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Introduction. Rayleigh wave measurements are highly sensitive to the S-wave velocity (Vs) 
and for this reason they are attractive for geotechnical characterization or seismic site response 
studies (Socco and Strobbia 2004). Over the last years, the full-waveform inversion of surface 
waves is getting growing attention thanks to the increased computational power of modern 
parallel architectures (Gross et al. 2017). Well-established methods rely on dispersion curve 
inversion under the assumption of a 1D subsurface structure. The dispersion curve inversion 
is a highly non-linear and ill-conditioned problem. For these reasons, it is crucial adopting 
inversion approaches that efficiently converge toward the global minimum.

In this context, local inversion methods exhibit fast convergence rates but limited capability 
to explore the model parameter space, resulting in a final solution highly dependent on the 
initial model. Global search algorithms (genetic algorithms, simulated annealing) exhaustively 
explore the model space but they usually require a considerable computational effort ( Cercato, 
2011). Markov Chain Monte Carlo (MCMC) algorithms exhibit global convergence capabilities 
and honour the importance sampling principle, but they usually rely on specific MCMC recipes 
in order to maintain the computational cost affordable. More specifically, MCMC methods are 
primarily affected by low acceptance rates and show strong correlations between the sampled 
models. Hamiltonian Monte Carlo (MC) algorithm was designed to circumvent these two 
critical issues of MCMC algorithms. HMC treats a model as the mechanical analogue of a 
particle that moves from its current position (current model) to a new position (proposed model) 
along a given trajectory. The geometry of the trajectory is controlled by the misfit function, 
which is interpreted as potential energy (U), and by the kinetic energy (K) and the mass of the 
particle. After the so-called burn-in period, the ensemble of HMC sampled models can be used 
to numerically derive the so-called posterior probability density (PPD) function in the model 
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space. In this work we apply an HMC algorithm for inverting Rayleigh waves dispersion curves 
on synthetic and experimental tests. We inverted for Vs, Vp/Vs ratio and layer thicknesses, 
whereas the density is kept fixed during the inversion at a constant value. The implemented 
HMC algorithm requires the number of layers be defined as input to the inversion. However, the 
limited computational cost of the HMC inversion allows us to perform different inversions with 
different model space parameterizations. Then, standard statistical tools (such as χ2 probability 
or the Bayesian information criterion “BIC”) can be used to define the most appropriate model 
parameterization to use.

Method. The HMC relies on the Bayesian inversion framework. In this context the solution 
of an inverse problem is the posterior probability density (PPD) function that is defined as 
follows:

(1)

where d is N-dimensional observed data vector, and q is the Q-dimensional model parameter 
vector. The left-hand side term of equation (1) represents the target PPD that could be 
numerically estimated from the ensemble of models sampled during the Monte Carlo sampling. 
HMC algorithm treats a model as the mechanical analogue of a particle that moves from its 
current position (current model) to a new position (proposed model) along a trajectory. This 
trajectory is determined by the potential energy (U), the kinetic energy (K) and the mass matrix 
(M). The potential energy is the negative natural logarithm of the posterior (see equation 1) 
or in other terms is the misfit function associated to the inverse problem. In this context more 
plausible models with large values of the posterior are associated to low potential energies. 
HMC determines the kinetic energy by introducing an auxiliary variable (momentum variable) 
p that is defined over a Q-dimensional space: 

(2)

where M is the Q×Q mass matrix that must be accurately set to ensure the convergence of the 
HMC algorithm (see Fictner et al. 2019). The vectors p and q define the so-called phase space. 
After defining the kinetic and potential energies, the model q moves through the 2×Q-phase 
space according to Hamilton’s equations: 

(3)

where t indicates the artificially introduced time variable. For each current model q, and for 
each iteration, HMC executes the following steps: 

1. Randomly draw the Q momenta pi from the normal distribution ;

2. Derive the proposed model q(t) and the new momenta p(t) by solving Hamilton’s 
equations (3) for a given propagation time t. In this work we use the leap-frog method to 
solve this equation (Betancourt, 2017). The propagation time t, together with the mass 
matrix plays a crucial influence on the convergence of the sampling; 

3. Accept the proposed model with probability α:

(4)

 where the total energy or Hamiltonian of the model is the sum of kinetic and potential 
energies (H = U + K). If accepted, the proposed q(t) point constitutes the starting models 
for the next trajectory (q = q(t)). Otherwise, the current model q is again used as the 
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starting point in the following iteration;
4. Return to step 1. 
In this work the potential energy is defined as:

(5)

where G is the non-linear forward modelling operator that computes the dispersion curves for 
the considered model, Cd is the data covariance matrix, d is the observed dispersion curve, qprior 
is the prior model with prior covariance matrix given by Cq. In this work, the mass matrix is 
computed as a local approximation (around the considered model) of the posterior covariance 
matrix (see Fictner et al. 2019): 

(6)

where J is the Jacobian matrix that expresses the partial derivative of the data with respect to 
model parameters. We assume Gaussian distributed and uncorrelated a-priori model parameters. 
We employ very simple Gaussian prior models: the prior for Vs has a mean value of 160 m/s 
with a standard deviation of 30 m/s, whereas the prior for layer thickness has a mean value of 
5 with a standard deviation of 2. Obviously, different prior models can be easily included into 
the inversion framework. For example, we can consider a depth-dependent prior model for Vs 
or even non-Gaussian priors. The starting point for the HMC sampling is randomly generated 
from the prior.

Synthetic and experimental inversion tests. We start by considering a very simple and 
schematic synthetic model constituted by two layers separated by an interface located at 8 m 
depth. In this example our aim is to compare the uncertainties affecting the estimated model 
when the dispersion curves lie in different frequency bands. In the first case the dispersion curve 
extends over [4-30 Hz], whereas in the second case the dispersion curve lies in the interval [6-30 
Hz]. In the performed inversions the dispersion curves have been analytically computed from 

Fig. 1 - Synthetic inversion results for a 2-layer model. From a) to e): inverted bandwidth between 4 and 30 Hz. From 
f) to l): inverted bandwidth between 6 and 30 Hz. In both panels we represent from left to right: True model (green 
line) and marginal Vs PPD (colour scale); True Vp/Vs model (green line) and marginal Vp/Vs PPD (colour scale); 
Marginal PPD for interface location; Evolution of the L2 norm misfit; comparison between the observed noisy data 
(black line), the data generated on the starting model (red line) and the data generated on the last sampled model 
(green line).
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the reference model and contaminated with Gaussian random noise with a standard deviation 
of 5. 

We start by considering the schematic 2-layer model. In this case our aim is to compare the 
uncertainties affecting the final solution when the dispersion curves lie in different frequency 
bands. In the first test the dispersion curve extends over [3-30 Hz], whereas in the second case 
the dispersion curve lies in the interval [6-30 Hz]. Both examples consider a correct number of 
layers equal to 2. In Fig. 1 top 5 images we represent the results for the 3-30 Hz example. The 
marginal PPDs of Vs and interface location show that the inversion perfectly recovers the true 
model and that the estimated layer depth position is perfectly located at 8 meters. Differently 
the Vp/Vs ratio is not recovered, and the posterior distribution is still very similar to the prior 
with a depth-independent MAP value equal to 4. Note the fast convergence rate of the chain that 
need about 30 iterations to reach the stationary regime. The comparison between the observed 
dispersion curve and the dispersion curves computed on the starting model and on the model 
sampled at the last iteration, demonstrates that the algorithm perfectly predicts the observed 
data. Figure 1, bottom 5 images, shows the results for the 6-30 Hz example. We observe that 
the Vs of the first layer has been recovered with the same accuracy of the previous example. 
Differently, the position of the interface and particularly the velocity of the deepest layer are now 
estimated with higher uncertainties. This is mainly related to the fact that the low frequencies 
are crucial to constraint the Vs of the deepest layer. Indeed, this model parameter influences the 

Fig 2 - a) Synthetic and noise-contaminated shot gather. b) Close-up of a). c) Fourier amplitude spectra of a). d) Phase 
velocity spectra derived on a): blue and red colors are low and high amplitude values, respectively.
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slope of the fundamental mode at low frequencies (Socco and Strobbia, 2004). The Vp/Vs ratio 
is not recovered with a posterior distribution similar to the prior. The computed χ2 probability 
(p(χ2)) and the BIC values obtained for a correct 2-layer parametrization are p(χ2)=0.0408 and 
BIC=34.61, we also performed an inversion with an erroneous 3-layer parameterization (not 
shown here for brevity) that provides a p(χ2) and BIC values of 0.0105 and 44.54, respectively. 
The higher p(χ2) and lower BIC values clearly indicate that the 2-layer is the most appropriate 
parameterization, thus proving that these statistical tools could constitute a valid help to select 
the optimal model parameterization. 

We now describe the results provided for the experimental inversion tests. In this case the 
observed dispersion curves have been picked on the frequency-phase velocity spectra derived 
from synthetic shot gathers computed making use of the reflectivity method. We employ a 15 
[Hz] Ricker wavelet as the source signature with a sampling interval of 2 [ms]. We simulate an 
off-end acquisition geometry with a minimum offset of 10 m and 48 receivers equally spaced 
of 5 m, resulting in a maximum offset of 245 m. 

Fig. 2 shows a synthetic shot gather, the Fourier amplitude spectra of the signal and its phase 
velocity spectra.

Note that the Vs of the second layer is lower than that of the first layer: this velocity 
inversion complicates the picking of the fundamental mode because higher modes become 
more energetic than the fundamental mode at high frequencies. In cases of velocity inversions 
the consideration of only the fundamental model severely increases the ill-conditioning of the 
inversion procedure, and for this reason in these situations higher modes are often of crucial 
importance to better constraint the final estimates.

Fig. 3 displays the inversion results. The Vs of the shallowest layer is perfectly resolved 
and also the Vs of the second layer is well predicted, although the MAP solution slightly 

Fig. 3 - a) True Vs model and marginal Vs PPD (colour scale). b) True Vp/Vs model and marginal Vp/Vs PPD (colour 
scale). c) Marginal PPD for interface location. d) Evolution of the L2 norm misfit. e) Comparison between the picked 
dispersion curve, data generated on the starting model and the data generated on the last sampled model.
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overestimates the true velocity value. Notwithstanding the velocity inversion, the algorithm 
accurately predicts a low velocity layer. The uncertainties in the estimated Vs rapidly increase 
as the depth increases and the velocity of the deepest layer is not well recovered with a MAP 
solution that significantly underestimates the actual velocity value. The Vp/Vs ratio is again not 
resolved. Fig 3.c demonstrates that the HMC algorithm correctly identifies the position of the 
interfaces. Only 30 iterations are enough to converge toward the stationary regime, whereas the 
observed data is still perfectly matched.

Conclusions. We implemented a Hamiltonian Monte Carlo (HMC) algorithm for Rayleigh 
wave dispersion curve inversion. This approach ensures reliable assessment of the posterior 
uncertainties in highly non-linear inverse problems and guarantees efficient sampling even in 
high-dimensional model spaces. This ability rests on the exploitation of derivative information 
of the misfit function that is not considered by other standard Monte Carlo methods. In this 
work, the algorithm has been implemented for a Gaussian prior model, but another outstanding 
benefit of HMC is the possibility to consider either parametric or not-parametric priors. Our tests 
demonstrated the applicability of the proposed HMC approach for Rayleigh wave dispersion 
curve inversion and the possibility to derive the optimal model parameterization by adopting 
standard statistical tools. In particular, the algorithm yielded uncertainty quantifications and 
model predictions in accordance with the expected model parameter illuminations. The HMC 
algorithm presented here can be easily extended to include higher modes. We are now testing 
the algorithm on field data inversions. Furthermore, we are extending the presented HMC 
approach to full-waveform inversion of surface waves. 
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Introduction. Knowing the evolution of glaciers’ changes in shape and size is extremely 
useful for both glaciological studies (Carturan et al., 2013), practical application (Diolaiuti et 
al., 2006) and, even more important, for global climate assessment (Zemp et al., 2013). For 
this reason, long-term glacier monitoring has been performed generally since the beginning 
of the last century to understand the physical processes which lead to glaciers’ response to 
climate change (Haeberli et al., 2013). In order to monitor mass variations of a glacier with time 
(i.e. its mass balance) and provide more realistic forecasts about its future evolution, detailed 
information about volume and internal structure is required in addition to classical linear and 
areal measurements. Ground Penetrating Radar (GPR) has proved to be an efficient instrument 


