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Abstract

A dynamic model that evaluates the working condition of general spur gears based on a two-phase approach is
presented. A finite element model is preliminary developed to obtain the static transmission error for several
angular configurations at different nominal torques. Subsequently, a lumped parameter model is used to evaluate
the dynamic behavior of the transmission. An analytical mesh-force formulation is proposed based on polynomial
interpolations of the finite element results to accurately model the contact forces and meshing stiffness during the
engagement. Two damping models are implemented to obtain a reasonable estimation of the response peaks in
resonance conditions. The stability of the main resonance peaks is examined using Poincaré maps. The results
are compared with those obtainable using the commonly employed models based either on the average or the
local meshing stiffness, highlighting the limitations of these approaches. The proposed formulation combines
classical mesh stiffness definitions, thereby achieving a more accurate and efficient mesh-force model.
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Nomenclature

a Center distance
b Backlash
cm Meshing damping
d Coefficient of dissipation
Df Dynamic factor
Edis Total dissipated energy
fm Meshing frequency
fr Natural frequency of the transmission
Fm Meshing force
h Profile modification
ha Addendum
hf Dedendum
hmax Maximum profile modification
I Rotational intertia of the gears
ka Average meshing stiffness
kl Local meshing stiffness
km Meshing stiffness
Kv Dynamic overload factor
L Face width
mn Module
MT Static (or nominal) torque
n Polynomial degree
q Total relative mesh displacement
qin Initial relative mesh displacement
q0 Static transmission error
qFEM Total relative mesh displacement of the finite element model
qrms Root mean square of the total relative mesh displacement
q̇0 Initial relative speed
q̇f Final relative speed
Rb Base radius
Rhub Hub radius
T Period
vt Tangential speed of the gears
Z Number of teeth
α Pressure angle
η Dynamic viscosity of the lubricant
λ Curvilinear abscissa on the tooth profile
λ0 Curvilinear abscissa on the tooth profile at the tooth tip
φ Roll angle
φ0 Gear angular step
ψ Normalized roll angle
θ Gear rotation angle
θ0 Initial rotation
ζ Damping ratio
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1. Introduction

The increasing demand for high-performance transmissions characterized by a high transmitted power,
especially in aeronautical applications, has led to the development of static and dynamic models that can
accurately evaluate the system’s working conditions. The need to distinguish between static and dynamic
behaviors arises from the impossibility of neglecting the system’s vibrations in predicting the durability and the
maximum working loads of the transmission, especially in near-resonant conditions. This is particularly true for
geared transmission systems, in which nonlinearities can cause self-induced vibrations [1].

Many of the models developed to analyze the dynamic behavior of gears are based on the transmission
error, which quantifies the difference between the relative rotation of engaging gears considered as either ideally
rigid or deformable bodies. Özgüven and Houser [1] reviewed the models developed until the 1990s, whereas
Blankenship and Singh [2] studied how the meshing compliance could be included. Wang et al. [3] examined
several nonlinear dynamic phenomena present in the vibration of gears, such as the effects of the varying contact
ratio [4, 5] and of heavy loads [6]. Tamminana, Kaharaman and Vĳayakar [7] studied how the static transmission
error (i.e. the transmission error at very low speeds, when vibrations can be neglected) influences the dynamic
loads experienced by the transmission at different powers and speeds. Other authors [8, 9] investigated theoretical
aspects concerning the nonlinear dynamics of gears. Cai and Hayashi [10] proposed and experimentally validated
an analytical model of the meshing compliance used for the development of lumped parameter models. The
model was applied to spur gears without tooth profile modifications.

Several studies have demonstrated that tooth profilemodifications can strongly influence the dynamic behavior
of the gears. Kahraman and Blankenship examined the effect of the involute tip relief [11], Eritenel and Chen
[12, 13] evaluated the effect of tooth surface microscopic features, such as surface roughness, and Sanchez et
al. [14] considered the effect of tooth profile modifications both on the static and dynamic behavior of the
transmission. The effects of profile shifts [15] have also been extensively studied.

The gear backlash can also affect the dynamic behavior of a transmission, especially in near-resonant
conditions and for gears working at low torques and high speeds [16, 17, 18, 19]. In these conditions, the
vibration amplitude can be so high that it produces total or partial contact loss between engaging teeth [20] and
due to the backlash, this leads to intermittent contact, which abruptly changes the system’s response [21].

Several models have been proposed to estimate the mechanical energy dissipation in gear transmissions due
to the presence of non-conservative forces. These models take into account friction on the tooth flanks, windage
and oil dispersion, friction on the supports of the shafts, dissipative properties of the gear materials [22] (such
as thermo-elasticity), and the presence of, small and limited, plastic or viscous strains in the contact region
[23]. Although in certain applications, the dissipation is minimized by design, its value is the most important
parameter in near-resonant conditions because it defines the maximum dynamic overload experienced.

Bending-torsional coupling [24, 25] could also be important for the dynamics of some gear systems. If the
displacement at the engaging teeth due to the compliance of the shafts and supports is comparable to that produced
by the compliance of the meshing, neglecting the bending compliance could lead to an incorrect prediction of
the dynamic behavior of the systems and, often, determines an underestimation of the dynamic overload. These
considerations are also valid if applied to three-dimensional gear body natural modes [26].

Some studies have focused on the effects of manufacturing errors on the dynamics of gears. Velex andMataar
[27] studied the effect of shape deviations and gear mounting errors. Yang et al. [28] modeled tooth chipping,
i.e. a piece of material breaking away from the tooth tip, and analyzed its influence on the dynamics of the
transmission.

Several recent models for simulating the dynamic behavior of spur gears are based on a two-phase approach.
Firstly, the static transmission error and the meshing stiffness are calculated by accurate static analyses based
on finite element models or analytical models [29]. Subsequently, the dynamics of the system are studied using
a lumped parameter model, characterized by high accuracy and high computational efficiency. However, the
presence of a time-dependent and load-dependent meshing stiffness makes it challenging to set up an accurate
dynamic model. Dai et al. [30] tried to overcome those difficulties using a hybrid method in which the meshing
force is directly derived by introducing the force-displacement-angular configuration response surface, calculated
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by a static finite element model. This approach gives adequate results but at the cost of a large number of static
simulations needed to obtain an accurate representation of the response surface in a complete meshing cycle.

The present work proposes a general and computationally efficient hybrid method capable of modeling
spur gears in static and dynamic conditions. An accurate finite element model is used to evaluate the static
transmission error at different nominal torques and several angular positions during the engagement. The related
surface response, which gives the meshing force for any nominal torque and configuration, was obtained by a
combined interpolation technique based on polynomials and splines. In this way, the number of static simulations
needed to obtain the required accuracy was reduced by one order of magnitude compared to other approaches in
the literature. A torsional lumped parameter dynamic model based on the proposed meshing force formulation
was then developed. The time and load-dependent equations of motion were integrated numerically, and
different working conditions of the gears were simulated. The results were compared to those obtained by classic
approaches (i.e., the average and the local meshing stiffnesses) and experimental results [31], demonstrating that
both the average and the local meshing stiffness are required to obtain an accurate description of the dynamics
of the system. Two damping models [32, 33] were used to estimate the dynamic overloads in the most dangerous
working conditions and at different nominal loads.

2. Finite Element Model for static analysis

The static transmission error was calculated with an accurate 2-D finite element model. The parameters of the
transmission, reported in Table 1 and represented in Fig. 1 (a), were taken from [34]. In the present application,
a typical tip relief modification was included, which is often adopted in high-performance applications to reduce
the vibration and noise of gear trains [35, 36]. The tip relief h (Fig. 1 (b)) was assumed to be a parabolic function
of the curvilinear abscissa on the nominal involute tooth profile λ :

h(λ ) = hmax(
λ

λ0
)2 (1)

starting from the pitch point and reaching its maximum at the tooth tip (hmax). Note that the proposed approach
is general and any kind of tip relief function h(λ ) could be considered.

Parameter Symbol Value
Module mn 2 mm

Number of teeth Z 50
Pressure angle α 20°
Contact ratio - 1.5
Base radius Rb 47 mm
Addendum ha 2 mm
Dedendum hf 2.5 mm
Face width L 20 mm

Center distance a 100.5 mm
Hub radius Rhub 10 mm
Backlash b 0.5 mm

Rotational inertia of the gears I 1526 kgmm2

Maximum profile modification hmax 5µm

Table 1: Parameters of the transmission.

As shown in Fig. 1 (a), each gear body was modeled with five teeth. Considering that the theoretical contact
ratio is equal to 1.5, a maximum of 2 teeth per gear is involved in a single meshing cycle, thus the total number
of teeth modeled is sufficient to cover a complete meshing cycle. The end teeth, which are not involved in the
contact, are unloaded and have a negligible influence on the static transmission error [37]. The contact between
the engaging teeth was modeled with frictionless contact and target elements. One of the gears was fixed at its
hub and the other was constrained by radial supports, thus reproducing an ideal hinge on its rigid shaft, and
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loaded with a torque MT. As is common in analyzing spur gears [37, 38], the finite element model was made
up of four nodes quadrilateral generalized plane strain elements. The element size and distribution of the static
finite element model adopted was based on [37], in which several parametric analyzes were used to quantify the
influence of the various features of the finite element model parameters on the calculation of the gear meshing
stiffness. Different element sizes were adopted for modeling the gear body, the teeth and the contact zone (Fig.
1 (a)). The thickness of the region with the minimum element size was chosen to be twenty times larger than
the maximum theoretical Hertzian displacement produced at the maximum applied torque. The final element
size was obtained after a convergence analysis based on the displacements at the gear hub. This was considered
appropriate for accurately modeling all the main effects that could potentially influence the meshing dynamics,
which are the compliance due to the Hertzian contact and the deformations of the tooth, the fillet region, and the
gear body.

As the gear mounting shafts and their supports were considered to be ideally rigid, the total relative displace-
ment in the direction of the line of contacts q was defined as q = Rb1θ1 +Rb2θ2, i.e. the algebraic sum of the
displacements produced by the total rotation of each gear evaluated at its hub in two fixed Cartesian coordinate
systems centered on each axis, θ1 and θ2 (Fig. 1 (a)). The static transmission error q0 quantifies q when the
gears operate at vanishing (or null) nominal angular speeds. As in the static finite element model, the first gear
was fixed at its hub (θ1 = 0), q0 = qFEM = Rb2θ2.
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Figure 1: Static finite element model of the gears and profile modification. (a) Finite element model, detail of the element density, and
definition of the gear body rotation angles θ1 and θ2 . (b) Detail of the tip relief (h is graphically magnified).
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The finite element results were obtained with MT = [5;10;15;30;50;80;100;150;250] N m and at seventeen
equidistant angular configurations covering the whole meshing cycle. Each configuration is defined by the roll
angle φ , which is the angle whose arc on the base circle of radius unity equals the tangent of the pressure angle
at a selected point on the involute, and the total angular step of the finite element model analysis is φ0 = 2π/Z.

In the general case, the number of MT values should be sufficiently high to account for the nonlinearity of
the meshing force, mainly close to the zero-load condition. Different load distributions (equally distributed or
logarithmic) can be used for each case. In addition, the maximum torque considered should be at least three
times higher than the nominal torque chosen for the dynamic analysis of the gear pair to avoid the extrapolation
of the meshing force data during the dynamic analysis. The optimal number of angular configurations chosen
depends on the smoothness of the static transmission error curves at any constant torque. Overall, at least fifteen
to twenty points should be considered, and additional points can be added depending on the number of teeth, the
maximum torque considered, and the profile modification (formulation and maximum value).

In Fig. 2, the finite element results for q0 are plotted as a function of MT and of the relative positions of
the gears, defined as the normalized roll angle ψ = φ/φ0. The static transmission error curves at constant MT
are similar for all the (non-zero) torques analyzed, and the transition from single tooth contact (STC) to double
teeth contact (DTC) is regular. As expected, the peak to peak static transmission error increases with the torque.
The main difference between the curves q0(ψ) for different MT concerns the angular extension of the STC zone,
which decreases when the torque is increased as an effect of the non-constant compliance during the meshing
cycle.

DTC

DTC

STC

DTC

STC

q
0

(-)(Nm)MT

100
200

300

Figure 2: Static transmission error response surface obtained with the static finite element analysis. Regions where there is double teeth
contact (DTC) and single tooth contact (STC) are highlighted.

3. Meshing stiffness definitions and response surface processing

The static transmission error can be used to calculate the meshing stiffness, which is the main parameter
needed for the dynamic simulation of the system, and, in particular, for obtaining the current meshing force Fm.
As the meshing force Fm is not proportional to the relative displacement q (see Fig. 3), in the literature two
definitions of meshing stiffness are commonly adopted:
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• The average, or secant, meshing stiffness ka, defined as the ratio between the meshing force and the relative
mesh displacement at a given configuration (ka is the slope of the secant line OB in Fig. 3).

• The local, or tangent, meshing stiffness kl, defined as the derivative of the meshing force with respect to
the relative mesh displacement at a given configuration (kl is the slope of the tangent line AB in Fig. 3).

The average and the local meshing stiffness can be directly used to build a meshing force model [29].
However, the nonlinear features of the contact between the gear teeth increase the meshing stiffness with the
applied load (a stress-stiffening effect) which is needed to obtain an accurate dynamic model, as a single (even
if variable) stiffness is not sufficient to characterize the meshing force at any time.

If only the average meshing stiffness is considered, a systematic underestimation of the meshing stiffness
is produced, which only gives acceptable results for static analyses. The local meshing stiffness provides a
more realistic value when modeling variations in relation to the nominal load, therefore it seems more suitable
for predicting the effect of not-excessive vibrations. However, the local meshing stiffness can also generate
inaccurate results when high dynamic overloads or contact loss phenomena are experienced by the transmission
(i.e. in near-resonant conditions).

Fm

kl

q

ka

O q

Fm B

A

Figure 3: Meshing stiffness definitions and qualitative representation of the mesh-force relationship for a certain value of ψ .

To obtain the meshing stiffnesses, an analytical expression of the response surface of the meshing force
was determined. In the most general case, the meshing force at each configuration ψ can be represented by an
n-degree polynomial:

Fm(q,ψ) =
n

∑
j=1

a j(ψ)q j (2)

where aj are coefficients that are obtained on the basis of the finite element results.
From eq. (1) the average and the local meshing stiffness can be calculated using their definitions:

ka(q,ψ) =
Fm(q,ψ)

q
=

n

∑
j=1

a j(ψ)q j−1 (3)

kl(q,ψ) =
dFm(q,ψ)

dq
=

n

∑
j=1

ja j(ψ)q j−1 (4)

As shown in Fig. 4, in the example a parabolic interpolation of the meshing force (n = 2) produced an
accurate fit of the response surface at all values of ψ . The determination coefficient between the forces calculated
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with the least square parables and the values obtained by the finite element model was r2 = 0.998 (Fig. 4b). The
obtained coefficients a j are reported in Appendix A.

For each position along the meshing cycle, ka and kl are linear functions of the relative displacement q.
A linear spline interpolation in the ψ coordinate was used to evaluate the meshing force values in the regions
between two adjacent simulated curves.
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Figure 4: Response surface of the system. (a) Parabolic regressions of the force-displacement relationship in a single meshing cycle and
contour plot for Fm = 3 kN. (b) Correlation diagram of the meshing force for all the examined conditions.
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4. One degree of freedom dynamic model

As the lumped parameter model reproduces the engagement of two identical gears hinged at their hub, the
only degrees of freedom were rotational. As shown in Fig. 5, the gears interact along the line of contacts (points
A and B) through an equivalent nonlinear spring with a configuration dependent stiffness km in parallel with a
damper cm, introduced to include the energy dissipation. In addition, a backlash b was introduced to take into
account possible contact loss on the active flanks and backside contact.

1J

B

I1

b

1

A

2

2JI2

Rb1

Rb2

Fm

Fm

km
MT1

cm

MT2

Figure 5: Lumped parameter model of the engaging gears.

In the most general form, if the lever arm of the meshing force variation due to the presence of a profile
modification (usually small) is neglected, the equations of motion of the two gears can be written as:{

I1θ̈1 +Rb1Fm = MT1

I2θ̈2 +Rb2Fm = MT2
(5)

in which Fm is the total meshing force and MT1 and MT2 are the nominal torques applied at the hub of each gear.
Considering the total relative displacement in the direction of the line of contacts q, the equation of motion can
be rearranged into a single degree of freedom model:

meq̈+Fm =
MT1

Rb1
=

MT2

Rb2
, me =

I1I2

R2
b1I2 +R2

b2I1
(6)

4.1. Model of the meshing force
In the dynamic model, at each time step i, ka and kl are calculated using the mesh displacement and the mesh

force obtained at the previous time step i−1, and the numerical integration of the equation of motion is carried
out considering the stiffness kl. As anticipated, this approximation is valid for small variations of qi −qi−1, that
is for small enough integration time steps. As a consequence, the current mesh force Fm,i(qi,ψi) is given by the
sum of two contributions: the first is the mesh force at the previous step Fm,i−1(qi−1,ψi−1), which is equal to
ka(qi−1,ψi−1) ·qi−1, and the increment is the mesh force variation, which depends on kl(qi−1,ψi):

Fm,i(qi,ψi) = ka(qi−1,ψi−1) ·qi−1 + kl(qi−1,ψi) · (qi −qi−1) (7)

An example of the mesh force calculation procedure is reported in Fig.6.
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Figure 6: Mesh force calculation procedure at ψ = 0.3

By including the energy dissipation and the backlash between the gear teeth b, the current value of the
meshing force is given by the following expression:

Fm,i(qi,ψi) =


cmq̇i + ka(qi−1,ψi−1) ·qi−1 + kl(qi−1,ψi) · (qi −qi−1) for qi > 0
0 for qi ≤ 0
cmq̇i + ka(qi−1 +b,ψi−1) · (qi−1 +b)+ kl(qi−1 +b,ψi) · (qi −qi−1) for qi ≤−b

(8)

The energy dissipation is modeled using the results of [32] and Gerber’s semi-empirical damping model
[33], whose details are reported in Appendix B. The first model gives the damping ratio ζ based on the energy
dissipated only for the impact of the gears. This model provides an underestimation of the dissipation. Gerber’s
model is based on an empirical formula obtained by the values of the energy dissipation, and can be considered
a typical value of the damping ratio ζ accounting for several dissipative effects active in gears. For both models,
the damping coefficient cm is calculated as:

cm = ζ
2π frI
Rb2

(9)

in which fr is the natural frequency of the transmission.

4.2. Integration algorithm
The dynamic response of the gear pair is obtained by direct time integration of the equation of motion (5)

relative speed and load/configuration dependent parameters. The algorithm (Fig. 7) is used to simulate two
working conditions:

• Steady-state. The torque and the rotational speed of the system are kept constant and several steady-state
load conditions are examined.

• Steady-state speed ramps. The rotational speed of the gears is either increased (Ramp-Up or RU) or
decreased (Ramp-Down or RD) under constant MT using speed steps of 50 rpm and enabling the system
to reach steady-state conditions at each step.

Following Shampine and Reichelt [39], a numerical study of the integration scheme was carried out in
order to ensure accurate results. The ODE113 (Adams-Bashfort-Moulton) with a maximum relative integration
tolerance of 10−6 was used to characterize the dynamic behavior of the system.
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Figure 7: Integration algorithm.

5. Numerical results

The dynamic response of the system is investigated considering a meshing frequency fm, the product of the
rotational frequency of the gears and the number of teeth, up to 5 kHz (1.5 kHz above the natural frequency of
the transmission). The envelope of the maximum and the minimum values of the dynamic factor Df, defined as
the ratio between the maximum and the minimum meshing force and its nominal value, is considered the most
significant parameter of the dynamic analysis for two reasons: the maximum value of Df represents the dynamic
overload, usually indicated as Kv, and the minimum value of Df is used to detect the contact loss phenomena
when it is equal to 0.

Many parameters characterize the system and considering every combination would lead to an infinite
number of analyses. For this reason, the most significant comparisons and results are reported in the following
subsections. The dynamic response of the system is investigated during stepped ramp-up and stepped ramp-down.
Then, the effect of the damping on the dynamic behavior of the system is studied to highlight any bifurcation due
to the non-linearity and the influence of damping on the results obtained. The effect of the nominal torque is also
studied, highlighting frequency shifts and changes in the response peaks of the system. The dynamic responses
of the gear pair with and without profile modifications are compared. Finally, an example is shown of spectral
and stability analyses of the most intense resonance peaks of the transmission.

5.1. Results of the proposed model during steady-state speed ramps
The dynamics of the gears obtained with the proposed approach during stepped ramp-up (RU) and stepped

ramp-down (RD) are reported in Fig. 8. As a reference condition, the minimal damping and a nominal torque
of 50 N m are considered. The resonance peak matching the natural frequency of the system is found at 3.4 kHz
(point 4). In this condition a Kv of 3 is found. All the other resonance peaks can be attributed to super-harmonics
of the meshing frequency (2x, 3x, 4x). No back-side contact is detected in the frequency range analyzed, but
contact loss is predicted at 1.7 and 3.4 kHz (points 3 and 4). Jump phenomena are present at each resonance
peak. They are a typical feature of nonlinear systems in which the vibration amplitude drops suddenly at a certain
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frequency. A bifurcation in the behavior of the system can be observed in relation to the different type of speed
ramp considered. During ramp-down (from 5 kHz), the transmission experiences a dynamic overload higher
than the one experienced during ramp-up, with a 20% increase in the Kv at 1.7 kHz (point 3). The resonance
peaks and the regions where there is contact loss are also wider (points 3 and 4).
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Figure 8: Dynamic factor during ramp-up and ramp-down considering the minimal damping and MT = 50 N m with representation of
the dynamic factor envelope at two different meshing frequencies, with (B) and without (A) contact loss.

5.2. Comparison between damping models
The effect of damping is shown for MT = 50 N m in Fig. 9. The resonance peaks are found at the same

frequencies (difference less than 0.3 kHz). If Gerber’s model is adopted, there is no jump, and the resonance
peaks are smoother and less intense (Kv < 2.5). Moreover, contact loss is predicted only at 1.7 kHz (point 3),
and no bifurcation in the behavior of the system is detected in the whole frequency range of interest.
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Figure 9: Comparison between the lower bound damping and Gerber’s damping model.
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5.3. Effect of the nominal torque
The analysis at different values of MT highlights the nonlinear features of the system due to the load-varying

stiffness (Fig. 10). At higher nominal torques, more resonance peaks at lower frequencies can be observed
(below point 1), together with contact loss at 3.4 kHz for MT >50 N m (point 4). Increasing the nominal torque
at MT >10 N m reduces the dynamic overload at 0.85 and 1.7 kHz (points 2 and 3), while the dynamic overload
at 3.4 kHz increases (point 4). All the resonance peaks of the system are shifted at higher frequencies as the
load increases. For reasons of clarity, the results are reported only with Gerber’s damping model since its usage
makes the visualization of the frequency shifts easier.
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Figure 10: Comparison between the dynamic factor obtained with Gerber’s damping model at different values of MT.

5.4. Comparison between gears with and without profile modifications
The dynamic responses of the gears with and without profile modifications were compared using Gerber’s

model and a nominal torque MT =50 N m (Fig. 11). Overall, the resonance peaks are at the same meshing
frequencies (maximum relative difference of 10% at point 4). The most significant difference is in the intensity
of the resonance peaks. For the gears without profile modifications, the resonance peak at 3.4 kHz (point 4) is
more intense and wider. In addition, the resonance peaks due to the super-harmonics of the meshing frequency
(points 1, 2, and 3) are less intense compared to the gear pair with a parabolic profile modification (for which
contact loss is also present).

5.5. Spectral and stability analysis of the main resonance peaks
The spectral content of the total mesh displacement at MT = 50 N m and considering the minimum damping

is shown at the meshing frequencies of 1.7 kHz and 3.4 kHz (points 3 and 4) in Fig. 12. In both cases, the
oscillation frequency is equal to the natural frequency of the transmission, however the harmonic contribution
changes. The harmonics of interest are the meshing harmonic and its 2x and 4x super-harmonics, which cause
the resonance peak at 3.4, 1.7, and 0.85 kHz, respectively (points 4, 3 and 2). In additions, given the high energy
content of the first and the second harmonics, the resonance peaks experienced at 3.4 kHz and 1.7 kHz (points 4
and 3) are more intense than the others.

The stability of the steady-state response of the gears at the main resonance peaks (1.7 and 3.4 kHz) is
investigated using Poincaré maps, representing the time evolution of the system’s trajectories, in which an initial
relative displacement qin is imposed on the gears. The maps are obtained considering different values of qin and
different damping ratios ζ . As shown in Figs. 13 and 14, after a certain number of meshing cycles the trajectories
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Figure 11: Comparison between the dynamic factor obtained for gears with and without profile modifications with Gerber’s damping
model and MT = 50 N m.

of the system converge to a stable motion (when the relative difference between the maximum value of the mesh
displacement between one meshing cycle and the next is less than 0.1%) regardless of the initial displacement
imposed or the damping ratio. The only difference between the curves concerns the maximum displacement
experienced during the initial transient motion and the time needed for the system to reach stable conditions,
which are reduced if ζ is increased or qin reduced. It can be concluded that at the main resonance frequencies,
the system is stable.

2 fm

fm fm4 fm 2 fm

fm

Figure 12: Spectral content of the total mesh displacement at the main resonance peaks. (a) fm = 1.7 kHz. (b) fm = 3.4 kHz.
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(a)

(b)

(c)

Figure 13: Poincaré maps obtained at 1.7 kHz and at different values of θ0 and ζ . First and last 100 meshing cycles at (a) θ0 = 0.00005
and ζ = 0.001, (b) θ0 = 0.0005 and ζ = 0.001, (c) θ0 = 0.00005 and ζ = 0.01. The number of meshing cycles required to reach
convergence is 430, and the total number of simulated meshing cycles is 5000.
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(a)

(b)

(c)

Figure 14: Poincaré maps obtained at 3.4 kHz and at different values of θ0 and ζ . First and last 100 meshing cycles at (a) θ0 = 0.00005
and ζ = 0.001, (b) θ0 = 0.0005 and ζ = 0.001, (c) θ0 = 0.00005 and ζ = 0.01. The number of meshing cycles required to reach
convergence is 1350, and the total number of simulated meshing cycles is 5000.
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6. Validation with experimental results

In this section, the proposed model is applied to a different gear pair. The dynamic results obtained with the
proposed model were compared with the experimental data derived from the literature and the average and the
local meshing stiffness models.

6.1. Static transmission error calculation
The transmission parameters were taken from Hotait and Kahraman [31] and are reported in Table 2. In the

example, there has been no modification to the profile, but the outer diameter is smaller than the standard design
value, thus reducing the theoretical contact ratio from 1.8 to 1.37.

Parameter Symbol Value
Module mn 3 mm

Number of teeth Z 50
Pressure angle α 20°
Contact ratio - 1.37
Base radius Rb 70.48 mm
Addendum ha 1.87 mm
Dedendum hf 3.75 mm
Face width L 20 mm

Center distance a 150 mm
Hub radius Rhub 25 mm
Backlash b 0.5 mm

Rotational inertia of the gears I 12846 kgmm2

Table 2: Parameters of the transmission.

The static transmission error was calculated during a complete meshing cycle using the same finite element
model considerations reported in Section 2. The torque used for the comparison was 200 N m, and the
static transmission error curves were obtained accordingly. The finite element results were obtained with
MT = [15;30;50;80;100;150;200;250;300;400;500;600]Nmand at forty equally spaced angular configurations
covering the entire meshing cycle. In this case, a higher number of angular configurations is required in order to
accurately model the transmission error curves, especially to locate the maximum static transmission error point
in the transition from the single tooth contact zone to the double tooth contact zone.

In Fig. 15, the finite element results for q0 are plotted as a function of MT and the relative positions of the
gears ψ . As with the previous gear pair (Section 2), the static transmission error curves at constant MT are similar
for all the (non-zero) torques analyzed, and the transition from single tooth contact (STC) to double teeth contact
(DTC) is regular. As expected, the peak-to-peak static transmission error increases with the torque, and the STC
zone decreases when the torque is increased as an effect of the non-constant compliance during the meshing
cycle.

6.2. Dynamic results
As in the experimental study, the dynamic response of the system was investigated considering a meshing

frequency fm up to 3.5 kHz, and the output of the dynamic analysis is the root mean square of the oscillating
component of the total relative mesh displacement qrms.

Figure 16 compares the results obtained by the proposed method with the experimental data and with the
results that can be obtained if the analyses are conducted using either the average meshing stiffness ka or the
local meshing stiffness kl. In the comparison, a constant damping ratio ζ = 0.01 and a nominal torque of 200 N
m were considered. In the experimental results, there are at least five different resonance peaks (points 1 to 5 in
Figure 16), and all of them were correctly predicted by the three mesh force models. The only difference is in
the amplitude of the low-frequency peaks (points 1, 2, and 3), suggesting that different damping values should
be considered for a more accurate prediction of the experimental results.
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STC

DTC

DTC

Figure 15: Static transmission error response surface obtained with the static finite element analysis. Regions where there is double teeth
contact (DTC) and single tooth contact (STC) are highlighted.

The model with ka shows a good agreement with the experimental results during stepped ramp-up (RU)
simulations. However, the resonance peaks predicted are wider, and the dynamic overload experienced at 0.7,
1.35, and 2.7 kHz is overestimated (points 2, 4, and 5). Jump phenomena (points 4 and 5) are predicted at lower
frequencies, and this causes a slight overestimation of qrms outside the resonance condition.

The model based on kl better estimates the resonance frequency and produces a more accurate result far from
resonant conditions. However, in near-resonant conditions, the local stiffness causes a systematic underestimation
of the meshing stiffness, and back-side contact is present. At 1.35 and 2.7 kHz (points 4, and 5), the system
is unstable, consequently no corresponding points are reported in Fig. 16. The local stiffness calculated at the
nominal meshing force is not suitable for studying the behavior of the system when high dynamic overloads are
expected.

Our method shows the best agreement with the experimental results because it retains the main features of
the previously discussed methods. qrms is accurately estimated at any meshing frequency, showing a similar
trend to the one obtained with ka in resonance conditions and similar to the one obtained with kl outside
resonant conditions. In addition, our method is the only one that can predict the bifurcation phenomena
shown in the experimental data at 1.35 and 2.7 kHz (points 4 and 5), obtaining an accurate estimation of the
resonance frequency and qrms even during stepped ramp-down (RD). The results obtained with the local and the
average meshing stiffness show no bifurcation since the load nonlinearities are not considered. In conclusion,
considering a nonlinear formulation accounting for the meshing stiffness variations due to the instantaneous load
is fundamental when predicting possible bifurcations.

7. Conclusions

A one degree of freedom dynamic model for a gear transmission system based on a novel meshing stiffness
formulation is presented. A finite element analysis, which can be used to account for any tip relief, was used
to obtain the static transmission errors at different angular configurations and nominal torques. The static
transmission error curves were interpolated at each position considered along the meshing cycle using a series
of polynomial regressions and linear splines to take into account the stress stiffening properties of the contact
and reducing the number of preliminary static simulations required. The required stiffnesses were calculated
as a function of the instantaneous load applied, obtaining a more accurate representation of the behavior of the
transmission (either in static or dynamic conditions).
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1 2 3

4 5

Figure 16: Comparison between meshing force formulations and experimental data considering ζ = 0.01 and MT = 200 N m.

Based on the novel contact formulation proposed, a lumped parameter model was developed. A simulation
of the transmission was then obtained as a function of the meshing frequency, at different nominal torques, in
steady-state conditions at different meshing frequencies, and in steady-state speed ramps.

The main resonance peaks of the system were obtained with two damping models, analyzing how the level
of energy dissipation can affect the behavior of the transmission. The simulations at different nominal torques
were used to highlight frequency shifts and how the stress-stiffening properties of the contact can change the
system’s dynamic response. The effects of angular accelerations and decelerations, which lead to the bifurcation
in the behavior of the system, were also examined. In particular, a notable difference was observed between the
ramp-up and the ramp-down steady-state speed ramps in the intensity of the predicted resonance peaks and in
their frequency extension. We have proposed a dynamic analysis of the same gear pair with and without profile
modifications. The spectral content of the most intense resonance peaks of the system was characterized, and
the stability of the system was studied using Poincaré maps.

The proposed model was also used to study a second gear pair for which the dynamic behavior of the
transmission was already experimentally available. The results were compared with the experimental data and
with the output curves obtained using classical methods, i.e. the average meshing stiffness and the local meshing
stiffness. The comparison highlights that there are few differences between the three models and that there is
a good agreement with respect to the experimental data during stepped ramp-up simulations. Despite this, our
method was the only one able to predict the ramp-up vs. ramp-down bifurcations.

Compared to the classic methods, the combination of the average and the local meshing stiffness retains the
advantages of each mesh-force formulation, avoiding numerical instabilities (such as the ones present using the
local meshing stiffness). The combined formulation shows a better agreement with experimental data, especially
when highly nonlinear phenomena are present. Moreover, including the load dependency of the combined
meshing stiffness allowed to obtain accurate results even during the ramp-down simulation when bifurcation
phenomena are experienced.

The proposed approach is general and numerically efficient, and different profile modifications can be
considered for static and dynamic analyses. Therefore, these results could be used for the optimal design of gear
profile modifications also accounting for the dynamic behavior of the transmission.
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Appendix A. Regression coefficients of the response surface

Appendix A.1. Gears with parabolic profile modification
As shown in Section 3, a parabolic formulation of the meshing force (n = 2) produces an accurate represen-

tation of the response surface of the system at any value of ψ considered in the finite element simulation. Table
2 shows the coefficients a j for all the angular configurations considered.

ψ a1 (MN/m) a2 (GN/m2)
0 173.4 882.7

0.06 174.5 829.5
0.13 184.9 511.4
0.19 192.3 240.9
0.25 183.4 449.2
0.31 155.1 1032.8
0.38 141.1 882.5
0.44 156.7 209.7
0.5 164.1 150.4
0.56 156.7 209.7
0.63 141.1 882.5
0.69 155.1 1032.8
0.75 183.4 449.2
0.81 192.3 240.9
0.88 184.9 511.4
0.94 174.5 829.5
1 173.4 882.7

Table 3: Regression coefficients.

The coefficients a j are normalized with their maximum values and are represented as a function of ψ in Fig.
A.17.
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Figure A.17: Regression coefficients normalized with their maximum values in a single meshing cycle.
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Appendix A.2. Gears without profile modification
For the gears from [31], a cubic formulation of the meshing force (n = 3) was needed to produce an accurate

representation of the response surface of the system at any value of ψ considered in the finite element simulation.
Table 4 shows the coefficients a j for all the angular configurations considered.

ψ a1 (MN/m) a2 (TN/m2) a3 (PN/m3)
0 380.0 14.3 -441.6

0.025 316.7 18.7 -536.4
0.05 298.4 14.8 -325.4
0.075 326.1 5.3 34.2
0.1 360.9 -1.1 190.9
0.125 366.2 -0.6 84.6
0.15 353.2 2.4 -47.5
0.175 355.1 2.4 -45.3
0.2 355.8 2.4 -47.6
0.225 356.7 2.5 -48.8
0.25 357.4 2.5 -49.1
0.275 358.2 2.5 -49.1
0.3 358.8 2.5 -48.6
0.325 359.1 2.5 -49.5
0.35 359.4 2.5 -49.1
0.375 359.5 2.5 -49.5
0.4 359.4 2.5 -49.2
0.425 359.3 2.5 -49.0
0.45 358.9 2.5 -49.0
0.475 358.3 2.5 -49.2

ψ a1 (MN/m) a2 (TN/m2) a3 (PN/m3)
0.5 357.7 2.5 -48.5

0.525 356.7 2.5 -49.3
0.55 355.8 2.5 -48.9
0.575 354.8 2.4 -47.7
0.6 353.8 2.4 -46.5

0.625 357.1 1.4 -2.7
0.65 370.0 -2.4 206.3
0.675 342.9 1.5 157.2
0.7 304.9 11.1 -164.4

0.725 300.7 18.2 -480.7
0.75 345.8 17.5 -529.2
0.775 415.0 11.1 -344.9
0.8 469.6 5.1 -145.5

0.825 491.5 3.2 -85.5
0.85 494.2 3.3 -89.9
0.875 495.0 3.3 -88.1
0.9 494.7 3.3 -88.8

0.925 493.3 3.3 -89.9
0.95 484.2 3.6 -95.8
0.975 447.3 7.3 -222.4
1 379.9 14.3 -441.7

Table 4: Regression coefficients.

The coefficients a j are normalized with their maximum values, and are represented as a function of ψ in Fig.
A.18.
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Figure A.18: Regression coefficients normalized with their maximum values in a single meshing cycle.
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Appendix B. Damping Implementation

This appendix provides details regarding the damping models used for the dynamic simulation.

Appendix B.1. Minimal damping
The estimate of the minimal damping was obtained on the basis of [32]. In particular, the damping coefficient

cm was estimated considering the energy dissipated during the impact of gears as a consequence of the propagation
of elastic waves within the material. This phenomenon can not be avoided and this dissipative effect is always
present even when all other forms of dissipation are prevented. As a consequence, the dissipation due to the
propagation of elastic waves defines the minimum value of damping for the mechanical system.

Given the initial (before the impact) relative speed of the engaging teeth q̇0, the coefficient of dissipation d
(reported in Fig. B.19 [32]) was used to calculate the final (after the impact) relative speed q̇f and the total energy
dissipated Edis:

q̇f = (1−d)q̇0 (B.1)

Edis =
I

4R2
b
(q̇0

2 − q̇f
2) =

I
4R2

b
q̇0

2(2d −d2) (B.2)
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Figure B.19: Coefficient of dissipation as a function of the relative impact speed.

By approximating q̇(t) during the impact with a cosine function of time with amplitude q̇0 and period T
equal to the reciprocal of the natural frequency of the system:

q̇(t) = q̇0cos(2π
t
T
) (B.3)

the total mechanical energy dissipated in the impact can be calculated as:

Edis =
∫ T/2

0
cq̇(t)q̇(t)dt =

∫ T/2

0
cq̇0

2cos2(2π
t
T
)dt (B.4)

Equating equations B.2 and B.4 the damping coefficient cm can be calculated as:

cm =
2Edis

(T/2)q̇0
2 =

I
R2

bT
(2d −d2) (B.5)
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Appendix B.2. Gerber’s semi-empirical damping model
In this approach, the total damping ratio is based on the interpolation of experimental results obtained through

gear test rigs. Given the distance between the center of the gears a in mm, the dynamic viscosity of a typical
lubricant η in mPas and the tangential speed of the gears vt in m/s, the following expression is proposed for ζ :

ζ = 2.2 ·10−4(a−23)0.55(η +39)0.27(vt −5)0.53 (B.6)

The results obtained for the transmission examined in the present paper for which a = 100.5 mm, η = 50
mPas, and vt > 5 m/s, are plotted in Fig. B.20.
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Figure B.20: Gerber’s damping ratio as a function of the tangential speed of the gears

At lower tangential speeds (vt < 1 m/s) the order of magnitude of the damping predicted by the two models
is the same. The values obtained confirm that the dissipation due to the propagation of elastic waves represents
a reasonable underestimation of the dissipative phenomena present in the transmission.
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