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In this work we study the dimensional reduction of smooth circle invariant Yang-
Mills instantons defined on 4-manifolds which asymptotically become circle fibra-
tions over hyperbolic 3-space. A suitable choice of the 4-manifold metric within a
specific conformal class gives rise to singular and smooth hyperbolic monopoles. A
large class of monopoles is obtained if the conformal factor satisfies the Helmholtz
equation on hyperbolic 3-space. We describe simple configurations and relate our
results to the Jackiw-Nohl-Rebbi construction, for which we provide a geometric
interpretation. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4955418]

I. INTRODUCTION

Yang-Mills-Higgs monopoles over Euclidean 3-space have received considerable attention
because of their rich mathematical structure5 and due to their connections with string theory, see
e.g., Ref. 14. Qualitatively similar solutions are obtained by working on hyperbolic space, with
the advantage that the monopole equations are then more readily integrated analytically, even for
quite complicated configurations.20 The reason for this advantage is that hyperbolic monopoles with
specific masses arise as symmetry reductions of smooth circle invariant Yang-Mills instantons on
Euclidean 4-space.4

Euclidean monopoles with point singularities were first studied by Kronheimer16 and have been
constructed via the Nahm transform.8 The analysis was extended to the hyperbolic case by Nash,25

who studied the charge 1 moduli space using twistor techniques.
In this paper we present a technique which allows one to construct both smooth and singular

hyperbolic monopoles of mass m = 1
2 . We make use of the fact that hyperbolic monopoles can be

obtained from smooth circle invariant instantons via dimensional reduction. This is true not only for
smooth monopoles but also for monopoles with singularities. Smooth monopoles come from instan-
tons living on Euclidean 4-space E4, which, after removal of a 2-plane, is conformally equivalent
to a trivial circle bundle over hyperbolic 3-space H3. Singular monopoles, on the other hand, arise
from the dimensional reduction of smooth instantons living on spaces which asymptotically become
circle fibrations over H3. These spaces are the hyperbolic version of Gibbons-Hawking gravitational
instantons and we review them in Section II A. Sections II B and II C review some material on
singular hyperbolic monopoles and dimensional reduction.

In Section III A we construct monopoles by making use of the fact that the projection of the
spin connection of a Riemannian 4-manifold M on the appropriate su(2) factor in the Lie algebra
decomposition so(4) ' su(2) � su(2) is an instanton provided that M is spin, half-conformally flat
and scalar flat.6 In particular, by rescaling a hyperbolic Gibbons-Hawking (hGH) space via a
conformal factor which is circle invariant and satisfies the Helmholtz equation on H3, we obtain
a large family of solutions of the Bogomolny equations. Some specific examples are studied in
Sections III C and III D. In Section III F we remark on how this technique can be modified to obtain
the Higgs field of spherically symmetric monopoles with higher mass. A novel family of monopoles
is obtained by imposing that the conformally rescaled manifold is Einstein. We study this family in
Section IV.
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Reexamining the case of circle invariant instantons on E4 from this perspective gives new
insight into the construction of hyperbolic monopoles from circle invariant Jackiw-Nohl-Rebbi
(JNR) data. The JNR method constructs a class of hyperbolic monopoles starting from circle
invariant harmonic functions on E4.15,9 In Section III E we show that smooth monopoles obtained
from solutions of the Helmholtz equation correspond to monopoles coming from JNR data, and we
thereby obtain a purely geometrical reformulation of the JNR construction applied to hyperbolic
monopoles. Moreover, we identify how the classical JNR data are modified to generate monopole
singularities and give a physical interpretation of the JNR poles. We clarify the relation between the
two approaches and how to translate from one to the other.

A property of hyperbolic monopoles which is not shared by their Euclidean counterparts is
the fact that they are completely determined by the induced asymptotic abelian connection.11,22 For
monopoles coming from solutions of the Helmholtz equation we show this directly in Section III B
by giving an explicit relation between the full monopole solution and its asymptotic data.

II. PRELIMINARIES

It is known from Ref. 16 that a circle invariant instanton on a Gibbons-Hawking space is equiv-
alent to a monopole on E3, possibly with singularities, and examples of these monopoles have been
constructed.12 In a similar way, it is possible to obtain a singular hyperbolic monopole starting from
a circle invariant instanton on modified Gibbons-Hawking spaces.25 We are now going to review
how to generate such instantons.

A. Hyperbolic Gibbons-Hawking spaces

A (Euclidean) Gibbons-Hawking space is a Riemannian 4-manifold M with a metric of the
form

VgE3 +V�1(d + a)2. (1)

Here gE3 is the Euclidean 3-metric and (V ,a) obeys the abelian monopole equation da = ⇤E3dV ,
hence V is harmonic on E3. Any such metric is hyper-Kähler and therefore Ricci-flat and half-
conformally flat. Let {pi} be N distinct points in E3 and GE3

pi
(p) = µ/dE(pi,p) be Green’s function

on E3 centred at pi. Here dE is the Euclidean distance in E3 and µ > 0, a constant related to the
range of the angle  by  2 [0,4⇡µ). ForV of the form

V = c +
NX

i=1

GE3
pi

(c = constant), (2)

the metric (1) is known as multi-Eguchi-Hanson if c = 0 and as multi-Taub-NUT otherwise. It has a
U(1) isometry group generated by the vector field @/@ . Away from the NUTs pi, the fixed points
of the U(1) action, M is the total space of a circle fibration over E3.

LeBrun17 obtained a new family of half-conformally flat spaces by replacing the base space E3

with hyperbolic 3-space H3. The metric is now

g0 = VgH3 + V�1(d + ↵)2, (3)

where gH3 is the metric on hyperbolic 3-space of sectional curvature �1 and (V,↵) is an abelian
monopole on H3. We will refer to these spaces as hyperbolic Gibbons-Hawking (hGH) spaces and
take the orientation specified by the volume form

volhGH = �V volH3 ^ d , (4)

where volH3 is the volume element on H3. Note that (3) is neither hyper-Kähler nor scalar flat. In
fact,18 the scalar curvature s is

s = � 6
V
. (5)
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We will take V to be of the form

V =
2
�
+ 2

NX

i=1

GH3
pi

(� = constant), (6)

where {pi} are N distinct points in H3 and GH3
pi

is the Green’s function centred at pi. If dH is the
distance function on H3, then

GH3
pi
(p) = 1

e2dH (p,pi) � 1
. (7)

With this normalisation of V , the range of  in (3) is  2 [0,4⇡).

B. Singular hyperbolic monopoles

A hyperbolic monopole (�,A) is a solution of the Bogomolny equations on hyperbolic space,

dA� = �⇤H3F , (8)

where A is a connection on an SU(2) bundle P over H3, F is its curvature, � is a section of the
adjoint bundle, and ⇤H3 denotes the Hodge operator on H3. On su(2) we take the ad-invariant inner
product hX,Y i = � 1

2 Tr(X Y ).
Let B k, B? be the components of A parallel and orthogonal to the direction of the Higgs field

in su(2), B k = hA,�i�/k�k2, B? = A � B k. The monopole is required to satisfy the following
asymptotic conditions:23,25

(k�k � m) exp(2r) extends smoothly to @H3, for some constant m > 0, (9)
B k extends smoothly to @H3, (10)
B? exp(2m r) extends smoothly to @H3. (11)

Let {pi} be L distinct points in H3, ri = dH(p,pi). A singular hyperbolic monopole with
singularities at {pi} is a solution of (8) on H3 \ {pi} which satisfies the following conditions:

2 lim
ri!0

rik�k = `i 2 Z+, (12)

d(rik�k) is bounded in a neighbourhood of pi. (13)

The quantity

` =
LX

i=1

`i (14)

is called the abelian charge of the monopole.
Because of the decay condition (11) the monopole asymptotically abelianises. The total charge

Q of a hyperbolic monopole is the first Chern number associated to the asymptotic abelian fibration.
It can be computed as

Q = � 1
2⇡

⌅

@H3
⇤H3dk�k. (15)

It follows from (9) that the coe�cient of the leading term in an asymptotic expansion of k�k is the
monopole mass m. If C is the smooth extension of (k�k � m) exp(2r) to @H3, then

Q =
1

4⇡

⌅

@H3
C volS2. (16)

Following Ref. 25, we define the non-abelian charge k to be

k = ` �Q. (17)
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C. Dimensional reduction

Let P be the total space of an SU(2) principal bundle over an hGH space M . An SU(2)
instanton on M is a connection on P having self-dual or anti-self-dual curvature.

Let R be a lift to P of the U(1) action on M generated by the Killing vector field @/@ . We say
that an instanton $ on M is  -invariant if R⇤$ = $. For a  -invariant instanton $ there exists a
local section s such that, away from fixed points of the @/@ action, the gauge potential A = s⇤$
has no explicit  dependence.21 We call such a choice of local section a circle invariant gauge.

A  -invariant self-dual instanton is equivalent to a hyperbolic monopole. In fact,16,25 working
in a circle invariant gauge s and writing

A = s⇤$ = A + �
V
(d + ↵), (18)

the self-duality equations for A imply the Bogomolny equations (8) for (�,A).
One could reverse the procedure and define an instanton A on an hGH space M from a singular

hyperbolic monopole. Conditions (12) and (13) then ensure that A is globally defined on M as long
as the monopole singularities are located at poles of V .16,24

III. THE CONFORMAL RESCALING METHOD

For an oriented spin 4-manifold there is a decomposition of the spin bundle S(M) = S+(M) �
S�(M) corresponding to the splitting so(4) ' su(2)+ � su(2)�. Denote by P±(!) the projection of the
spin connection ! onto S±(M). We will make use of the following result.6

Theorem 1 (Atiyah-Hitchin-Singer 1978). Let M be an oriented Riemannian spin 4-manifold
with spin connection !.

1. P�(!) is a self-dual SU(2) connection if and only if M is half-conformally flat and scalar flat.
2. P+(!) is a self-dual SU(2) connection if and only if M is Einstein.

Since the self-duality equations are conformally invariant, we can conformally rescale the metric
on an hGH space in order to get a metric satisfying either of the above conditions. The appropriate
projection of the spin connection is then a self-dual instanton on the hGH space. In the Euclidean
case, this method has been used, e.g., in Ref. 12.

A. Hyperbolic monopoles as solutions of the Helmholtz equation

In this section we are going to apply the first method of Theorem 1 to generate self-dual
instantons on hGH spaces. We shall see that they can be completely specified by giving a solution of
the Helmholtz equation.

Since half-conformal flatness is a conformally invariant condition, we are looking for a func-
tion ⇤ > 0 for which the metric

g = ⇤2 g0 = ⇤
2 ⇥VgH3 + V�1(d + ↵)2

⇤
(19)

is scalar flat. Under the conformal transformation (19), the scalar curvature s of g0 transforms as

s0 =
1
⇤

2

 
s � 6

4g0⇤

⇤

!
. (20)

We use the notation 4g to denote the Laplace-Beltrami operator with respect to the metric g. Let
us assume that @ ⇤ = 0. Then 4g0 = V�14H3 and, using (5), imposing s0 = 0 gives the Helmholtz
equation on hyperbolic space,

4H3⇤ + ⇤ = 0. (21)
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As we are going to show below, in terms of ⇤, the instanton obtained from the spin connection
! on the conformally hGH space with metric (19) is given by

A = A + �
V
(d + ↵), (22)

with (�,A) the hyperbolic monopole

� =
1
2

"
✏1(⇤)
⇤

i +
✏2(⇤)
⇤

j +
✏3(⇤)
⇤

k
#
, (23)

A = 1
4
[(C3k2 + Ck23 � C23k) i + (C1k3 + Ck31 � C31k) j + (C2k1 + Ck12 � C12k) k] ✏k+ (24)

+
1

2⇤
⇥�
✏2(⇤)✏3 � ✏3(⇤)✏2� i +

�
✏3(⇤)✏1 � ✏1(⇤)✏3� j +

�
✏1(⇤)✏2 � ✏2(⇤)✏1�k

⇤
.

Here {✏ i} is an orthonormal frame on H3, {✏ i} is the dual coframe, [✏ i, ✏ j] = C k
i j ✏k, and Ci jk =

C m
i j (gH3)mk. Latin indices range from 1 to 3.

To prove (23) and (24) take the g-orthonormal coframe {ei,e4} and dual frame {ei,e4},

ei = ⇤
p

V ✏ i, e4 = �⇤ (d + ↵)p
V

, (25)

ei =
✏ i

⇤

p
V
, e4 = �

p
V
⇤

@ .

Let [e↵,e�] = C �
↵� e�, C↵�� = gµ�C

µ
↵� , with Greek indices ranging from 1 to 4. The spin connec-

tion coe�cients can be computed making use of the equation

!↵� =
1
2
�
C↵�µ � C�µ↵ � Cµ↵�

�
eµ. (26)

Since

C 4
i4 =

dV (✏ i)
2⇤V 3/2 �

d⇤(✏ i)
⇤

2V 1/2 ,

C 4
i j =

⇤H3dV (✏ i, ✏ j)
⇤V 3/2 ,

C j
i4 = 0,

C k
i j =

1
⇤

p
V

⇣
C k
i j + ✏ j(

p
V⇤) �ki � ✏ i(

p
V⇤) �kj

⌘
,

(27)

we have

!i j =
1
2
�Ci jk � Cjk i � Cki j� ✏k + 1

⇤

⇥
✏ j(⇤) ✏ i � ✏ i(⇤) ✏ j

⇤
+

1
2V

⇥
✏ j(V ) ✏ i � ✏ i(V ) ✏ j

⇤

� ⇤H3dV (✏ i, ✏ j)
2V

 
d + ↵

V

!
,

!i4 =

 
d⇤(✏ i)
⇤

� dV (✏ i)
2V

!  
d + ↵

V

!
+
⇤H3dV (✏ i, ✏ j)

2V
✏ j .

(28)

The projection of ! onto S�(M) is given by

P�(!) =
1
4
(⌘̄a)i j !i j ⌘̄a, (29)

with {⌘̄i} the anti-self-dual ’t Hooft matrices

⌘̄1 =

*.....
,

0 1 0 0
�1 0 0 0
0 0 0 �1
0 0 1 0

+/////
-
, ⌘̄2 =

*.....
,

0 0 �1 0
0 0 0 �1
1 0 0 0
0 1 0 0

+/////
-
, ⌘̄3 =

*.....
,

0 0 0 �1
0 0 1 0
0 �1 0 0
1 0 0 0

+/////
-
. (30)
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Identifying

⌘̄1 = �k, ⌘̄2 = �j, ⌘̄3 = �i, (31)

we get

A = P�(!) =
1
2

f
(!14 � !23)i + (!24 + !13)j + (!34 � !12)k

g
. (32)

Using

⇤H3dV (✏ i, ✏ j) = ✏ i jk dV (✏k), (33)

with ✏ i jk the Levi-Civita symbol in 3 dimensions, ✏123 = 1, we have

!i j � ✏ i jk !k4 =
1
2
�Ci jk � Cjk i � Cki j� ✏k + 1

⇤

⇥
✏ j(⇤) ✏ i � ✏ i(⇤) ✏ j

⇤

+ ✏ i jk
d⇤(✏k)
⇤

 
d + ↵

V

!
.

(34)

By comparing (32) with (22), Equations (23) and (24) follow.
To see what constraints on ⇤ result from the asymptotic conditions (9)–(11), let us take the

hyperboloid model of H3 with metric

gH3 = dr2 + sinh2 r(d✓2 + sin2 ✓ d�2). (35)

The orthonormal coframe,

✏1 = dr, ✏2 = sinh r d✓, ✏3 = sinh r sin ✓ d�, (36)

has non-trivial commutation coe�cients,

C122 = C133 = � coth r, C233 = � cot ✓
sinh r

. (37)

If ⇤ satisfies the Helmholtz Equation (21), which in these coordinates reads

sinh2 r
�
@2
r⇤ + 2 coth r @r⇤ + ⇤

�
+ @2

✓⇤ + cot ✓ @✓⇤ +
1

sin2 ✓
@2
�⇤ = 0, (38)

Equations (23) and (24) give the following solution of the Bogomolny equations:

� =
1

2⇤

 
@r⇤ i +

@✓⇤

sinh r
j +

@�⇤

sinh r sin ✓
k
!
, (39)

A = i
2

" 
cos ✓ + sin ✓

@✓⇤

⇤

!
d� � @�⇤

⇤ sin ✓
d✓

#
(40)

� j
2

" 
cosh r + sinh r

@r⇤

⇤

!
sin ✓ d� � @�⇤

⇤ sinh r sin ✓
dr
#

+
k
2

" 
cosh r + sinh r

@r⇤

⇤

!
d✓ � @✓⇤

⇤ sinh r
dr
#
.

Note that

k�k2 = �1
4
(1 + 4H3 log⇤) = 1

4
|d log⇤|2

H3. (41)

From the boundary conditions (9)–(11) we find m = 1
2 and

log⇤ = �r + f0(✓,�) + f2(✓,�) e�2r + O �
e�4r� . (42)

It follows that

k�k = 1
2
� e�2r(4S2 f0 � 1) + O(e�4r). (43)

The total charge (15) corresponding to (43) is then

Q = 1 � 1
4⇡

⌅

S2
4S2 f0 sin ✓ d✓ ^ d� = 1 � 1

4⇡

⌅

S2
d⇤S2d f0. (44)
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In order for Q to be an integer, we need

f0(✓,�) = �n log(sin ✓) + �0(✓,�), (45)

with n 2 Z and �0 such that d⇤S2 d�0 is the zero element in H2
dR(S2), the second de Rham coho-

mology group of S2. Hence d⇤S2 d�0 = d�, � 2 ⌦1(S2). Note that generally � , ⇤S2 d�0 as ⇤S2 d�0 is
not necessarily a globally defined 1-form on S2. For f0 given by (45) we have Q = 1 � n, while the
monopole moduli are encoded in �0.

We end this section with some remarks on the monopole boundary conditions at infinity and at
the singularities.

Conditions (12) and (13) at the singularities imply that, for ri the hyperbolic distance from a
singularity at pi,

⇤ = r�`ii + O(r1�`i
i ). (46)

The Helmholtz equation requires us to take `i = 1, hence the total abelian charge ` defined in (14) is
equal to the number L of singularities.

Conditions (12) and (13) also allow one to reverse the construction and obtain a smooth instan-
ton on an hGH space starting from a singular hyperbolic monopole. Let (�,A) be a singular mono-
pole on H3 with singularities at {pi}, i = 1, . . . ,L, and construct an hGH space M as follows.17 For
V = 2/� + 2

PL
i=1 GH3

pi
take the circle fibration DM over H3 \ {pi} with connection 1-form d + ↵,

where  is the angular coordinate along the fibre and d↵ = ⇤3dV and equip it with the metric

VgH3 + V�1(d + ↵)2. (47)

Adjoin a point p̂i above each point pi 2 H3 and set M = DM [ {p̂i}. The metric (3) on DM extends
smoothly to M and the points {p̂i} are fixed points of the circle action on M . Equations (12) and
(13) guarantee that the instanton gauge potential (22), a priori only defined on DM , extends smoothly
to M .16,25,1 Elsewhere in this paper, in order not to burden notation, we have identified each point
pi 2 H3 with its corresponding point p̂i 2 M .

Finally, the asymptotic condition (42) on ⇤ ensures that the field strength F of (22) satisfies
kFk2 = O(exp(�2r)) for large r , hence the instanton action on M is finite.

B. The boundary data of a hyperbolic monopole

Hyperbolic monopoles are completely determined by the connection A1 on the boundary of
H3.11,22 We can show this explicitly for solutions of the Helmholtz equation, which can be written in
the form

⇤(r,✓,�) =
1X

k=0

ck(✓,�) e�(2k+1)r . (48)

According to (40) and (42), the boundary connection is

A1 = i
2
�
cos ✓ d�+ ⇤S2 d f0

�
(49)

and will completely determine the monopole as long as the fields � and A depend only on the
derivatives of f0. Imposing the Helmholtz equation order by order in (48) results in the recursion
relation

ck+1 = ck � 1
(k + 1)2

kX

j=0

4S2 cj, (50)

with c0 = e f0. Thus log⇤ can be written in the form (42) with fk, k � 1, depending only on
derivatives of f0, and the result follows.

The asymptotic expansion of the Higgs field of our hyperbolic monopoles thus only contains
terms which decay exponentially with respect to hyperbolic distance. This is in contrast with what
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happens for the Higgs field of a Euclidean monopole, which has both an algebraic tail and an
exponential fallo↵ near the core.

Taking c0= const, we obtain the solution⇤ / (sinh r)�1, which we will discuss in Subsection III C.
For a typical solution of the form (45), the expansion (48) breaks down at ✓ = 0,⇡, where a more careful
analysis is required. However, for the simple solution f0 = �2 log(sin ✓) we can restrict to the plane
✓ = ⇡/2 to find ⇤✓=⇡/2 = (2 cosh r)�1 and (@✓⇤)✓=⇡/2 = 0, which gives the Higgs field of the smooth
charge 1 monopole, k�k = 1

2 tanh r .

C. Superposing singular monopoles

The simplest solution of (38) with the asymptotic behaviour specified by (42) is

⇤ =
1

sinh r
. (51)

It corresponds to the abelian monopole

A = i
2

cos ✓ d�, � = � i
2

coth r, (52)

which has a singularity at r = 0 with abelian charge ` = 1 and total charge Q = 1.
Further solutions of (38) are obtained by superposing Green’s function (51) at distinct points

{pi},

⇤ =

LX

i=1

1
sinh(dH(p,pi))

. (53)

The resulting monopole configuration has an abelian charge, ` = L, and a total charge, Q = 1. From
(17) it has a non-abelian charge, k = L � 1. The non-Abelian charge is reflected in the number of
zeros of the Higgs field k�k. For example, the Higgs field for L = 2 has two poles with a zero at the
midpoint, see Figure 1. Notice that the configuration in which all the poles and zeros are placed on
the ✓ = 0 axis is axially symmetric. This should be contrasted with the case of strings of non-abelian
monopoles, for which there is a breaking of axial symmetry.19

D. Generating solutions of the Helmholtz equation

Let (M, g) be a scalar flat conformally hGH space,

g = ⌦2 g0 = ⌦
2 ⇥VgH3 + V�1(d + ↵)2

⇤
. (54)

FIG. 1. The Higgs field along the polar axis (✓ = 0,⇡) of a monopole constructed by superposing poles of ⇤ at (r,✓)= (2,0)
and at (r,✓)= (2,⇡).
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As shown in Section III A, g is conformally flat if⌦ satisfies the Helmholtz equation,

4H3⌦ +⌦ = 0. (55)

The Laplacian of a  -independent function h on M is

4Mh =
1
⌦

2V

 
4H3h +

2
⌦

hdh,d⌦iH3

!
, (56)

where hdh,d⌦iH3= ⇤H3(dh^⇤H3d⌦). To find new monopole solutions we replace ⌦ in (54) by
⇤ = ⇢⌦ and impose that ⇤2g0 is scalar flat, 4H3⇤ + ⇤ = 0. Using (55) one can then see that
4M ⇢ = 0. This procedure allows us to obtain a new solution of the Helmholtz equation starting
from a simpler solution together with a harmonic function.

We illustrate the procedure by constructing a smooth non-abelian k = 1 hyperbolic monopole
starting from a Yang-Mills instanton on Eguchi-Hanson (EH) gravitational instanton. The metric on
EH space is often expressed in Euclidean Gibbons-Hawking form,

gEH = V
�
du2 + u2 �d�2 + sin2� d 2�� +V�1(2 d� + a)2, (57)

where dV= ⇤E3da. Here u 2 [0,1), � 2 [0,⇡],  2 [0,2⇡), � 2 [0,2⇡). The abelian monopole
(V ,a) has two poles,

V = 1
u+
+

1
u�

, u2
± = u2 + u2

0 ± 2uu0 cos �, (58)

where u0 is an arbitrary constant.
It is a remarkable fact that EH space is conformal to a hyperbolic Gibbons-Hawking metric.7

This is achieved by the following coordinate transformation (originating from27):

u2 = u2
0

 
1

sinh2 r
+ cos2 ✓

!
, tan � =

tan ✓
cosh r

. (59)

In these coordinates the EH metric reads

gEH =
2 u0

sinh2 r

f
V (dr2 + sinh2 r(d✓2 + sin2 ✓ d�2)) + V�1(d + cos ✓ d�)2

g
, (60)

with V = (tanh r)�1. We remark that when transforming between (57) and (60), the roles of � and  
are interchanged. The metric inside square brackets has the form (3) with V given by (6), a single
pole at the origin and � = 2. However, the range of  in (60) is [0,2⇡), while the metric (3) of an
hGH space has  2 [0,4⇡). Therefore, a � = 2 single pole hGH space is conformally equivalent to a
branched double cover of the EH space, in which large r hypersurfaces have the topology of SU(2)
rather than that of SO(3).

Let us now look for monopole solutions. As EH space is scalar flat, we immediately recover the
abelian monopole (52) from the conformal factor ⌦ / (sinh r)�1. In order to find other monopoles
we need harmonic functions on EH space. For this purpose it is convenient to work with the metric
in the form (57). A �-independent function ⇢ on EH space satisfies 4EH ⇢ = V�14E3⇢, therefore a
�-independent harmonic function on EH space is simply a harmonic function on E3. In particular,
⇢ = V is a suitable function.

By expressingV in (r,✓) coordinates we get a new solution of the Helmholtz equation,

⇤ = V ⌦ = 4 cosh r
1 + sinh2 r sin2 ✓

. (61)

Equation (39) shows that this is the smooth spherically symmetric k = 1 non-abelian monopole, for
which

k�k = 1
2 tanh r. (62)

Furthermore, the manifold with the conformally related metric (⇤/⌦)2gEH has a finite volume.
Another singular monopole is obtained by adding a constant � to the harmonic functionV . The

resulting configuration has ` = 1, Q = �1, hence k = 2. See Figure 2 for a plot of the squared norm
of the Higgs field. The singularity is located at r = 0 and aligned with two equally spaced zeros
whose separation depends on the value of �.
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FIG. 2. The Higgs field along the polar axis (✓ = 0,⇡) of a monopole constructed from the harmonic function ⇢ = �+V ,
with V given by (58). Here � = 200.

E. JNR equivalence

A large family of Yang-Mills instantons on E4 can be constructed from the JNR ansatz.15 The
prescription takes a harmonic function ⇢ on E4 of the form

⇢ =
NX

i=0

�i GE4
pi
, (63)

where GE4
pi
(p) = |p � pi |�2, with | · | the Euclidean distance. A charge N instanton is then con-

structed as

A = �1
2
�µ⌫ @

⌫ log ⇢ dxµ, (64)

where the tensor � is given in terms of the unit quaternions and the anti-self-dual ’t Hooft matrices
(30) by � = i ⌘̄1 + j ⌘̄2 + k ⌘̄3.

In order to obtain a hyperbolic monopole, one makes use of the conformal equivalence between
E4 \ E2 and H3 ⇥ S1,

gE4 = z2 ⇥gH3 + d 2⇤ = z2
 

dx2 + dy2 + dz2

z2 + d 2
!
. (65)

Circle invariance is ensured by placing all the poles pi of ⇢ on the fixed plane of the @/@ action, a
2-plane in E4 which, under the conformal equivalence, is mapped to the boundary of H3. In a circle
invariant gauge write A = A + � d . Then (�,A) is a hyperbolic monopole. The Higgs field has
squared norm9

k�k2 =
z2

4⇢2

 
(@x⇢)2 +

�
@y⇢

�2
+

✓ ⇢
z
+ @z⇢

◆2
!
= �1

4
(1 + 4H3 log(z⇢)) , (66)

where for the second equality we have made use of the relations

4H3⇢ = z2(@2
x + @

2
y + @

2
z )⇢ � z@z⇢, (67)

z24E4⇢ = z2(@2
x + @

2
y + @

2
z )⇢ + z@z⇢ = 0. (68)

Note that H3 ⇥ S1 is a special case of an hGH space with V = 1, ↵ = 0. Since E4 is scalar
flat, we recover the JNR construction of monopoles by applying the method of Section III D: take
the conformal factor ⌦ = z and a harmonic function ⇢ on E4, then ⇤ = z⇢ generates a hyperbolic
monopole via Equations (23) and (24).2

We expect that all the solutions of the Helmholtz equation giving smooth hyperbolic monopoles
correspond to harmonic functions on E4 which are of JNR type. To translate from JNR data to
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solutions of the hyperbolic Helmholtz equation in hyperboloid model coordinates we make use of
the coordinate transformation

x =
sinh r sin ✓ cos �

cosh r � sinh r cos ✓
, tan � =

y

x
,

y =
sinh r sin ✓ sin �

cosh r � sinh r cos ✓
, tan2 ✓ =

4(x2 + y2)
(x2 + y2 + z2 � 1)2 , (69)

z =
1

cosh r � sinh r cos ✓
, cosh r =

x2 + y2 + z2 + 1
2z

.

Singular hyperbolic monopoles can also be described in terms of JNR data. Using (69) we find
that the JNR function corresponding to the singular monopole with ⇤ = (2 sinh r)�1 is

⇢ =
⇤

z
=

1
q
(1 + x2 + y2 + z2)2 � 4z2

. (70)

Note that the function ⇢ is singular at the monopole location, (x, y, z) = (0,0,1). A monopole singu-
larity may thus be interpreted as a JNR pole which has been moved from the boundary of hyper-
bolic space to the interior. This interpretation of singular monopoles explains our observation in
Section III C that by superposing two abelian monopoles the Higgs field acquires a zero. Separating
the poles causes the profile of the Higgs field near the zero to approach that of the smooth unit
charge non-abelian monopole. In general, a JNR configuration consisting of N > 0 poles on the
boundary of H3 and L � 0 poles in the interior has an abelian charge, ` = L, a non-Abelian charge,
k = N + ` � 1, and a total charge, Q = 1 �N , independent of `.

F. Higher mass monopoles

Dimensional reduction of instantons also gives monopoles of mass m > 1
2 . Take the axially

symmetric instantons on Eguchi-Hanson space described by Boutaleb-Joutei et al.10 In the coordi-
nates (60) their solution reads

Ar = 0, A✓ = �D
k
2
, A� = G cos ✓

i
2
� D sin ✓

j
2
, A = (G � 1) i

2
, (71)

where

D =
↵ sinh r
sinh(↵r) , G =

↵ tanh r
tanh(↵r) . (72)

This instanton is manifestly circle invariant so we can reduce it by a circle action of weight 1
2

to get a hyperbolic monopole. As far as we know this has not been noticed before. The monopole
Higgs field � = V A , where V = coth r , is given by

k�k = 1
2
(↵ coth(↵r) � coth r) (73)

and has mass 1
2 (↵ � 1). This monopole arises either as a higher weight reduction of an axially

symmetric Euclidean instanton24 or, as we have just shown, as a weight 1
2 reduction of an instanton

on Eguchi-Hanson space.
The modified Helmholtz equation

4H3⇤ + K⇤ = 0, K < 1 (74)

has solutions of the form

⇤ =
sinh(
p

1 � K r)
sinh r

. (75)

It is remarkable that if we use (41) to compute k�k we recover (73) with ↵ =
p

1 � K . While the
pair (�,A) obtained using (39), (40) is not a solution of the Bogomolny equations, the fact that we
can reproduce (73) suggests that our construction can be extended to m > 1

2 .
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IV. A FAMILY OF CONFORMALLY EINSTEIN MANIFOLDS

We still have not made use of the second method of Theorem 1 which will give us a family of
monopoles which, as far as we know, has not been discussed before. It has been proved26 that an
hGH space is conformally Einstein if and only if V is spherically symmetric. Therefore we take

V =
2
�
+

2
e2r � 1

, (76)

so that ↵ = cos ✓ d�.3 The metric

g =
2

�((2 � �) cosh r + � sinh r)2
�
VgH3 + V�1(d + ↵)2

�
, � 2 (0,2] (77)

is Einstein with constant 3
2 �

2(2 � �).7 The case � = 2 corresponds to (a branched double cover of)
the Eguchi-Hanson space discussed previously. For � = 1 one obtains the Fubini-Study metric on
CP2. With the rescaling r ! r/� the pointwise limit for � ! 0 of (77) is the Taub-NUT metric.

To get a self-dual instanton we need to project the spin connection ! onto S+(M),

P+(!) =
1
4
(⌘a)i j !i j ⌘a =

1
2

f
(!34 + !12)i + (!24 � !13)j + (!14 + !23)k

g
, (78)

where {⌘i} are the self-dual ’t Hooft matrices

⌘1 =

*.....
,

0 1 0 0
�1 0 0 0
0 0 0 1
0 0 �1 0

+/////
-
, ⌘2 =

*.....
,

0 0 �1 0
0 0 0 1
�1 0 0 0
0 1 0 0

+/////
-
, ⌘3 =

*.....
,

0 0 0 1
0 0 1 0
0 �1 0 0
�1 0 0 0

+/////
-
, (79)

and we have identified ⌘1 = �k,⌘2 = �j,⌘3 = �i.
The corresponding instanton has gauge potential A = A + �(d + cos ✓ d�)/V . The fields �,

A satisfy the Bogomolny equations (8) and are given by

� =
i
4
(1 � coth r)

 
(� � 1)2(1 � 3e2r) � e6r(1 � 3e�2r)

e4r � (� � 1)2

!
, (80)

A = i
2

cos ✓ d� +
2 (� � 1)e2r sinh r

e4r � (� � 1)2 (j sin ✓ d� � k d✓) . (81)

Note that � and A are invariant under the change � ! 2 � �, coupled to a gauge transformation
by i. The monopole has a mass 1

2 and a total charge, Q = �1. The value � = 2 gives the smooth
spherically symmetric k = 1 monopole with k�k = 1

2 tanh r . For � , 2 there is a singularity at r = 0
with abelian weight ` = 1 and a 2-sphere worth of zeros given by r = r0 2 (0, 1

2 log(3)] as 2 � �
varies in (0,1]. The Higgs field profile is shown in Figure 3. Note that � and A abelianise for

FIG. 3. Solid curves show the Higgs field profile of the smooth monopole (62) and singular monopole (52) constructed by
conformally rescaling (3) to be scalar flat. The dashed curve shows the Higgs field (80) for � = 1.5 obtained by rescaling (3)
to be Einstein. The sign of Q depends on whether the asymptotic value m2= 1

4 is approached from above (Q > 0) or from
below (Q < 0).
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both small and large values of r . Plotting the energy density shows no special features at r = r0. In
the limiting case � = 1 the fields abelianise for all values of r and we have k�k = 1

2 | coth r � 2|.
This family has charge Q opposite to that of the singular monopole k�k = 1

2 coth r we encountered
before. From (17), we expect the 2-sphere of zeros to contribute a non-abelian charge k = 2.

V. CONCLUSIONS

In this work we have shown how a class of smooth and singular hyperbolic monopoles of
mass m = 1

2 can be expressed in terms of solutions of the hyperbolic Helmholtz equation. All the
solutions we found have an equivalent description in terms of JNR data. However, thinking in terms
of the Helmholtz equation presents a number of advantages.

First, our construction is entirely coordinate free, see Equations (23) and (24), while the JNR
construction is adapted to the upper half-space model of hyperbolic space.

Second, we relate singular hyperbolic monopoles to smooth instantons on a scalar flat 4-
manifold which is conformally equivalent to a hyperbolic Gibbons-Hawking space. The JNR data
giving the same monopoles describes instantons on E4 which are singular along circles. In this sense
we have illustrated how a conformally Gibbons-Hawking geometry, which is commonly seen as
encoding an abelian monopole, also encodes non-abelian monopoles.

Third, our approach shows in a very explicit fashion, albeit in a special case, how a hyperbolic
monopole can be reconstructed from its asymptotic data.

Fourth, we provide a physical interpretation of the poles in the JNR ansatz as singular hyper-
bolic monopoles. Separating two such poles gives rise to a non-abelian monopole between them.
This should be contrasted with the related Euclidean instanton, for which there is no direct physical
interpretation of the JNR poles.

Interestingly, the Helmholtz equation also arises in Prasad’s generalisation of the Atiyah-Ward
ansatz for Euclidean monopoles.28

The manifold CP2 is conformally hGH and Einstein, so it is natural to ask whether circle
invariant instantons on this space can be reduced to hyperbolic monopoles. Instantons with instan-
ton number 1 are studied in Ref. 13 and there is a 3-parameter family which is invariant under a
circle action. However, this is not the circle action which reduces CP2 to a conformally hGH space,
therefore these instantons do not descend to hyperbolic monopoles.

It is natural to ask if our construction can be generalised to m > 1
2 . The results described in

Section III F suggest that, at least for the spherically symmetric case, some more general construc-
tion exists. However such an extension is not straightforward and we leave it for future work.
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