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Euclid's V Postulate has always appeared less evident than the other axioms (maybe even to 
Euclid himself) and over the centuries it gave rise to many discussions, culminating with the 
advent of the so-called non-Euclidean geometries, that are based on its negations. For 
example, we can assume that given a point and a line on the plane there does not exist any line 
through the point and parallel to the given one, or we can assume that there exist infinitely 
many parallel lines to the given one through the point. 
In 1871 Felix Klein published two papers [2, 3], called On the so-called non-Euclidean 
geometry, in which he proposed to call the first type of geometry "elliptic geometry" (from the 
Greek ellipsis, that means omission) and the second type “hyperbolic geometry” (form the 
Greek hyperbola, that means excessive).  
 

A good model for elliptic geometry is the sphere, while a model 
for hyperbolic geometry, for example, is Poincaré's disk (there 
are other models, including one proposed by Klein himself, but 
these are usually considered to be less intuitive), a disk with a 
different metric from the Euclidean metric in which the points 
on the boarder are "points at infinity" and the objects become 
smaller and smaller as they approach the boarder of the disk. 
While thinking about geometry on a sphere is relatively easy, 
since we are lucky enough to be living on one, imagining 
Poincaré's disk is more difficult and intriguing, indeed it has 
even inspired artists such as M. C. Escher (to see other 
beautiful artwork by Escher we recommend visiting the official 
website of the M.C. Escher Foundation at www.mcescher.com). 
To gain an elementary intuition about the Poincaré disk 
frequently a particular transformation of the plane is 
introduced: circle inversion. 

 
Circle inversion provides an interesting example of geometric transformation that, unlike the 
affinities and isometries studied in high school, usually does not transform lines into lines 
(but into circles) and that can be presented in an elementary way since its properties can be 
explored with dynamic geometry software and easily proved in synthetic geometry. Indeed, 
some high school textbooks introduce circle inversion as an interesting topic of Euclidean 
geometry that can also be explored through dynamic geometry software3. 
Let us take a look at some of its properties, starting from its definition and construction. 
 
1. Circle inversion 
Let us start with the definition of circle inversion (or inversion) of a point P. 
                                                        
1 Inspired by the snapshot: "How I Stumbled Upon a New (to me) Construction of the Inverse of a 
Point" [1]. 
2 University of Pisa (Italy). Contact per Email: anna.baccaglinifrank@unipi.it 
3 A very good example of how this can be done is in Chapter 5 of "Geometry" in the CME Project high 
school textbooks [4].  

Figure 1. Hyperbolic tessellation of 
Poincaré's disk by M.C. Escher (Circle 

Limit III by M. C. Escher, 1959). 

http://www.mcescher.com/


 
Given a circle 𝐶𝐶 with center 𝑂𝑂 and radius 𝑟𝑟 and a point 𝑃𝑃 different from 𝑂𝑂, we define the  
inverse of 𝑃𝑃 with respect to 𝐶𝐶 a point 𝑃𝑃′ on the ray 𝑂𝑂𝑂𝑂 such that4 𝑂𝑂𝑂𝑂 ∙ 𝑂𝑂𝑃𝑃′ = 𝑟𝑟2. 

 
As we mentioned above, in this context it can be interesting - and sometimes surprising - to 
explore the characteristics of the transformation we defined, using a software for dynamic 
geometry. Many such environments contain a command "circle inversion" (the figures in this 
vignette are sketched using the free software GeoGebra). 

 
Interacting with the software, or even just thinking about the definition and recognizing its 
symmetry, one can deduce that it is an involution of the plane5 and that the image of a point 
inside the circle will be farther from 𝐶𝐶 the closer it is to its center and vice versa, and the 
points on the circle are fixed points of the transformation.  
 
Another useful definition is that of power of a point P. 
  

The power of 𝑃𝑃  with respect to the circle 𝐶𝐶  is written as ∏ 𝑃𝑃𝐶𝐶  and defined as the 
product 𝑃𝑃𝑃𝑃 ∙ 𝑃𝑃𝑃𝑃, where 𝐴𝐴 and 𝐵𝐵 are the points of intersection of any line through P with 
the circle 𝐶𝐶.  

 
Since the lines involved in this definition are infinitely many, we need to check that ∏ 𝑃𝑃𝐶𝐶  is 
indeed well-defined, that is, that it does not depend on the line chosen.  
 

                                                        
4 In this vignette the notation 𝐴𝐴𝐴𝐴 represents the length of the segment with endpoints 𝐴𝐴 and 𝐵𝐵. 
5 This is possible as long as we introduce a point at infinity and extend the inversion, by 
definition, to interchange the center O and this point at infinity. 

Figure 2. Inverse of a point 𝑃𝑃  that is internal or external to the reference circle. 

Figure 3. Secant-tangent theorem and chord theorem. 



This check follows immediately from the chord theorem (in the case in which 𝑃𝑃 is inside the 
circle) and from the secant-tangent theorem (in the case in which 𝑃𝑃 is outside the circle), both 
usually introduced in Euclidean geometry at the high school level. 
 
We note that, since the quantity ∏ 𝑃𝑃𝐶𝐶 = 𝑃𝑃𝑃𝑃 ∙ 𝑃𝑃𝑃𝑃 is invariant no matter which line through 𝑃𝑃 is 
chosen, it is always possible to choose the line through the center 𝑂𝑂 of the circle, that is, the 
line that contains a diameter of  𝐶𝐶. Therefore, we can show that  
 

∏ 𝑃𝑃𝐶𝐶 = |𝑂𝑂𝑂𝑂2 − 𝑟𝑟2|. 
 
Since this will be very useful later on, we will refer to this equality as propriety zero of the 
power of a point 𝑃𝑃 with respect to 𝐶𝐶. 
 
 
2. First properties 
A first property of inversion, that is a bit less evident, is the following. Since it does not 
immediately follow from the definition, we will call it Theorem 1. 
 

If 𝑃𝑃′ is the inverse of 𝑃𝑃 with respect to 𝐶𝐶, for every point 𝑄𝑄 of the circle 𝐶𝐶 the ratio 
between the segments 𝑃𝑃𝑃𝑃 and 𝑃𝑃′𝑄𝑄 remains constant. 

 
In fact, there is no apparent reason why this theorem should be true: the invariance of the 
ratio no matter how we choose 𝑄𝑄 seems to be something “magical”. The surprise effect can be 
amplified (and therefore used didactically as a stimulus for searching for a proof) by trying it 
in dynamic geometry, for example dragging 𝑄𝑄 along the circle and checking explicitly that the 
ratio between the lengths of 𝑃𝑃𝑃𝑃 and 𝑃𝑃′𝑄𝑄 remains constant (in Figure 3 we chose to show both 
the sum 𝑠𝑠 between the lengths of the two segments and their ratio 𝑘𝑘, to show even more 
evidently that the first changes while 𝑄𝑄 moves along the circle, while the second remains 
constant). 
 

 
We now prove Theorem 1.  

Figure 4. Exploration and testing in dynamic geometry. 



An analytical proof for Theorem 1 is possible using the analytical expression for inversion, but 
we prefer to work synthetically, as shown below. 

 
Since point 𝑃𝑃′ is the inverse of 𝑃𝑃, we know that 𝑂𝑂𝑂𝑂 ∙ 𝑂𝑂𝑃𝑃′ = 𝑟𝑟2 (where 𝑟𝑟 is the radius of the 
circle). This is equivalent to saying that 𝑂𝑂𝑃𝑃′/𝑟𝑟 = 𝑟𝑟/𝑂𝑂𝑂𝑂 and therefore, since point 𝑄𝑄 belongs to 
circle 𝐶𝐶, that 𝑂𝑂𝑃𝑃′/𝑂𝑂𝑂𝑂 = 𝑂𝑂𝑂𝑂/𝑂𝑂𝑂𝑂 (we remind the reader that we assumed that 𝑃𝑃 is different 
from 𝑂𝑂, so dividing by 𝑂𝑂𝑂𝑂 is never a problem). 
Therefore we consider the two triangles 𝑄𝑄𝑄𝑄𝑄𝑄 and 𝑄𝑄𝑄𝑄𝑄𝑄′: the preceding equality guarantees that 
their sides are proportional and the angle ∠𝑄𝑄𝑄𝑄𝑄𝑄′ is common to both triangles, therefore the 
triangles 𝑄𝑄𝑄𝑄𝑄𝑄 and 𝑄𝑄𝑄𝑄𝑃𝑃′ are similar. 
So we can write the proportion relating the third sides of both triangles, and get 𝑄𝑄𝑃𝑃′/𝑄𝑄𝑄𝑄 =
𝑂𝑂𝑂𝑂′/𝑄𝑄𝑄𝑄. From this equality, remembering that 𝑃𝑃′ is the inverse of 𝑃𝑃 and that therefore 𝑂𝑂𝑃𝑃′ =
𝑟𝑟2/𝑂𝑂𝑂𝑂 and that 𝑄𝑄 belongs to the circle 𝐶𝐶 so 𝑂𝑂𝑂𝑂 = 𝑟𝑟, we can conclude that 𝑄𝑄𝑃𝑃′/𝑄𝑄𝑄𝑄 = 𝑟𝑟/𝑂𝑂𝑂𝑂. 
Since the ratio 𝑟𝑟/𝑂𝑂𝑂𝑂 is determined only by the position of 𝑃𝑃 and it does not depend from our 
choice of 𝑄𝑄, we proved what we wanted. 
Moreover, notice that this proof is the same whether 𝑃𝑃 is outside or inside the circle: the 
property in Theorem 1 is true in both cases.  
 
This way we can see that together with the proof of Theorem 1 we also reached an expression 
for the constant as a function of the radius 𝑟𝑟 and of the point 𝑃𝑃: 𝑄𝑄𝑃𝑃′/𝑄𝑄𝑄𝑄 = 𝑟𝑟/𝑂𝑂𝑂𝑂. 
 
 
3. From the properties to a new construction method 
Until now we only used dynamic geometry to explore properties and check theorems (and also 
to make drawings that are more precise than those we could have drawn by hand with pencil 
and paper!). The potentials of dynamic geometry software, however, go well beyond these: we 
can make use of the many examples and counter-examples that we can generate by dragging 
the dynamic objects to make or refute conjectures. Circle inversion is a great context for doing 
this. 
 
Let us consider a circle 𝐶𝐶  with center 𝑂𝑂 , point 𝑃𝑃′  is the inversive image of 𝑃𝑃 ; as in the 
definition of the power of a point with respect to 𝐶𝐶, let us mark as 𝐴𝐴 and 𝐵𝐵 the two intersection 
points of any line through 𝑃𝑃 that intersects the circle. Then let us consider point 𝐵𝐵′ the image 
of 𝐵𝐵 through line symmetry over 𝑂𝑂𝑂𝑂. Notice that since Theorem 1 is true for any point of 𝐶𝐶, it 
must also be true for 𝐴𝐴, for 𝐵𝐵 and for 𝐵𝐵′. 
 

Figure 5. Proof of Theorem 1. 



 

In the figures above we decided to apply line symmetry to one of the points of intersection 
between the line and the circle, and specifically to the point that had a greater distance from 
𝑃𝑃, but we could have chosen either point of intersection to reflect (indeed the choice of which 
point to call 𝐴𝐴 and which to call 𝐵𝐵 is completely arbitrary). 
Moreover, for sake of brevity, we will only refer to the case in which 𝑃𝑃 is outside the circle 𝐶𝐶, 
but we are sure that the curious reader can treat the case in which 𝑃𝑃 is inside (only small 
variations to our work below need to be made). 
 
If now we try to continuously vary the figure, dragging point 𝐵𝐵 along the circle, we can notice 
that points 𝐴𝐴, 𝑃𝑃′ and 𝐵𝐵′ seem to always stay aligned, even when 𝐵𝐵 and 𝐵𝐵′ switch places on 𝐶𝐶. 
So, interacting with the construction we figured out something new and “magical”: it looks 
like we have found a new property of 𝑃𝑃′ the inverse of 𝑃𝑃 with respect to 𝐶𝐶. 
But can we trust our perception? Will the three points actually always be aligned? To be more 
sure we can always ask the software to measure the angles ∠𝐵𝐵′𝑃𝑃′𝑂𝑂 and ∠𝐴𝐴𝐴𝐴′𝑃𝑃 and visually 
verify that their measures (up to two decimals of a degree) are always the same no matter 
where 𝐵𝐵 moves along the circle.  

 
We could then ask ourselves if it is 𝑃𝑃′ that is “special”, or if this new property uniquely 
identifies the inverse of a point with respect to circle inversion. 
To verify this conjecture we consider any point 𝐾𝐾  on segment 𝑂𝑂𝑂𝑂  and we construct the 
segments 𝐵𝐵′𝐾𝐾  and 𝐴𝐴𝐴𝐴 . Thanks to dynamic geometry, varying the position of the points 
continuously, we can generate infinitely any examples and counter-examples, and we can 
verify visually that dragging 𝐾𝐾 along 𝑂𝑂𝑂𝑂 and 𝐵𝐵 along 𝐶𝐶, points 𝐴𝐴, 𝐾𝐾 and 𝐵𝐵′ seem to line up only 

Figure 6. Construction of points 𝐴𝐴, 𝐵𝐵 and 𝐵𝐵’ on the circle. 

Figure 7. Check the alignment of the points through angle measures. 



when 𝐾𝐾 coincides with 𝑃𝑃′, and in this case the points seem to stay aligned no matter how we 
move 𝐵𝐵. 

 
This second exploration should have finally convinced us that our conjecture can be proved: it 
seems that we have found a new invariant through which we can define the inverse of a point 
on the plane! 
 
So now we are ready to state and prove our discovery, which we will call Theorem 2. 
 

Given a circle 𝐶𝐶 with center 𝑂𝑂 and radius 𝑟𝑟 and a point 𝑃𝑃 different from 𝑂𝑂, and let 𝐴𝐴 and 
𝐵𝐵 be the points of intersection of any line through 𝑃𝑃 with 𝐶𝐶, 𝐵𝐵′ the symmetric image of 
𝐵𝐵 across the line 𝑂𝑂𝑂𝑂  and 𝑃𝑃′ a point of the ray 𝑂𝑂𝑂𝑂. Then the points 𝐴𝐴, 𝑃𝑃′ and 𝐵𝐵′ are 
aligned if and only if 𝑃𝑃′ is the inverse of 𝑃𝑃 with respect to the circle 𝐶𝐶. 

 
If to generate our conjecture we could make use of dynamic geometry, to finally prove 
Theorem 2 we have to use Euclidean Geometry: if in fact our conjecture holds, we should be 
able to prove it through a chain of implications using other known theorems! 
 

• Let us start by proving that if 𝑃𝑃′ is the inverse of 𝑃𝑃 with respect to the circle 𝐶𝐶, then 
points 𝐴𝐴, 𝑃𝑃′ and 𝐵𝐵′ lie on a line. 

 
Let us consider the triangles 𝑂𝑂𝑂𝑂𝑂𝑂 and 𝐴𝐴𝐴𝐴′𝑃𝑃. Since 𝑃𝑃′ is the inverse of 𝑃𝑃 with respect to the 
circle 𝐶𝐶 we know that 𝑂𝑂𝑂𝑂 ∙ 𝑂𝑂𝑃𝑃′ = 𝑟𝑟2. We can change signs and add 𝑂𝑂𝑂𝑂2 to both sides of the 
equality, and we get𝑂𝑂𝑂𝑂2 − 𝑂𝑂𝑂𝑂 ∙ 𝑂𝑂𝑃𝑃′ = 𝑂𝑂𝑂𝑂2 − 𝑟𝑟2. From the left side we can factor out 𝑂𝑂𝑂𝑂 and 
substitute the difference (𝑂𝑂𝑂𝑂 − 𝑂𝑂𝑂𝑂′) with 𝑃𝑃′𝑃𝑃, while - recalling property zero of the power of a 

Figure 8. Check of the characteristic property of 𝑃𝑃′. 

Figure 9. Proof of the first implication in Theorem 2. 



point - on the right hand side we can recognize ∏ 𝑃𝑃𝐶𝐶 . Therefore by using the definition we can  
transform it into the product 𝑃𝑃𝑃𝑃 ∙ 𝑃𝑃𝑃𝑃 , and get 𝑂𝑂𝑂𝑂 ∙ 𝑃𝑃′𝑃𝑃 = 𝑃𝑃𝑃𝑃 ∙ 𝑃𝑃𝑃𝑃 , which is the equality 
between the ratios 𝑂𝑂𝑂𝑂/𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃/𝑃𝑃′𝑃𝑃. Since the triangles have angle ∠𝐵𝐵𝐵𝐵𝐵𝐵 in common, we can 
conclude that the triangles 𝑂𝑂𝑂𝑂𝑂𝑂  and 𝐴𝐴𝐴𝐴′𝑃𝑃  are similar. So the angles ∠𝐴𝐴𝐴𝐴′𝑃𝑃  and ∠𝑂𝑂𝑂𝑂𝑂𝑂  are 
congruent. 
On the other hand, looking at the proof of Theorem 1 applied to point 𝐵𝐵 we also find that the 
triangles 𝑂𝑂𝑂𝑂𝑂𝑂 and 𝑂𝑂𝑂𝑂𝑂𝑂′ are similar, from which we deduce that the angles ∠𝑂𝑂𝑂𝑂𝑂𝑂 and ∠𝑂𝑂𝑂𝑂′𝐵𝐵 
are congruent. 
Therefore it is enough to observe that the angles ∠𝑂𝑂𝑂𝑂′𝐵𝐵  and ∠𝑂𝑂𝑂𝑂′𝐵𝐵′  are congruent by 
construction to conclude that ∠𝐴𝐴𝐴𝐴′𝑃𝑃 = ∠𝑂𝑂𝑂𝑂′𝐵𝐵′ and so the three points 𝐴𝐴, 𝑃𝑃′ and 𝐵𝐵′ must lie on 
a line. 
 

• Next let us prove that also the vice versa is true, that is, if points 𝐴𝐴, 𝑃𝑃′ and 𝐵𝐵′ lie on a 
line, then 𝑃𝑃′ is the inverse of 𝑃𝑃 with respect to 𝐶𝐶. 

 
Let us consider the triangles 𝑂𝑂𝑂𝑂𝑂𝑂′ and 𝐴𝐴𝐴𝐴𝐴𝐴′. We call 𝐷𝐷 the intersection between line 𝑂𝑂𝑂𝑂′ and 𝐶𝐶 
on the opposite side of 𝑃𝑃; then by construction  ∠𝐷𝐷𝐷𝐷𝐷𝐷 = ∠𝐷𝐷𝐷𝐷𝐵𝐵′ = 1

2
∠𝐵𝐵𝐵𝐵𝐵𝐵′ and they are all 

congruent to the angle ∠𝐵𝐵𝐵𝐵𝐵𝐵′, because ∠𝐵𝐵𝐵𝐵𝐵𝐵′ and ∠𝐵𝐵𝐵𝐵𝐵𝐵′ are respectively an inscribed angle 
and a central angle insisting on the same arc with endpoints 𝐵𝐵 and 𝐵𝐵′. Moreover, since our 
hypothesis is that 𝐴𝐴, 𝑃𝑃′ and 𝐵𝐵′ lie on the same line, the angle ∠𝐵𝐵𝐵𝐵𝐵𝐵′ coincides with the angle 
∠𝐵𝐵𝐵𝐵𝑃𝑃′.  Therefore, using the exterior angle theorem, we get ∠𝑃𝑃′𝐵𝐵𝐵𝐵 = ∠𝐷𝐷𝐷𝐷𝐷𝐷 − ∠𝑂𝑂𝑃𝑃′𝐵𝐵 =
∠𝐵𝐵𝐵𝐵𝑃𝑃′ − ∠𝐴𝐴𝐴𝐴′𝑃𝑃 = ∠𝐴𝐴𝐴𝐴𝐴𝐴′. This result, together with the alignment hypothesis, guarantees that 
∠𝐴𝐴𝐴𝐴′𝑃𝑃 = ∠𝑂𝑂𝑂𝑂′𝐵𝐵′ and since, by construction, ∠𝑂𝑂𝑃𝑃′𝐵𝐵′ = ∠𝑂𝑂𝑂𝑂′𝐵𝐵, it allows us to conclude that the 
triangles 𝑂𝑂𝑂𝑂𝑂𝑂′ and 𝐴𝐴𝐴𝐴𝐴𝐴′ have a pair of congruent angles and therefore they are similar. 
From this similarity we get that the equality 𝑂𝑂𝑃𝑃′/𝐵𝐵𝐵𝐵′ = 𝐴𝐴𝑃𝑃′/𝑃𝑃𝑃𝑃′ holds. Since by construction 
𝐵𝐵𝐵𝐵′ is equal to 𝐵𝐵′𝑃𝑃′ we can write 𝑂𝑂𝑃𝑃′ ∙ 𝑃𝑃𝑃𝑃′ = 𝐴𝐴𝑃𝑃′ ∙ 𝐵𝐵′𝑃𝑃′, that is 𝑂𝑂𝑃𝑃′ ∙ 𝑃𝑃𝑃𝑃′ = ∏ 𝑃𝑃′𝐶𝐶 . Property zero 
of the power of a point allows us to transform this equality into 𝑂𝑂𝑃𝑃′ ∙ 𝑃𝑃𝑃𝑃′ = 𝑟𝑟2 − 𝑂𝑂𝑂𝑂′2, from 
which, substituting 𝑃𝑃𝑃𝑃′ with 𝑂𝑂𝑂𝑂 − 𝑂𝑂𝑂𝑂′, we obtain 𝑂𝑂𝑃𝑃′ ∙ (𝑂𝑂𝑂𝑂 − 𝑂𝑂𝑃𝑃′) = 𝑟𝑟2 − 𝑂𝑂𝑂𝑂′2. 
Expanding the product on the left hand side, our equality becomes 𝑂𝑂𝑃𝑃′ ∙ 𝑂𝑂𝑂𝑂 − 𝑂𝑂𝑃𝑃′2 = 𝑟𝑟2 −
𝑂𝑂𝑃𝑃′2, which is 𝑂𝑂𝑃𝑃′ ∙ 𝑂𝑂𝑂𝑂 = 𝑟𝑟2. This is exactly what we wanted to prove. 
 
Interestingly, the invariant that we proved with Theorem 2, not only gives us a new property 
of circle inversion, but it also gives us an alternative method for constructing the inverse of 𝑃𝑃 
with respect to circle 𝐶𝐶. 
This is the new construction protocol. 

Figure 10. Proof of the second implication of Theorem 2. 



Given a circle 𝐶𝐶 with center 𝑂𝑂 and radius 𝑟𝑟 and a point 𝑃𝑃 different from 𝑂𝑂: 
• draw any secant6 to 𝐶𝐶 through 𝑃𝑃; 
• construct the symmetric of one of the two intersection points with respect to the line 

𝑂𝑂𝑂𝑂; 
• draw the segment that connects this point with the other point of intersection; 
• call 𝑃𝑃′ the point of intersection between this segment and the line 𝑂𝑂𝑂𝑂; 

Theorem 2 guarantees that 𝑃𝑃′ is the inverse of 𝑃𝑃 with respect to 𝐶𝐶. 
  

 
 
4. A glance at history 

Historically, the problem of constructing the inverse of a point 𝑃𝑃 
was solves in 1864 by A. Peaucellier with the linkage in the figure 
below, known as the Peaucellier’s inversor [5]. 
 
The mechanism is made up of two bars of equal length linked to the 
plane at a fixed point 𝑂𝑂. Four other bars are linked to the endpoints 
of these bars; these four bars are congruent but shorter than the 
first two, and they come together at points 𝑃𝑃  and 𝑃𝑃′  making a 
deformable rhombus. Moving 𝑃𝑃, the point 𝑃𝑃′ traces its inverse. 
 

 
This mechanism can be constructed with dynamic geometry software, using six segments that 
come together at points 𝑂𝑂,𝐴𝐴,𝑃𝑃,𝐵𝐵,𝑃𝑃′.  
The circle of inversion is not part of the linkage, but we decided to represent it to help show 
the properties of circle inversion.  
Using the secants theorem with the lines 𝑂𝑂𝑂𝑂 and 𝑂𝑂𝑂𝑂, secant to the circle with center at 𝐴𝐴 and 
radius 𝐴𝐴𝐴𝐴, we can prove that 𝑃𝑃′ is in fact the inverse of 𝑃𝑃 with respect to the circle with center 
𝑂𝑂 and radius √𝑂𝑂𝑂𝑂2 − 𝐴𝐴𝐴𝐴2. 
 
 
 
                                                        
6 Using dynamic geometry software it is easy to check that if 𝑃𝑃 is outside the circle, the method works 
analogously, even choosing one of the lines through 𝑃𝑃 that are tangent to the circle. 

Figure 11. Construction of the inverse of P in the cases of P being outside or inside the inversion circle. 

Figure 12. Physical recontruction of  
Peaucellier’s inversor. 



 
The importance of Peaucellier's inversor is related to the problem of constructing a system to 
convert exact straight-line motion to circular motion, that at the end of the 18th Century was 
afflicting engineers who were looking for an effective way of transforming the straight-line up 
and down motion of a piston in a cylinder into the circular motion of the wheels of a steam 
engine. 
Referring to Euclidean geometry we can easily prove that circle inversion transforms circles 
through the center of inversion into lines (and vice versa), so linking point 𝑃𝑃 to a circle 
through 𝑂𝑂 with a seventh bar forces 𝑃𝑃′ to move along a line. So Peaucellier's mechanism 
provides an exact solution to the problem. 
 
 
 

 

 
 
 
 
 
 

Figure 13. Reconstruction with dynamic geometry software of Peaucellier's inversor. 

Figures 14 e 15. Physical and digital reconstruction of Peaucellier's mechanism. 
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Figure 1 is a reproduction of Circle Limit III by M. C. Escher. Wood engraving, 1959.  
The pictures of the physical reproductions of Peaucellier's inversor (Figures 12 and 14) are 
reproduced from: http://www.macchinematematiche.org 
 


