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Abstract: The aim of this study was to develop a multiple linear regression (MLR) model to predict
the specific methane production (SMP) from dry anaerobic digestion (AD) of the organic fraction
of municipal solid waste (OFMSW). A data set from an experimental test on a pilot-scale plug-
flow reactor (PFR) including 332 observations was used to build the model. Pearson′s correlation
matrix and principal component analysis (PCA) examined the relationships between variables. Six
parameters, namely total volatile solid (TVSin), organic loading rate (OLR), hydraulic retention time
(HRT), C/N ratio, lignin content and total volatile fatty acids (VFAs), had a significant correlation
with SMP. Based on these outcomes, a simple and three multiple linear regression models (MLRs)
were developed and validated. The simple linear regression model did not properly describe the data
(R2 = 0.3). In turn, the MLR including all factors showed the optimal fitting ability (R2 = 0.91). Finally,
the MLR including four uncorrelated explanatory variables of feedstock characteristics and operating
parameters (e.g., TVSin, OLR, C/N ratio, and lignin content), resulted in the best compromise in
terms of number of explanatory variables, model fitting and predictive ability (R2 = 0.87).

Keywords: statistical analysis; plug-flow reactor; pilot-scale; experimental tests; correlation matrix

1. Introduction

In 2019, the member states of the European Union (EU) produced 15.8 billion cubic
meters of biogas from anaerobic digestion (AD) of several organic substrates [1]. Starting
from 2013, agricultural residues, manure, plant residues, sewage sludge (SS), biowaste,
municipal solid waste (MSW), and industrial organic waste substituted energy crops in
AD [1]. As far as biowaste is concerned, the organic fraction of municipal solid waste
(OFMSW), which is the separately collected fraction of MSW, is considered to be a suitable
carbon source for AD. The benefits rely mainly on its biodegradability linked to the high
total volatile solids (TVS) content [2], in appreciable methane (CH4) potential production [3],
great availability, and gates fees defined by local authorities supporting treatment costs [4].
Nevertheless, it also has some drawbacks related to high heterogeneity, geographical
and seasonal variability, and the collection source and system [2,3,5]. For instance, in
previous published papers it was found that source segregation increases the organic waste
content by approximately 41% compared to mechanically sorted OFMSW [6]; the meat–
fish–cheese fraction decreased by 97.1% from February to July, while vegetable residues
increased by 82.4% in the same period [7]; a recent study focusing on the influence of
geographical region on physical–chemical characteristics of the OFMSW revealed that the
total solid (TS) content was higher in rural (32.86%) than in urban areas (30.5%), increasing
by 7.2% [8]. Furthermore, OFMSW may also present high lignin content which is recalcitrant
for AD [9], thus reducing the potential CH4 production [5]. In addition, OFMSW can be
valorized trough AD to produce biogas as well as bioproducts (i.e., fertilizers or volatile
fatty acids (VFAs) as added value intermediates), in line with bioeconomy [10–12] and
circular economy principles [12]. Because OFMSW presents a TS content higher than 15%,
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dry AD systems may be preferred to wet technologies to treat this substrate [13,14]. In fact,
dry AD is able to handle higher organic loading rates (OLRs) (e.g., 5–12 kg TVS/(m3 d)),
than wet processes [14] with the same working volume and low or no water addition [14].
In addition, dry AD apply robust reactor configuration and generally low capital and
operational costs [15]. Furthermore, digestate handling is easier than wet processes, thus
increasing the possibility to valorise digestate as a soil improver [16]. The most recent
available data report that the installed capacity of dry AD systems in EU raised accounting
for a cumulative market share higher than 65% in 2015 [17].

There are many environmental as well as operating parameters affecting biogas re-
covery from AD of the OFMSW, namely temperature, pH, TS content, mixing, carbon to
nitrogen (C/N) ratio of the feedstock, OLR, hydraulic retention time (HRT), nutrient avail-
ability and toxic compounds [13,15,18,19]. In more detail, temperature influences microbial
composition and kinetics [20]; similarly, pH influences microbial growth and relative abun-
dance of species; for example, the optimal pH for methanogens is around 6.8–7.4 [19]. The
C/N ratio is an indicator of nutrients imbalance: low C/N content indicates high nitrogen
content in the feedstock and the release of ammonia during proteins hydrolyzation [21];
on the contrary, high C/N ratio may lead to VFAs accumulation [22]. The OLR indicates
the biodegradable matter fed to the reactor: high OLRs may increase the hydrolytic and
acidogenic activity producing an excess of VFAs leading to process failure and low biogas
production [19]. The HRT influences the degradation extent of the substrates, increasing
biogas production for a longer retention time due to complete degradation of the substrate;
mixing enhances biogas release, offering a good contact between substrate and seed sludges
and diluting toxic compounds [19,23].

Within the international literature, research studies concentrate on optimizing biogas
production focusing on (i) feedstock composition [24], (ii) process management [25–27]
(i.e., OLR, HRT, mixing system), and (iii) operating conditions (i.e., pH and tempera-
ture) [13–15,18]. For instance, it has been found that a C/N ratio of 32 reduces ammonia
inhibition during thermophilic AD of OFMSW [24]; OLRs higher than 5–6 g TVS/(L d)
optimizes the specific biogas production (SGP) [15,26]; while thermophilic conditions in-
crease microbial kinetics, thus allowing the treatment of higher OLRs than mesophilic
processes [15].

Another investigation field is the development of statistical models to predict the po-
tential CH4 production of biomasses starting from physical–chemical and macromolecular
composition [28]. The aim of such studies is generally to perform preliminary energetic
and economic evaluations relying on analytical measurements that are less time consuming
than experimental tests (e.g., the biochemical methane potential (BMP) assay), and ensure
a high replicability and reliability of the results [15]. The most applied models are simple
and multiple linear regression (MLR) models [29–31], artificial neural network (ANN)
models [29,32,33], and adaptive network-based fuzzy inference systems (ANFIS) [32,33].
Table 1 summarizes the performances of the aforementioned models.

Nevertheless, the intrinsic variability of experimental results or inaccurate methodolo-
gies represent the main challenges to achieve high accuracy of the predictive models. In
addition, predictive models mostly rely on laboratory scale data sets [28–30], while only
few were developed based on pilot-scale tests or full-scale plants [31,34–36]. However, it
should be considered that predictive models build on data from pilot-scale experimen-
tal tests could provide useful information for the operational management of industrial
facilities, similarly to what life cycle assessment analysis can do from an environmental
perspective [37].

In the light of such considerations, to the best of the authors′ knowledge, the literature
lacks information regarding biogas predictive models from pilot-scale dry AD systems.
Therefore, the novelty proposed by this study is the development of a predictive model for
biogas production from dry AD of the OFMSW. To such aim, a data set from a pilot scale
PFR that have been working at thermophilic conditions for 332 days was used. A MLR
model was developed, and the results are presented.
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Table 1. Data driven model to predict biogas production from anaerobic digestion (AD).

Data Driven Model Data Collection Explanatory Variables Predictive Ability Ref.

Artificial Neural
Network (ANN)

50 data points that
were collected from ten

publications

Extractives, lignin,
cellulose,

feedstock/effluent

R2 fitting = 0.912
Standard Error of Prediction (SEP)

fitting = 13.73 L/kg VS
R2 validation = 0.976
SEP validation = 8.51

[29]

Multiple Linear
Regression (MLR)

86 data points from
13 publications

Extractives, lignin,
cellulose,

feedstock/effluent,
volatile solids,
hemicellulose

R2 fitting = 0.831
SEP fitting = 28.93 L/kg VS

R2 validation = 0.8329
SEP validation = 24.42 L/kg VS

[30]

Adaptive
Network-Based Fuzzy

Inference Systems
(ANFIS)

Wastewater treatment
plant

Volatile Fatty Acid
(VFA), Total Solid (TS),

fixed solid (FS), pH,
inflow rates

R = 0.93,
root-mean-square error (RMSE) = 0.61 [33]

ANN R = 0.86,
RMSE = 0.43

2. Materials and Methods
2.1. Substrate and Inoculum

OFMSW and green waste (GW) were used as substrates. The OFMSW was sampled
from a district in the municipality of Florence, Italy, which was analysed in previous specific
picking campaigns [5]. The sample was collected in accordance with the methodologies
proposed by ANPA [38] to ensure its representativeness. As pre-treatments, the sample
was sieved at 80 mm and manually sorted to remove plastics, bones, inert materials,
textiles, metals, glasses, cardboard, and other undesirable fractions. Then, an organic waste
disposer was used to grind the sample, and the mash was placed in plastic tanks. GW
was a sample of around 100 kg of fresh-shredded garden and yard waste collected from
the same collection district. GW was manually sieved at 10 mm to avoid any damage to
the digester mixing system. No further treatments were performed before usage, but the
feedstocks were independently stored in a freezer at −19 ◦C to prevent biodegradation.
During the experimental tests, GW was used as structural material and added to OFMSW
to achieve different TS content of the inlet feedstock. The reactor was inoculated with seed
sludges from a full-scale thermophilic anaerobic digester treating OFMSW and GW (Asja
Impianti, Foligno PG, Italy).

2.2. Plug-Flow Reactor Set-Up

The experimental tests were performed in a pilot-scale PFR of stainless steel with a
total volume of 37 L and a working volume of around 28 L. In the following paragraph, a
concise explanation of the experimental apparatus is provided, while a detailed description
can be found in our previous studies [39,40].

Figure 1 schematically represents the PFR. The reactor can be divided into three main
zones: the inlet section, the central body, and the outlet section. At the inlet section, the PFR
is provided with a cylinder and a ball valve to allow feeding operations. The PFR is fed
manually by filling the cylinder with feedstock, then the cylinder is closed to be gas tight and
finally a piston is activated manually to push the substrate inside the reactor. In the central
zone, a set of blades ensure the optimal contact between the feedstock and the digestate. In
this zone, two probes measure continuously the pH and temperature of the digestate (InPro
4281i, Mettler-Toledo Spa, Milano (MI), Italy). At the outlet section, digestate is discharged.
The biogas flows through a PVC tube into a volumetric counter connected to a 3–2 ways
direct-acting solenoid valve (type 6014, Burkert Spa, Cassina de′ Pecchi (MI), Italy), that
continuously the cumulative biogas production. Further details regarding the volumetric
counter are reported in Baldi et al. [41]. Two infrared sensors monitor process stability
measuring the concentration of CH4 and carbon dioxide (CO2) (Gascard NG, Edinburgh
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Sensors, Livingston EH54 7DQ, UK). The pilot-scale PFR is maintained in thermophilic
conditions (53 ± 2 ◦C) by recirculating hot water from a thermostatic water bath to the
water jacket of the digester using a hydraulic pump (PQm 90, Pedrollo SpA, San Bonifacio
(VR), Italy).

Figure 1. Scheme of the plug-flow reactor used during the experimental tests [40].

2.3. Design of Experiment

Table 2 reports the experimental design of the trials. The experimental test had an
overall duration of 332 days, and the reactor operated in a semi-continuous mode since it
was fed every working day. The experimental test comprised five scenarios which operated
with two average HRTs of 14.57 ± 2.46 and 22.86 ± 1.85 days and two average OLRs of
13.74 ± 1.11 and 8.1 ± 0.8 g TVS/(L d). These values are typical of dry AD. For example,
conventional dry AD technologies (e.g., Kompogas®, DRANCO® and VALORGA®), using
OFMSW as substrate, operate with HRTs between 20 and 29 days [14,15]. Nevertheless,
HRTs of approximately 14 days are suitable for thermophilic dry AD [15]. Indeed, the
HRT depends on the feedstock characteristics, the reactor configuration and the process
temperature, and should be long enough to fully convert the organic matter into biogas.
The corresponding OLRs are those calculated as detailed described in Rossi et al. [40]. As
previously mentioned, GW was added as structural material to OFMSW with the aim of
investigating the influence of TS content on digester operativity and biogas production. To
maintain an active bacterial population inside the PFR, digestate was partly recirculated,
together with the inlet feedstock. The recirculation ratio, namely the volumetric flow of re-
circulated digestate (Qr) divided by the inlet volumetric flow of feedstock (Qin), commonly
known as α, was fixed during the trials and it approximately ranged between 0.4–0.45. All
the scenarios lasted at least two HRTs, and the results were compared considering the data
belonging to the last HRT.

Table 2. Design of experiment of pilot-scale plug-flow reactor (PFR).

Scenarios
Hydraulic

Retention Time
(HRT) [d]

Organic Loading
Rate (OLR)
[g VS/(L d)]

Total Solid
(TS) [%] Duration [d]

S1 12.82 ± 0.34 12.94 ± 0.45 33 63
S2 16.31 ± 0.48 14.52 ± 0.8 38 56
S3 21.54 ± 3.2 8.65 ± 4.15 28 53
S4 24.16 ± 1.13 7.53 ± 0.25 33 75
S5 19.8 ± 3.15 7.63 ± 0.9 38 48
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2.4. Analytical Methods

During the experimental tests, a precise monitoring schedule including an overall
number of 72 analytes was developed. The process monitoring procedures included a
comprehensively characterization of the inlet feedstock and digested sludges.

TS, TVS, pH and bulk density were analysed daily, both on the inlet feedstock and the
outlet digestate. TS content was determined gravimetrically after drying the samples for
24 h at 105 ◦C; TVS was determined by gravimetrically burning the dried sample at 550 ◦C
for 6 h; pH was measured by a pH meter (pH 7 + DH2, XS Instruments) in a solution with
100 mL of deionized water and 10 g of sample [42]. The bulk density was evaluated by
adapting the procedure developed by Baptista [43].

The physical–chemical (e.g., ammonia nitrogen (N-NH+
4) concentration, total alka-

linity, total Kjeldahl nitrogen (TKN), etc.), elemental (e.g., carbon, nitrogen, hydrogen and
sulfur content), bromatological characteristics (e.g., carbohydrates, cellulose, hemicellulose,
proteins, lipids), and metal ions concentration were measured for each HRT on samples
of feedstock and digestate. The analytical measurements were evaluated by applying the
methodologies reported in Pecorini et al. [4].

The concentration of total and specific VFAs, namely acetic, propionic, butyric, isobu-
tyric, valeric, isovaleric and caproic acids, was evaluated on digestate samples withdrawn
daily from the outlet section of the PFR. The measurement was performed by gas chromatog-
raphy. The gas chromatograph (7890B, Agilent Technology, Santa Clara, CA, USA) uses
hydrogen as gas carrier and is equipped with a CPFFAP column (0.25 mm/0.5 mm/30 m)
and with a flame ionization detector (250 ◦C) [26]. During the analysis, the temperature
starts from 60 ◦C and reached 250 ◦C with a rate of 20 ◦C/min. For this measurement,
digestate was centrifuged at 13,500 rpm for 20 min, then the liquid phase was filtered at
0.45 µm. After, 500 µL of isoamyl alcohol was mixed to 500 µL of filtrate, then 200 µL
of phosphate buffer solution (pH = 2.1) was added. Finally, hexanoic acid-D11 (10 µL),
as internal standard, and sodium chloride were added. The mixture was stirred with a
Mortexer™ Multi-Head (Z755613-1 EA, Merck KGaA, Darmstadt, Germany) for 10 min,
and further centrifuged for 6 min to allow the separation of liquid phases. The liquid phase
at the top of the tube was placed in vials to allow the GC syringe to collect the liquid sample.

The inoculum was characterized for the same parameters except for density. In
addition to physical–chemical parameters, the residual biogas production was evaluated
based on the procedure developed by Angelidaki et al. [44], and the kinetic behaviour was
analysed by the first-order kinetic model and the modified Gompertz model [45].

2.5. Anaerobic Digestion Performances

The evaluation of process performances included biogas productivity and volatile
solids reduction efficiency (RETVS). Biogas productivity comprised the SGP, namely the
ratio of daily biogas production over the daily mass of TVS fed to the PFR measured as
NLbiogas/kg TVS, the specific methane production (SMP) namely the SGP multiplied
by the daily average CH4 concentration measured as NLCH4/kg TVS, and the biogas
production rate (GPR) as daily biogas production divided by the reactor working volume
measured as NLbiogas/(Lr d). Finally, RETVS was calculated as the difference between the
TVS content in the inlet feedstock and the outlet digestate divided by the TVS in the inlet
feedstock; TVS was expressed in terms of percentage on wet basis.

2.6. Statistical Analysis

The main aim of this study was to develop a model to predict the SMP from dry AD
of OFMSW. The data used to develop the model were retrieved from the experimental
tests performed on the PFR, applying the experimental design described in Table 2. The
data set included 332 observations, and among the 72 analytes, 55 quantitative variables
(e.g., p = 55), were selected to perform a first analysis. The model was developed using
weekly average data (e.g., n = 42).
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The statistical approach includes a first explorative analysis of the experimental data
to study the relationship between dependent and independent variables by calculating the
Pearson′s correlation matrix and performing a principal component analysis (PCA); then,
based on these results, a stepwise selection method was used to calculate the coefficients of
the multilinear regression equation, and finally, the model was validated using a set of data
selected randomly from the experimental results (e.g., n = 16). The software used to perform
the calculation were SPSS Statistics—IBM (Armonk, NY, USA), and Matlab–MathWorks
(Portola Valley, CA, USA).

3. Results
3.1. Substrate and Inoculum Characteristics

Table 3 illustrates feedstock characteristics calculated as average value on the stationary
period of each scenario. During the experimental tests, the TS content of the inlet feedstock
changed in accordance with Table 2. Consequently, the feedstock characteristics varied
across the scenarios. Regarding the C/N ratio, which is a fundamental parameter for
process succeeding, it was in the optimal range (e.g., 20–30) during S1, S4 and S2. In turn, it
was slightly below the optimum for S3 and S5.

Table 3. Feedstock characteristics as average value and standard deviation on the stationary period
of each scenario.

Parameter S1 S2 S3 S4 S5

TVS/TSin [%] 87.36 ± 0.86 86.62 ± 0.78 80.54 ± 4.46 88.33 ± 0.75 71.69 ± 4.44
Lignin [%TVS] 21.2 ± 0.3 13.99 ± 0.16 22.34 ± 5.13 20.2 ± 0.21 18.5 ± 1.82

TKN [%TS] 1.64 ± 0.15 1.97 ± 0.21 2.14 ± 0.17 1.68 ± 0.3 1.76 ± 0.49
pH [–] 5.08 ± 0.15 4.79 ± 0.08 5.14 ± 0.44 4.83 ± 0.46 5.65 ± 0.49

C/N [–] 27.4 ± 0.3 32.02 ± 0.2 18 ± 0.02 26.7 ± 0.2 18.2 ± 0.38

The seed sludges showed an imbalanced content of carbon and nutrients. In more
detail, carbohydrates were not detected, lignin resulted in 49.5% TVS, and proteins were
51.6% TVS [40]. Furthermore, ammonia concentration was equal to 4070 ± 610 mg/kg,
exceeding the inhibition limit for dry AD processes. The residual biogas potential resulted
0.26 ± 0.02 NLbiogas/g VS. The first-order kinetic model was suitable to predict the kinetic
behaviour of residual biogas production resulting with a first-order disintegration rate
constant equal to 0.12 day−1. Conversely, the modified Gompertz model was not suitable
to fit the residual biogas production since the lag phase (i.e., λ) resulted equal to 0.

3.2. Anaerobic Digestion Performance

Table 4 presents the results of the overall process performances in terms of SGP, SMP,
GPR and RETVS for each scenario. Data reported are average values on the stationary phase
of each scenario. In addition, in brackets, the maximum and minimum value is reported.

Despite the similar OLR, S1 and S2 showed different results in terms of SGP and SMP
on the stationary period (e.g., the last HRT of each scenario): SMP reached the peak in S2
and it increased by 84% compared to S1. In turn, S3, S4 and S5 attained similar SGP and
SMP, showing a positive correlation with TS content. In more detail, the SGP increased
by 28.5 and 14.9% in S5 compared to S3 and S4, respectively. Similarly, during S4, the
SGP increased by 11.8% compared to S3. Focusing on the GPR, the high C/N ratio of the
feedstock in S2 positively affected this parameter, which increased by 110.3% compared to
S1. Differently, the scenarios S3, S4 and S5 showed an average GPR lower than S1 and S2.
Comparing the results among the scenarios, S4 attained the lowest GPR which decreased
by 11.2% in respect to S3. Instead, S5 showed the highest value increasing by 40.1% than
S4. Finally, the process showed the highest TVS conversion efficiency in S2 (e.g., +35.8%
than S1). Among the scenarios with the lower OLR tested, S4 had the highest volatile solids
conversion efficiency. During S3 and S5, the degradation efficiency decreased by 32% and
13.4%, respectively.



Sustainability 2022, 14, 4393 7 of 17

Table 4. Performances of anaerobic digestion process in each scenario. Data are reported as maximum
and minimum values on the steady state period.

Parameter S1 S2 S3 S4 S5

SGP
[NLbiogas/kg TVS]

196.3 ± 24.4
(210–154)

361.3 ± 30.5
(419–334)

251.1 ± 66.9
(340–147)

280.8 ± 72.8
(311–127)

322.67 ± 64.7
(429–241)

SMP
[NLCH4/kg TVS]

106.2 ± 0.3
(112–84)

229.5 ± 25.4
(239–214)

151.1 ± 47.9
(302–198)

159.1 ± 2.1
(178–38)

202.6 ± 37.5
(229–195)

GPR
[NLbiogas/(Lr d)]

2.4 ± 0.4
(2.79–1.94)

5.1 ± 0.3
(5.22–4.64)

1.9 ± 0.3
(3.16–1.62)

1.7 ± 0.67
(2.32–0.31)

2.3 ± 0.5
(3.09–2.7)

RETVS [%] 39.1 ± 3.2
(42.0–33.4)

53.1 ± 3.4
(54.4–50.5)

36.9 ± 1.7
(40.2–34.9)

48.8 ± 2
(55.7–44.2)

42.2 ± 3.3
(48.2–38.1)

SGP
[NLbiogas/kg TVS]

196.3 ± 24.4
(210–154)

361.3 ± 30.5
(419–334)

251.1 ± 66.9
(340–147)

280.8 ± 72.8
(311–127)

322.67 ± 64.7
(429–241)

Figure 2 illustrates the performance in terms of SGP and SMP as weekly average data
and standard deviation. The weekly data showed a more constant trend during S1 and
S2 than during S3, S4 and S5. In particular, S3 showed a decreasing trend. This tendency
may have a two-fold explanation: from one side, the reactor was not fed for 10 days, and
approximately 46 days (e.g., two HRTs) should be considered as an adaptation phase; on
the other side, the process suffered from ammonia inhibition since it reached 2457.78 mg/L
at the end of S3 (results not shown), falling within the inhibition limit of 1500–3000 mg/L
for dry AD.

Figure 2. Specific gas production (SGP) and specific methane production (SMP): weekly averages
and standard deviations. Continuous lines divide the experimental test in terms of studied OLRs.
Double arrows indicate degassing and not feeding period, respectively.

Figure 3 illustrates the weekly performances of the system in terms of GPR. Differently
from the weekly trend of SGP and SMP, the GPR was more constant during S3, S4, and
S5 in respect to S1 and S2. The comparison among the scenarios highlights far higher
performances during S1 and S2, which operated with the highest OLR tested. The highest
average value of 5.11 NLbiogas/(Lr d) was attained during S2.
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Figure 3. Production rate (GPR): weekly averages and standard deviations. Continuous lines divide
the experimental test in terms of studied OLRs. Double arrows indicate degassing and not feeding
period, respectively.

3.3. Statistical Analysis

The main aim of this study was to develop a model to predict the SMP from dry
AD of OFMSW using the data collected during an experimental test, using a pilot-scale
plug-flow reactor as rector configuration. Firstly, the correlation among the variables
was evaluated throughout the Pearson′s correlation matrix. The analysis was performed
considering 55 explanatory variables monitored during the process. However, among all
the variables, we decided to focus on the feedstock characteristics that from the-state-of-
the-art were found to mainly affect the SMP (e.g., TS, TVS, C/N ratio and lignin content),
on several operating parameters (e.g., Qin, HRT and OLR), as well as on two main process
inhibitor compounds (e.g., N-NH+

4 and total VFAs concentration). Furthermore, GPR
and RETVS were included in the calculations. The results of the correlation analysis are
reported in Table 5.

Considering that the SMP is our dependent variable, all the other parameters (e.g., TS,
TVS, C/N ratio, lignin content, Qin, HRT, OLR, N-NH+

4 and total VFAs concentration),
were considered as potential predictors of the SMP. However, SMP exhibited a low linear
relationship (i.e., <0.5 and >−0.5), with all the predictors except for lignin. Nevertheless,
TVSin, OLR, HRT, C/N and total VFAs showed a statistically significant correlation with
the SMP (p-value < 0.05). Specifically, SMP proved to be negatively correlated with TVSin,
OLR, C/N, and total VFAs.

Figure 4 reports the results of the biplot and the scree plot of the PCA analysis. The
figure represents the variables through vectors, in which the correlation is determined
by the cosine value between two vectors. Hence, when two variables are orthogonal, the
cosine is approximately zero, indicating that the variables are not correlated; in turn, when
the vectors point to the opposite or same directions it means that the variables are strongly
negatively and positively correlated, respectively. Based on these considerations, the biplot
suggests that lignin content and total VFAs are strongly and negatively correlated with the
SMP. Instead, the HRT is the only explanatory variable which is positively correlated with
the dependent variable. This is probably because high HRTs allow a complete degradation
of volatile matter, thus enhancing both SGP and SMP. In turn, it appears that N-NH+

4 is
not correlated with SMP. Furthermore, C/N ratio, TVSin and OLR have a strong positive
correlation among each other. Nevertheless, C/N ratio show a weak but negative linear
correlation with SMP.
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Table 5. Pearson′s correlation matrix. Highlighted in bold are the predictors showing a statistically
significant correlation (p-value < 0.05 or p-value < 0.01), with the SMP.

SMP
[NLCH4/
kg TVS]

Qin
[g/d]

TVSin
[%]

TSin
[%]

HRT
[d]

OLR
[gTVS/
(L d)]

C/N
[–]

Lignin
[%]

N-NH+
4

[mg/L]
Total
VFAs

RETVS
[%]

GPR
[NL/
Lr d]

SMP [NLCH4/kg TVS] 1.00 −0.13 −0.46 2 −0.19 0.35 1 −0.40 2 −0.4 2 −0.57 2 −0.15 −0.43 2 1.00 −0.16
Qin [g/d] −0.13 1.00 0.36 1 0.49 2 −0.9 2 0.72 2 0.07 −0.22 −0.54 2 0.05 −0.18 0.51
TVSin [%] −0.46 2 0.36 1 1.00 0.78 2 −0.4 2 0.71 2 0.70 2 0.27 −0.43 2 0.10 0.71 0.27
TSin [%] −0.19 0.49 2 0.78 2 1.00 −0.5 2 0.49 2 0.14 0.34 1 −0.42 2 −0.33 1 0.47 0.4
HRT [d] 0.35 1 −0.9 2 −0.45 2 −0.5 2 1.00 −0.80 2 −0.2 0.03 0.44 2 −0.25 0.02 −0.35

OLR [gTVS/(L d)] −0.40 2 0.72 2 0.71 2 0.49 2 −0.8 2 1.00 0.63 2 −0.14 −0.59 2 0.30 0.27 0.41
C/N [−] −0.41 2 0.07 0.70 2 0.14 −0.20 0.63 2 1.00 −0.09 −0.33 0.46 2 0.56 0.13
lignin [%] −0.57 2 −0.22 0.27 0.34 1 0.03 −0.14 −0.1 1.00 0.33 1 −0.02 0.45 −0.54

N-NH+
4 [mg/L] −0.15 −0.54 2 −0.43 2 −0.4 2 0.44 2 −0.59 2 −0.3 1 0.33 1 1.00 −0.08 0.14 −0.67

Total VFAs [mg/L] −0.43 2 0.05 0.10 −0.3 1 −0.25 0.30 0.46 2 −0.02 −0.08 1.00 −0.12 −0.24
RETVS [%] −0.52 0.17 0.71 0.48 0.023 0.27 0.56 0.45 0.15 −0.12 1.00 0.58

GPR [NLbiogas/(L d)] 0.58 0.51 0.27 0.40 −0.35 0.41 0.13 −0.54 −0.66 0.24 −0.16 1.00

1 p-value < 0.05, 2 p-value < 0.01.

Figure 4. Analysis of explanatory variables by PCA: (a) biplot result: red dots represent the observa-
tions; (b) scree plot.
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Simple and Multiple Linear Regression Models

Based on the results of the Pearson′s correlation matrix and PCA analysis, a first simple
linear regression (SLR) model was developed. Lignin content was selected as sole predictor
because of the strongest correlation with SMP among the other variables. However, the
SLR model was not satisfactory to fit the data, since the determination coefficient (e.g., R2)
was equal to 0.30, while the adjusted coefficient of determination (Radj

2) was equal to 0.28,
and the standard error prediction (SEP) was equal to 40.08 NLCH4/kg TVS.

Consequently, it was decided to develop a MLR which was more able to describe the
data than the MLR. A first MLR model (MLR1) was developed including all the explanatory
variables significantly correlated with SMP (e., TVSin, OLR, HRT, C/N, lignin, and total
VFAs). The results showed that MLR1 described the data better than SLR. In fact, R2 = 0.91,
(Radj)2 = 0.89, SEP = 15.5 NLCH4/kg TVS.

The equation of MLR1 is the following, Equation (1):

SMP [NLCH4/kg TVS] = −8.57 × OLR − 19.28 × lignin + 6.48 × TVSin − 4.48 × C/N + 1.96 × HRT − 0.003 × totalVFAs + 296.75 (1)

At this time, the model was validated by using 16 data points taken randomly from
the results of the experimental test. During the validation step, MLR1 showed a good
ability to describe the data from which was created (e.g., fitting). In fact, R2 = 0.87 and SEP
resulted in 26.9 NLCH4/kg TVS (Figure 5).

Figure 5. First multiple linear regression model (MLR1). Fitting (black dots) and validation phase
(coloured dots).

Although the model showed a remarkably ability to describe the data, we decided
to develop a second model (MLR2) removing those explanatory variables that were not
significantly correlated with the dependent variable. Therefore, HRT and total VFAs,
which presented not statistically significant coefficients (p-value > 0.05), were removed. In
addition, the above predictors proved to be significantly correlated with the OLR and C/N
ratio, respectively, which were already comprised in the model. Applying such conditions,
R2 = 0.87, (Radj)2 was equal to 0.85, and SEP = 18.53 NLCH4/kg TVS. The equation of MLR2
is the following, Equation (2):

SMP [NLCH4/kg TVS] = −14.57 × OLR − 21.39 × lignin + 9.9 × TVSin − 5.4 × C/N + 336.23, (2)

Turning to the validation results, the model showed a slightly lower ability than MLR1
to describe the data from which it was created. In fact, the fitting coefficient was R2 = 0.82
with SEP = 41.9 NLCH4/kg TVS (Figure 6). Although the results showed that MLR2 have
a lower ability than MLR1 to fit and predict the data, only four predictors were used to
predict methane yield, thus resulting in an acceptable result. In addition, the predictors
included operating parameters (e.g., OLR), as well as feedstock characteristics (e.g., lignin,
TVSin, C/N).
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Figure 6. Second multiple linear regression model (MLR2). Fitting (black dots) and validation phase
(coloured dots).

Finally, a third model (MLR3) was developed by removing TVSin, which proved
to beresulted significantly correlated with the OLR. The equation of the multivariate
model including OLR, lignin, and C/N ratio developed to predict SMP, is reported below,
Equation (3):

SMP [NLCH4/kg TVS] = −8.86 × OLR-17.42 × lignin − 2.7 × C/N + 426.7 (3)

Figure 7 illustrates the ability of MLR3 to describedescribing the data in the fitting
and validation phase. Concerning the fitting phase, R2 was equal to 0.73, (Radj)2 was equal
to 0.69, and SEP was equal to 25.8 NLCH4/kg TVS. In turn, during the validation phase,
the fitting ability of the model remarkably decreased. In fact, R2 = 0.69 and SEP resulted in
45.4 NLCH4/kg TVS.

Figure 7. Third multiple linear regression model (MLR3). Fitting (black dots) and validation phase
(coloured dots).

4. Discussion
4.1. Anaerobic Digestion Performance

The main objective of this study was to develop a multiple linear regression model to
predict SMP production in dry AD of OFMSW. Nevertheless, the feedstock characteristics,
as well as the process performances, were compared with those attained by similar studies
reported in the literature.

Starting from the feedstock, TVS/TSin, TKN and pH fall within the typical ranges re-
ported for the OFMSW (e.g., TVS/TSin = 84.6± 9.9%, TKN = 3.8–1.5, and pH = 5.2 ± 0.95) [3].
In turn, lignin content results slightly above the average typical value of 9.7 ± 5.3%TVS [3].
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However, it was in line with a previous comprehensive characterization of the OFMSW
in the same collection district [5]. When other geographical collection areas are consid-
ered, the pH value was far lower than those of source sorted OFMSW collected in Poland
(i.e., 8.0 ± 0.2) [6]; conversely, it was in line with pH values of rural and urban OFMSW
sampled in Germany, which resulted in 5.39 ± 0.46 and 5.25 ± 0.43, respectively [8]. TKN
was approximately 1.3 times higher in S3 than in S1. This result is mainly because sole
OFMSW was used as feedstock in S3. Nevertheless, TKN was below 40.2 mgN/g TS, which
was reported by Alibardi and Cossu (2015) [7] for protein-rich substrates such as meat, fish
and cheese.

Regarding the overall process performances, the maximum SGP equal to 419 NLbio-
gas/kg TVS was attained for the highest OLR tested. Conversely, Jabeen et al. [25] found
that the SGP decreased from 446 to 215 NLbiogas/kg TVS when the OLR increased from
5 to 9 gTVS/(L d) during dry AD of OFMSW and rice husk (C/N 28). As far as the SMP is
concerned, the available data show a great variability of the results depending on both the
substrate and operating conditions (i.e., HRT, OLR and temperature). Zeshan et al. [24],
during thermophilic dry AD of OFMSW in a pilot-scale PFR, found that the SMP increased
from 121 to 327 NlCH4/kg TVS when the HRT was set to 13 and 54 days, respectively.
Patinvoh et al. [27] found lower SMP (i.e., 146 and 163 NLCH4/kg TVS for OLR equal to
6, and 4.2 gTVS/L d and HRT equal to 28 and 40 days, respectively) than our study, but
the authors worked in mesophilic conditions and used manure and straw as substrate.
Another study investigating dry mesophilic AD of corn stove found the highest SMP of
410 NlCH4/kg TVS when the OLR was set to 6.5 gTVS/(L d). Therefore, the aforemen-
tioned result suggests that mesophilic temperature and low OLRs favours biogas yield
from corn stove. Moving to GPR, few data are available on this parameter when dry AD
processes are concerned. However, the highest average value of 5.11 NLbiogas/(Lr d),
which was achieved during S2, was slightly higher than the 4.5 NLbiogas/(Lr d) that was
obtained during mesophilic AD of source sorted-OFMSW [31]. This result is typically asso-
ciated with processes working with high OLRs [9–11]. In addition, thermophilic conditions
provide a faster conversion of biodegradable matter boosting the microbial kinetics, and the
feedstock presented an optimal C/N ratio for dry AD. Nevertheless, S3, S4 and S5 resulted
with a GPR lower than those commonly obtained in dry AD (e.g., 2.5 NLbiogas/(Lr d).
Probably, the main cause relays in the addition of structural material. Indeed, the lignin
content ranged between 18.5–22.3% on TVS base, with GW ranging between 34–36% TVS.
The latter datum is typical of lignocellulosic feedstocks, but it was 2.18 times higher than
those of the sole OFMSW, which reported a lignin content ranging from 8.8 to 16.6% on TVS.

Finally, RETVS was higher in S2 than in the other scenarios. This was probably because
the high C/N of the feedstock resulted in an optimal strategy to counteract ammonia
inhibition. In fact, the process showed a total ammonia nitrogen concentration higher
than the inhibition threshold of 1500–3000 mg/L [14] for the overall duration of the tests.
Despite a concentration of ammonia between 50–200 mg/L being beneficial for bacterial
growth [21], in dry AD, ammonia inhibition, together with VFAs accumulation, are listed
as the main causes of process failure [13,22]. From one side, VFAs accumulation may
occur when the digester operates at high OLRs: the organic matter within the OFMSW
is rapidly hydrolysed, monomers are converted to VFAs decreasing digestate pH under
the optimal values for methanogenic archaea. On the other side, ammonia is released
when proteins are hydrolysed, and amino acids are converted into VFAs throughout the
Stickland′s reaction [46]. Ammonia can enter cell membranes, causing proton imbalances
interfering with metabolic enzymes [47], and reducing the overall biogas production
performances. Furthermore, thermophilic processes are more sensitive than mesophilic
ones to ammonia inhibition. Indeed, high values of pH and temperature favour the
displacement of the ammonia equilibrium to free ammonia, which is toxic for microbial
ecology at 600–800 mg/L [21]. Despite several studies finding that ammonia inhibition is
associated to high VFAs concentration, it was also highlighted that the system may achieve



Sustainability 2022, 14, 4393 13 of 17

a so-called “inhibited steady state” characterized by stable but high pH values, and low
biogas production, without accumulation of VFAs [14].

4.2. Statistical Analysis and Modelling

Regarding the correlation among variables, the SMP showed a weak linear relation
with the C/N ratio of the feedstock. This result seemed unexpected since high C/N ratio
is associated to a stable AD process with high gas production [15] and a low risk to incur
in ammonia inhibition [13]. Nevertheless, Xu et al. [29] have already found an analogous
relationship by studying the correlation among lignocellulosic biomasses and methane
yield on a set of 50 data collected from literature studies. A similar result was also obtained
by Niquini et al. [30] performing the analysis on a larger data set than Xu et al. [29]. With
regard to the latter study, a possible explanation of such correlation relies on the fact that
C/N ratio is highly correlated with TVSin, which in turn is negatively correlated with SMP.

The results obtained by modelling the experimental data to predict methane yield,
in terms of specific methane production, were discussed considering those reported in
the state-of-the-art. However, the authors would like to point out that little information
is available within the literature on MLR models based on pilot-scale experimental tests
focusing on dry AD and applying a PFR as reactor design. As a consequence, the discus-
sion also comprises of studies which use data collected from the literature. For instance,
Niquini et al. [30] and Xu et al. [29] developed several MLR models to predict methane
yield from lignocellulosic biomasses based on data collected from literature studies. Lignin
plays a critical role in the conversion of organic lignocellulosic substrates to biogas. It is
a complex aromatic molecule providing strength and structure to plant cell walls [9]; it is
amorphous, and it solubilizes in water when high temperature or acid/alkaline conditions
are applied [18]. Two main mechanisms, which are still under debate, seem to affect lignin
biodegradation: it acts as a physical barrier to enzyme hydrolysis, and by non-productive
binding of enzymes [9]. From a kinetic point of view, these mechanisms decrease the
hydrolysation rate of microbial enzymes, reducing methane yield [48]. A recent study
reports that lignin may be a sole explanatory variable in a simple linear regression model
to describe the methane potential of vegetable crops residues [45].

Niquini et al. [30] achieved the best predictive quality with a fourth order MLR
model that included seven predictors: feedstock-to-effluent ratio, TVSin, lignin, cellulose,
hemicellulose, ammonia nitrogen, and extractives. However, in this study we achieved
satisfactory results also with a one-order MLR model that included only four predictors
(e.g, MLR2). Nevertheless, the investigations of non-linear relationships among variables
could be considered as future development of this study. Indeed, Xu et al. [29] found the
lowest SEP equal to 21.39 NLCH4/kg TVS, and the highest R2 equal to 0.937, describing the
data using a third order MLR model and including four explanatory variables: cellulose,
extractives content, lignin, and feedstock-to-effluent ratio. Furthermore, both studies
highlighted that the more data were available, the more reliable the models became. In
addition, using data collected from the literature may contribute to prediction errors. This
issue was recently highlighted by Raposo et al. [28], which pointed out that analytical
determinations may not be reliable because information on the measurements could not be
accurate or also may not be provided.

The results achieved in these studies suggest that MLR models may be useful tools
to predict methane production, reducing time and costs required by experimental set-up.
However, it is fundamental to base the model on many reliable data.

4.3. Practical Application of the MLR Model

In a full-scale facility, the MLR models may have a two-fold application: to predict
methane yield starting from feedstock characteristics, and to manage the AD process
aiming at maximizing methane yield. Among the developed MLRs, MLR2 showed the
best compromise in terms of number of explanatory variables (e.g., TVSin, OLR, C/N, and
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lignin), fitting and predictive ability. For this reason, the following discussion will focus on
this model.

Regarding the first application purpose of MLR2, the waste management company
starts by assessing the production and analyzing the composition of the OFMSW in the
collection district. Consequently, the daily input flow of OFMSW to the AD section can
be calculated by knowing the efficiency of pre-treatments to remove impurities and non-
compostable materials. At this point, a representative sample of OFMSW is characterized
in terms of TVSin, C, N and lignin content, which can be determined on the basis of
analytical measurements using standardized and repeatable methodologies. Based on
the working volume of the reactor, the HRT of the AD process and the associated OLR
is calculated. Finally, the MLR2 can be applied to predict the SMP in such operating
conditions. Conversely, the model can be used to identify what OLR is needed to maximize
SMP, or even to estimate the SMP if co-digestion with other substrates is considered to
address nutrient imbalances of the feedstock.

Furthermore, the MLR model can be used to perform preliminary energetic and
economic evaluations. For example, a previous characterization of the OFMSW in the
collection district resulted in a TVSin equal to 87.2%, a lignin content equal to 30.58%, and
a C/N ratio equal to 23.12 [5]. By supposing to apply an OLR equal to 7.5 gTVS/(L d),
the MLR2 predicts a SMP equal to 104.2 NlCH4/kg TVS. Therefore, the potential energy
production may be estimated as 224.43 kWh/tOFMSW by applying the equation proposed
by Cesaro and Belgiorno [49], in which the volumetric methane production is multiplied
by CH4 energetic potential (i.e., 6.5 kW h/m3), and an electrical energy conversion factor
(i.e., 0.38). Finally, the produced electrical energy may be used for self-consumption, saving
35.9 €/tOFMSW when the average electrical energy price for non-household consumers in
the first-half of 2021 was 0.16 €/KWh [50].

5. Conclusions

During the experimental tests, the process attained the highest average SMP equal to
229.5 ± 25.4 NLCH4/kg TVS, operating with an OLR = 14 gTVS/(L d) and HRT = 14 days.
The statistical analysis revealed that lignin content has a strong linear correlation with the
SMP. However, a simple linear model based on lignin was not able to properly describe the
data. Instead, a multiple linear regression model, including TVSin, OLR, C/N, and lignin as
predictors, showed a good fitting of the experimental data (R2 = 0.87, SEP = 18.53 NLCH4/kg
TVS), but it presented some perturbations (R2 = 0.78, SEP = 40.99 NLCH4/kg TVS) in the
validation step. Nevertheless, it was a good compromise in terms of fitting ability, predictive
ability, and number of predictors to be included in the model.
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Abbreviation

AD Anaerobic digestion
BMP Biochemical methane potential
C/N Carbon to Nitrogen
EU European Union
GPR Gas Production Rate
GW Garden Waste
HRT Hydraulic Retention Time
MLR Multiple Linear Regression
MSW Municipal Solid Waste
N-NH+

4 Ammonia–nitrogen
OFMSW Organic Fraction of Municipal Solid Waste
PCA Principal Component Analysis
PFR Plug–flow reactor
Qr Volumetric flow of inlet OFMSW
Qr Volumetric flow of recirculated digestate
R2 Determination coefficient
Radj2 Adjusted coefficient of determination
RETVS Volatile solids reduction efficiency
SEP Standard Error of Prediction
SGP Specific Biogas production
SLR Simple Linear Regression
SMP Specific Methane Production
SS Sewage Sludge
TKN Total Kjeldahl Nitrogen
TS Total Solid
TVS Total Volatile Solid
VFAs Volatile Fatty Acids
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