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Abstract: Two couples of dicationic ionic liquids, featuring pyrrolidinium and piperidinium cations and
different linker chains, were prepared and characterized. 1,1′-(propane-1,3-diyl)bis(1-methylpyrrolidinium)
bromide, 1,1′-(octane-1,8-diyl)bis(1-methylpyrrolidinium) bromide, 1,1′-(propane-1,3-diyl)bis
(1-methylpiperidinium) bromide, and 1,1′-(octane-1,8-diyl)bis(1-methylpiperidinium) bromide were
synthesized in quantitative yields and high purity and thermally characterized through TGA and
DSC analysis. In this study, we propose a preliminary comparative evaluation of the effect of the
linker chain length and of the size of the aliphatic ammonium ring on the thermal and solubility
properties of bromide dicationic ionic liquids.

Keywords: ionic liquids (ILs); dicationic ionic liquids (DILs); thermogravimetric analysis (TGA)

1. Introduction

Ionic liquids (ILs) are a class of low melting organic salts, which have attracted a great
amount of research interest in the past two decades [1]. Due to their peculiar physico-
chemical properties, including negligible vapor pressure, good thermal stability, high ionic
and thermal conductivity, low flammability, wide electrochemical window, and unique
solvent properties [2–8], ILs have found broad use as catalysts and as unconventional
solvents for synthesis [9–12], as well as for a wide variety of different applications, span-
ning from electrochemical applications [13–17], biomass processing [18–20], preparation of
carbon materials [21], and CO2 capture [22], to drug delivery and utilization as potential
drug components [23–25].

The great variety of different anions and cations, together with the possibility to
functionalize their structure for particular applications, makes ILs versatile and flexible
systems. Specific structures can be designed to suit the requirements for a specific appli-
cation. The introduction of dicationic structures [26], with two positively charged groups
connected by a linker chain, further expands the tunability potential of the physicochemical
properties, by acting on the length of the linker chain as well as on possible asymmetries
on the structure. Task specific dicationic ionic liquids (DILs) have been designed and
proposed for several applications, where superior thermal stability, higher electrochemical
windows, higher densities or larger surface tensions are required [26–30]. DILs have been
successfully used in CO2 capture [31], tribology [32], catalysis in organic reactions [33],
zeolites preparation [34], agriculture [35], and electrochemical application [35].

The operational window for DILs is typically between the melting and degradation
temperatures. Indeed, due to their very low vapor pressure they degrade before boiling.
Unfortunately, the data reported in the literature are scattered, and the measuring condi-
tions are often different. This latter issue renders a comparison of the operating ranges of
DILs difficult and sometimes impossible.

In this context, we report the preparation of two couples of dicationic systems, fea-
turing pyrrolidinium and piperidinium cations and different linker chains. The prepared
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compounds were characterized by 1H-NMR, 13C-NMR, ATR-FTIR, and mass spectroscopy.
The relationship between the structural features of the prepared salts and their physico-
chemical properties was investigated. The effect of the linker chain length and of the type
of cationic heads on the solubility of the tested salts in a panel of commonly used solvents
was determined. Finally, the thermal properties of all the prepared dicationic systems
were studied through differential scanning calorimetry and thermogravimetric analysis,
providing a preliminary comparative investigation on the effect of both the length of the
linker chain and the size of the aliphatic ammonium ring on the thermal behavior and
stability of this set of compounds.

2. Results

The desired compounds 1,1′-(propane-1,3-diyl)bis(1-methylpyrrolidinium) bromide,
(1, [C3Mpyrr2]2Br), 1,1′-(propane-1,3-diyl)bis(1-methylpiperidinium) bromide (2, [C3Mpip2]2Br),
1,1′-(octane-1,3-diyl)bis(1-methylpyrrolidinium) bromide (3, [C8Mpyrr2]2Br), and
1,1′-(octane-1,3-diyl)bis(1-methylpiperidinium) bromide (4, [C8Mpip2]2Br) were prepared
according to the synthetic procedure reported below (Scheme 1).
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Scheme 1. Synthetic procedure adopted for the preparation of DILs 1–4.

The desired compounds were obtained in a one-step reaction, adopting reaction
conditions similar to the ones reported in a previous work of our research group [36].
N-methylpyrrolidine and N-methylpiperidine were used as nucleophiles for the Men-
shutkin reaction alternatively with 1,3-dibromopropane and 1,8-dibromooctane, in order to
obtain two sets of DILs with different linker chains. The four reactions were conducted in
CH3CN at 80 ◦C for 48 h, obtaining the DILs as white solids in good to quantitative yields.
The excess of unreacted precursors was removed by washing the solids with diethyl ether.
The remaining traces of the washing solvent were finally removed under vacuum at 80 ◦C
for 2 h. No further purification processes were needed.

1H-NMR, 13C-NMR, DEPT-135 NMR, and ESI-MS experiments confirmed the structures
and the purities of compounds 1–4 (Figures S1–S12 and S21–S24, see supporting information).
DEPT-135 NMR spectra (Figures S3, S6, S9, S11, see supporting information) were per-
formed to detect the signal of the methyl group, otherwise covered by the solvent residual
signal of CD3OD in the 13C-NMR (Figures S2, S5, S8, S12, see supporting information)
of compounds 1–4. The solubility of the prepared DILs was evaluated in a panel of sol-
vents (Table 1). From the obtained results, there emerged a strong dependence of the
solubility characteristics from the compound structure. Pyrrolidinium-based salts (1 and 3)
displayed a higher solubility in methanol, ethanol, 2-propanol, and acetonitrile, compared
to the related piperidinium salts, with the strongest difference between compounds 1 and 2.
[C3Mpyrr2]2Br (1) exhibited an extremely high solubility in methanol (2.526 M) and ethanol
(1.470 M), while [C3Mpip2]2Br (2) displayed solubility values less than one fourth in
methanol and even below the detectable solubility of the test for 2-propanol and acetoni-
trile. From the comparison between the solubility values obtained for [C3Mpyrr2]2Br (1)
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and [C8Mpyrr2]2Br (3), the elongation of the linker chain provided a general reduction in
the solubility in all the tested organic solvents, reducing by about half the values observed
for compound 1. On the other hand, passing from a C3 to a C8 linker chain for the piperi-
dinium based systems led to an increase in the solubility, which was found to still be lower
for 4 than its pyrrolidinium counterpart 3 but much higher than compound 2 for ethanol,
2-propanol, and acetonitrile. The other tested organic solvents, acetone, ethyl acetate, and
dichloromethane were found to be unsuitable for the dissolution of all the tested com-
pounds. On the other end of the scale, all the presented salts displayed an extremely high
solubility in water, where only few drops of this solvent were sufficient to fully dissolve the
whole sample. In these cases, it was not possible to achieve a precise determination of the
solubility since no biphasic systems were obtainable, and the smallest amount of water was
already enough to turn the samples into a glassy gluey body. The excellent water solubility
observed for the considered salts as well as their insolubility in apolar organic solvents is
consistent with the data reported by Anderson et al. for compound 1 [26,37].

Table 1. Solubility at room temperature of 1–4 in water (H2O), methanol (MeOH), ethanol
(EtOH), 2-propanol (iPrOH), acetonitrile (CH3CN), acetone ((CH3)2CO), ethyl acetate (EtOAc), and
dichloromethane (CH2Cl2).

DILs H2O MeOH EtOH iPrOH CH3CN (CH3)2CO EtOAc CH2Cl2

[C3Mpyrr2]2Br (1) >2.5 2.526 1.470 0.309 0.0387 <0.003 <0.003 <0.003
[C3Mpip2]2Br (2) >2.5 0.678 0.060 <0.003 <0.003 <0.003 <0.003 <0.003
[C8Mpyrr2]2Br (3) >2.5 1.180 0.627 0.017 0.0134 <0.002 <0.002 <0.002
[C8Mpip2]2Br (4) >2.5 0.852 0.263 0.013 0.0086 <0.002 <0.002 <0.002

The extremely sharp differences in solubility due to the small structural differences
existing between the tested compounds, seen in these solubility tests, represents an interesting
result for the study of the structure–property relationship of this class of dicationic systems.

The thermal behavior of [C3Mpyrr2]2Br (1), [C3Mpip2]2Br (2), [C8Mpyrr2]2Br (3),
and [C8Mpip2]2Br (4) was investigated through thermal gravimetric analysis (TGA) and
differential scanning calorimetry (DSC). The thermal stability was assessed by TGA, heat-
ing from 40 to 700 ◦C with a heating rate of 10 ◦C min−1 under a nitrogen atmosphere
using a platinum crucible. The Tpeak, Tonset, and Tstart 5% temperatures obtained from the
thermograms (Figures S13–S16, see supporting information) are reported in Table 2.

From the data reported in Table 2, no clear effects on the thermal stability of the tested
compounds were appreciable for both the linker chain length and the type of cationic
group. For the Tstart 5% values, a not intense but still visible difference in thermal stability
was appreciated between the short linker chains DILs and the long linker chain ones,
with the latter starting their decomposition at slightly higher temperatures. On the other
hand, the Tonset and Tpeak values did not confirm this trend and appeared substantially
independent from the structural parameters studied in this test. The obtained results
are coherent with the ones reported in the literature for similar morpholine-based DILs
bromide [30], where minimum differences were observed for the degradation temperatures
of DILs with same cationic heads (Figure 1). Higher Tpeaks were recorded for the tested
pyrrolidinium and piperidinium compounds 1–4 with respect to the similar dicationic
morpholinium systems reported by our research group in a previous work [30], showing
that these cationic heads can provide more thermally stable DILs, with values almost
matching those reported in the literature for imidazolium DILs [36]. More interesting
differences were displayed on the thermal degradation profiles. From the dweight/dT
plots of [C3Mpip2]2Br (2), the degradation process, even if basically occurring in a sin-
gle step, was still distinct into two almost coincident separated degradations (Figure 1,
Figure S14, see supporting information), Differently, this feature was not appreciable in
the dweight/dT plots of [C8Mpip2]2Br (4), where the two main processes were so close in
temperature as to be undistinguishable (Figure 1, Figure S16, see supporting information).
The observed behavior was consistent with the degradation mechanism described for the
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related morpholinium DILs bromide [30], even though in the present case, the double step
degradation appeared much less pronounced.

Table 2. The Tstart 5%, Tonset, and Tpeak of compounds 1–4. Tstart5% is defined as the temperature at
which the weight loss of the sample is equal to 5% of the initial mass, Tonset is defined as temperature
at the onset of the weight (%) vs. Temperature curve, and Tpeak is defined as the temperature of the
highest peak in the dweight/dT plot.

Compound 1 2 3 4

DIL [C3Mpyrr2]2Br [C3Mpip2]2Br [C8Mpyrr2]2Br [C8Mpip2]2Br

T
G

A Tstart 5% (◦C) 272.8 272.3 280.3 279.8
Tonset (◦C) 271.2 286.4 287.9 285.9
Tpeak (◦C) 304.7 302.9 308.6 304.6

D
SC

Tm (◦C) 209.2 - 174.3 -
∆mH(kJ/mol) 7.35 22.08

Tc (◦C) - - - -
∆cH(kJ/mol)

Ts-s (heating) (◦C) 30.7 - - 141.4
∆s-s(h)H(kJ/mol) 1.07 3.00
Ts-s (cooling) (◦C) 34.2 - - 135.8
∆s-s(c)H(kJ/mol) 1.18 3.08
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Differential scanning calorimetry (DSC) analysis of compounds 1–4 was also per-
formed (Figure 2), and the obtained data are reported in Table 2. Compound 1 displayed
a solid–solid transition during the cooling run subsequent to the preliminary drying step
(endothermic peak at 34.2 ◦C, 1.18 kJ mol−1) and a corresponding solid–solid transition
during the next heating run, characterized by both similar temperature and enthalpy
(exothermic peak at 30.7 ◦C, 1.07 kJ mol−1) (Figure 2a). A second thermal phenomenon
was observed during the same heating run at 209.2 ◦C, identified as a melting transition.
No crystallization was observed during the subsequent cooling run, and no solid–solid or
melting transitions were detected in the next steps of the DSC analysis. The obtained results
were in contrast to the ones reported in the literature by Anderson et al. relative to the
same compound, where a low melting point was reported [26]. The melting point measure
during this work was instead found to be about 30 ◦C higher than the one measured for
the related long-chained compound 3, which was consistent with the general melting point
trend reported in the literature for different dicationic systems in relation to the length
of their linker chain [26,36,38]. The different results could be due to the different water
contents of the samples. For compound 2, no thermal transition was detectable up to
260 ◦C, where only a small exothermic signal associated with the beginning of the thermal
degradation (Tstart 5% 272.3 ◦C) was observed (Figure S18, see supporting information).
Compound 3, sharing with 1 the presence of pyrrolidinium cationic groups, displayed a
melting transition at 174.3 ◦C while, similar to the related compound 1, no crystallization
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was observed during the subsequent cooling step (Figure 2b). As already observed for the
C3 linker chain piperidinium salt, [C8Mpip2]2Br (4) was found to not undergo any melting
process up to 260 ◦C (Figure S20). On the other hand, solid–solid transitions were detected
both during the first and the second heating–cooling cycle with an exothermic phenomenon
during the 1st heating run at 141.4 ◦C (3.00 KJ mol−1) and a related endothermic one during
the 1st cooling run at 135.8 ◦C (3.08 KJ mol−1) (Figure 2c). Only minimum differences in
terms of temperature and associated enthalpy were appreciable between the two cycles at
10 ◦C min−1, and the same peak temperatures were also found for a supplemental cycle
performed at 5 ◦C min−1 (Figures S20 and S21, see supporting information). The identi-
fication of these peaks as solid–solid transitions was confirmed by the use of the Kofler
technique, which clearly showed no melting transitions up to above 200 ◦C (Figure S30, see
supporting information).
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Figure 2. (a) DSC thermograms of [C8Mpyrr2]2Br (1), red: cooling ramp after initial drying step
(10 ◦C min−1), blue: 1st heating ramp (10 ◦C min−1), green: 1st cooling ramp (10 ◦C min−1);
(b) DSC thermograms of [C8Mpyrr2]2Br (3), blue: 1st heating ramp (10 ◦C min−1), red: 1st cooling
ramp (10 ◦C min−1), purple: 2nd heating ramp (10 ◦C min−1); (c) DSC thermograms of [C8Mpip2]2Br
(4), blue: 1st heating ramp (10 ◦C min−1), red: 1st cooling ramp (10 ◦C min−1).

For ILs, the operative range defines the interval of temperatures where the studied
system is liquid and usable for applications. It is usually determined by considering the
degradation temperature obtained from the TGA as the upper utilization limit and the
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melting point measured by DSC as the lowest limit. Even though not classifiable as an ionic
liquid with full rights due to its high melting point, an operative range of 106.0 ◦C was
indicated for compound 3 (considering the upper limit as the Tstart 5% value). It is important
to notice that for a meaningful comparison of operative ranges of different systems, thermal
analyses need to have the same experimental settings. In conclusion, both the length of
the linker chain and the type of cation heads represented an influential element in the
determination of the thermal behavior of the considered salts, with the pyrrolidinium C8
linker compounds melting at a sensibly higher temperature with respect to the solid–solid
transition observed for its related piperidinium compound, and the C3 systems, on the
other hand, not manifesting any detectable thermal transition.

3. Materials and Methods
3.1. General Information

NMR spectra were recorded with a Bruker Avance II (Bruker Italia S.r.l., Milano, Italy)
operating at 400 (1H) and 100 MHz (13C). The first-order proton chemical shifts were
referenced to the residual CD3OD (δH 3.31, δC 49.03). The chemical shifts were given in δ.
The following abbreviations were used; s = singlet, m = multiplet.

ATR-FTIR spectra were recorded with an IR Cary 600 FTIR spectrometer (Agilent
Technologies, Santa Clara, CA, USA) using a macroATR accessory with a diamond crystal.
The spectra were measured in a range from 4000 to 500 cm−1, with 32 scans both for
background and samples.

High resolution mass spectra were acquired on an Orbitrap Q Exactive Plus with H-ESI
source (Thermo Fischer Scientific Inc., Bremen, Germany) in ESI positive ionization mode
operating with the following parameters: a spray voltage of 3400 V, capillary temperature
of 290 ◦C, S-lens RF level 50, sheat gas (N2) 24 arbitrary unit, and auxiliary gas (N2) 5
arbitrary unit. The data were elaborated with Xcalibur software.

All reagents and solvents were obtained from Merck Life Science S.r.l. (Darmstadt,
Germany) or Thermo Fisher (Germany) and used without further purification.

The thermal stability of the synthesized ILs was investigated by thermal gravimetric
analysis (TGA), using a TA Instruments Q500 TGA (TA Instruments, New Castle, DE,
USA). The temperature calibration was performed using a nickel standard, and for weight
calibration, we used weight standards (1 g, 500 mg, and 100 mg). All standards were
supplied by TA Instruments Inc. The ILs (5–15 mg) were heated in a platinum crucible as a
sample holder from 40 ◦C to 700 ◦C at 10 ◦C/min under nitrogen (90 mL/min). The TGA
experiments were carried out in triplicate.

The thermal behavior of the ionic liquids was analyzed by a differential scanning
calorimeter TA Instruments DSC, Q250 (TA Instruments, New Castle, DE, USA). Dry high-
purity N2 gas with a flow rate of 30 mL/min was purged through the sample. The sample
(2–5 mg) was loaded in hermetic aluminum crucibles and dried at 130 ◦C for 30 min. Then,
the phase behavior was explored under nitrogen atmosphere in the temperature range of
−90 to 260 ◦C, depending on the analyzed compound. The enthalpy was also calibrated
using indium (melting enthalpy ∆mH = 28.71 J/g). The DSC experiments were carried out
in duplicate.

The solubility of compounds 1–4 in a panel of selected solvents was determined by
a gravimetric approach, at room temperature. To the selected compound a quantity of
solvent was added, enough to retain some solid residue, in order to obtain a saturated
solution. The mixture was stirred for 10 min at reflux temperature and then for 2 h in a bath
at 25 ◦C. If the solid was found to be completely solubilized, more salt was added, and the
dissolution procedure was repeated. A carefully measured volume of the decanted solution
was taken and dried under vacuum for 2 h at 80 ◦C. The ratio between the obtained mass
and the taken volume was used to calculate the concentration of the selected compound in
the solvent at the saturation point.
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3.2. General Procedure for the Synthesis of Compounds 1–4

Compounds 1–4 were obtained following a general procedure previously reported
by our group [36]. In a flask, to a solution of 2.1 equiv (15 mmol) of N-methyl heterocycle
in 5 mL of CH3CN, a solution of 1 equiv of 1,n-dibromoalkane in 15 mL of CH3CN was
added dropwise. The reaction mixture was then heated and stirred at 80 ◦C for 48 h. The
solvent was removed under reduced pressure, and the obtained solid was washed with
Et2O (3 × 50 mL); then, it was dried under reduced pressure affording the desired product
in quantitative yield as a white solid.

3.2.1. Synthesis of Ionic Liquid 1 [C3Mpyrr2]2Br

The preparation of 1 (97% yield, hygroscopic white solid) was performed according
to the general procedure. 1H-NMR (CD3OD) δ: 3.66 (m, 8H, 4 × NCH2CH2 pyrroli-
dinium), 3.52 (m, 4H, 2 × NCH2CH2 linker chain), 3.20 (s, 6H, 2 × NCH3), 2.43 (m, 2H,
NCH2CH2CH2N), and 2.28 (m, 8H, NCH2CH2 pyrrolidinium). The obtained spectrum
was in agreement with the literature data [26]. Minor variations in the chemical shift
were ascribable to the different deuterated solvent used. 13C-NMR (CD3OD) δ: 66.0
(NCH2CH2 pyrrolidinium), 61.5 (NCH2CH2 linker chain), 49.5 (NCH3), 22.7 (NCH2CH2
pyrrolidinium), and 20.7 (NCH2CH2CH2N linker chain). ATR-FTIR (cm−1): 3001, 2959,
2888, 1456, 1420, 1373, 1306, 1054, 999, 930, 911, 827, and 763. ESI-MS positive mode
calculated for [C13H28N2]2+: m/z = 106.1121 (z = 2); found: m/z = 106.1126 (z = 2).

3.2.2. Synthesis of Ionic Liquid 2 [C3Mpip2]2Br

The preparation of 2 (86% yield, hygroscopic white solid) was performed according to
the general procedure. 1H-NMR (CD3OD) δ: 3.54 (m, 12H, 6 × NCH2CH2 piperidinium
and linker chain), 3.21 (s, 6H, 2 × NCH3), 2.36 (m, 2H, NCH2CH2CH2N linker chain),
1.97 (m, 8H, 4 × NCH2CH2 piperidinium), and 1.73 (m, 4H, 2 × NCH2CH2CH2 piperi-
dinium). 13C-NMR (CD3OD) δ: 62.8 (NCH2CH2 piperidinium), 60.9 (NCH2CH2 linker
chain), 50.0 (NCH3), 22.0 (NCH2CH2CH2 piperidinium), 21.0 (NCH2CH2 piperidinium),
and 17.1 (NCH2CH2CH2N linker chain). ATR-FTIR (cm−1): 2997, 2966, 2946, 2903, 2858,
1490, 1468, 1445, 1403, 1349, 1329, 1278, 1234, 1196, 1112, 1058, 1037, 996, 970, 944, 912, 889,
867, 825, 795, and 755. ESI-MS positive mode calculated for [C15H32N2]2+: m/z = 120.1277
(z = 2); found: m/z = 120.1278 (z = 2).

3.2.3. Synthesis of Ionic Liquid 3 [C8Mpyrr2]2Br

The preparation of 3 (99% yield, hygroscopic white solid) was performed according to the
general procedure. 1H-NMR (CD3OD) δ: 3.58 (m, 8H, 4×NCH2CH2 pyrrolidinium), 3.43 (m,
4H, 2×NCH2CH2 linker chain), 3.11 (s, 6H, 2×NCH3), 2.24 (m, 8H, 4×NCH2CH2 pyrroli-
dinium), 1.84 (m, 4H, 2×NCH2CH2 linker chain), and 1.46 (m, 8H, 2×NCH2CH2CH2 and
2 × NCH2CH2CH2CH2 linker chain). 13C-NMR (CD3OD) δ: 65.5 (NCH2CH2 linker chain),
65.4 (NCH2CH2 pyrrolidinium), 48.9 (NCH3), 29.7 (NCH2CH2CH2CH2 linker chain), 27.2
(NCH2CH2CH2 linker chain), 24.7 (NCH2CH2 linker chain), and 22.6 (NCH2CH2 pyrroli-
dinium). ATR-FTIR (cm−1): 3008, 2937, 2856, 1473, 1455, 1413, 1310, 1049, 1000, 956, 930,
837, and 729. ESI-MS positive mode calculated for [C18H38N2]2+: m/z = 141.1512 (z = 2);
found: m/z = 141.1514 (z = 2).

3.2.4. Synthesis of Ionic Liquid 4 [C8Mpip2]2Br

The preparation of 4 (97% yield, hygroscopic white solid) was performed according to
the general procedure. 1H-NMR (CD3OD) δ: 3.42 (m, 12H, 6 × NCH2CH2 piperidinium
and linker chain), 3.10 (s, 6H, 2 × NCH3), 1.92 (m, 8H, 4 × NCH2CH2 piperidinium),
1.60–1.85 (m, 8H, 4 × NCH2CH2 linker chain and 4 × NCH2CH2CH2 piperidinium), and
1.46 (m, 8H 4 × NCH2CH2CH2 and 4 × NCH2CH2CH2CH2 linker chain). 13C-NMR
(CD3OD) δ: 65.1 (NCH2CH2 piperidinium), 62.2 (NCH2CH2 linker chain), 48.2 (NCH3),
29.8 (NCH2CH2CH2CH2 linker chain), 27.2 (NCH2CH2CH2 linker chain), 22.7 (NCH2CH2
linker chain), 22.1 (NCH2CH2CH2 piperidinium), and 21.0 (NCH2CH2 piperidinium). ATR-
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FTIR (cm−1): 2927, 2876, 2853, 1477, 1460, 1447, 1401, 1329, 1273, 1235, 1200, 1080, 1033,
983, 946, 911, 884, 865, 729, and 606. ESI-MS positive mode calculated for [C20H42N2]2+:
m/z = 155.1669 (z = 2); found: m/z = 155.1670 (z = 2).

4. Conclusions

In conclusion, four bromide dicationic organic salts were synthesized in high purity
and quantitative yields. All the compounds were characterized through ESI-MS, 1H-NMR,
13C-NMR, DEPT-135 NMR, and ATR-FTIR, their solubility was measured in a panel of
commonly used solvents, and their operative range was investigated by TGA and DSC
techniques. The thermogravimetric analysis showed a good thermal stability both for
pyrrolidinium and piperidinium salts, comparable to the one exhibited by imidazolium
DILs, and a substantial independence of the thermal stability from the linker chain. The
thermal behavior was, on the other hand found, to be sharply influenced by the structure
of the studied compounds. The pyrrolidinium salts displayed high melting temperatures,
while the piperidinium compounds were found to degrade before the melting point. The
effect of the linker chain was also appreciable with a lower melting point reported for the
dicationic system with a longer linker chain, coherent with the behavior manifested by other
classes of dicationic ionic liquids. As a result of this study, the investigated compounds
should more correctly be referred to as dicationic organic salts, due to their high melting
temperatures. Nevertheless, the use of compounds 1–4 as precursors for the preparation
of salts featuring the same dicationic structure but different anions can predictably lead
to the formation of proper dicationic ionic liquid systems. Moreover, the solubility study
evidenced a remarkable difference between the related pyrrolidinium and piperidinium
dicationic salts, with the latter being less soluble in the whole panel of tested solvents. This
characteristic appears to be amplified by the short linker chains, with compounds 1 and 2
respectively displaying the highest and the lowest observed solubility for each solvent.

The results obtained in this study provided some interesting insights on the pres-
ence of a strong relationship between the structural and physicochemical properties in
pyrrolidinium and piperidinium-based dicationic systems.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15238483/s1, Figures S1–S12: 1H-NMR, 13C-NMR, and DEPT-
135 NMR spectra of compounds 1–4; Figures S13–S16: TGA profiles of compounds 1–4; Figures S16–S21:
DSC thermograms of compounds 1–4, Figures S22–S25: ESI-MS spectra of compounds 1–4,
Figures S26–S29: ATR-FTIR spectra of compounds 1–4, Figure S30: pictures from the determination
of the melting point of compound 1 through the Kofler technique.
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