P(Ω) imply that it is enough to show that the measure µ∞

in (1.11) is such that F∞(µ∞) = 0. This assertion is a simple verification obtained by integrating
by parts (1.6) and using (1.7). The limit (1.12) is granted again by Corollary 1.5. �
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atica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matem-
atica (INdAM). The INdAM-GNAMPA project 2015 Fenomeni Critici nella Meccanica dei Ma-
teriali: un Approccio Variazionale partially supported this research. M.M. acknowledges partial
support from the DFG Project Identifikation von Energien durch Beobachtung der zeitlichen
Entwicklung von Systemen (FO 767/7). R.S. is grateful to the Erwin Schrödinger Institute for
the financial support obtained during the last part of the present research. D.Z. acknowledges
partial support from the INdAM-GNAMPA project 2018 Ottimizzazione Geometrica e Spettrale.

References

[1] R. Alicandro, L. De Luca, A. Garroni, and M. Ponsiglione: Metastability and Dynamics of Discrete

Topological Singularities in Two Dimensions: A Γ-Convergence Approach, Arch. Rational Mech. Anal., 214,
269–330, 2014.
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antiplane shear. J. Convex Anal., 24(2) (2017), 547–570.
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