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Abstract

We analyze a class of modal logics rendered insensitive to reflexivity by
way of a modification to the semantic definition of the modal operator. We
explore the extent to which these logics can be characterized, and prove
a general completeness theorem on the basis of a translation between nor-
mal modal logics and their reflexive-insensitive counterparts. Lastly, we
provide a sufficient semantic condition describing when a similarly general
soundness result is also available.

1 Introduction

This paper deals with modal logics that are rendered insensitive to the presence
of reflexivity in the accessibility relation by way of a suitable modification of the
standard semantics. Logics of this kind have already been introduced, indepen-
dently, by [4] and [6], with the intention of providing formal analyses of certain
metaphysical and epistemological notions, respectively.1

Our intension here is not to provide a critique or endorsement of these inter-
pretations, but rather to give a formal study to these logics (which we will call
reflexive-insensitive), from the perspective of modal logic. [4] provided a sound
and complete axiomatization of the minimal reflexive-insensitive logic. This re-
sult was extended by [5], accounting for the reflexive-insensitive analogs of T,
S4 and S4.3. However, both papers lacked a comprehensive treatment of the
new semantics, as well as the corresponding modal operator, symbolized by ◦.

In this paper we propose a general account of the relationship between normal
modal logics and reflexive-insensitive modal logics. We will provide a method

1In [4], the focus is on logics of essence and accident. In [6], the analysis is aimed at
elucidating the logic of unknown truths.
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to associate a normal modal logic L with its reflexive-insensitive counterpart,
which we will call L◦.

Our contribution to this subject, therefore, consists in both a conceptual
clarification of the notions involved, and in proving general results that describe
the conditions under which characterization results for a logic L◦ follow from the
corresponding results for L. In particular, we will prove a general completeness
theorem for any logic L◦, provided that the corresponding normal logic L is
canonical and complete with respect to a class of frames CL containing the
canonical frame.

Moreover, although a fully general soundness result is not as forthcoming, we
will demonstrate that there is a semantic condition, what we will call robustness
under reflexivity, that is able to act as a sufficient condition for the logic L◦ to
be sound with respect to the class of all L-frames.

The paper is organized as follows. Section 2 introduces the ◦-operator and
the corresponding semantics, outlining the phenomenon of insensitivity to reflex-
ivity that can be formally described by way of mirror reduction (following the
terminology of [4]). We then explain how this property is in fact responsible for
almost all of the results contained in [4] and [5]. In Section 3 we briefly present
the minimal reflexive-insensitive modal logic, following the presentation of [5].
In Section 4 the ◦-translation is defined, and a general completeness theorem for
◦-translations of normal modal logics is proved using a clever model-theoretic
technique from [3]. In Section 5 we define the semantic notion of robustness un-
der reflexivity, and we provide soundness results encompassing the ◦-translations
of many well-known normal modal logics. In Section 6, we will address explicitly
the project of axiomatizing logics in the language of ◦. Finally, in Section 7,
we will propose some concluding considerations summarizing the results of this
paper in a more abstract setting. We also set the stage for some future work.

2 Language and Semantics

In this paper we will be working with two languages: the usual language of modal
logic, which we will call L�, and the language of the reflexive-insensitive logics,
which we call L◦. Letting V ar be a countable set of propositional variables
(we can assume the same set of propositional variables for both languages), the
formulas of L�, FormL� , are defined as usual (for p ∈ V ar):

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | �ϕ

and the well-formed formulas of L◦, FormL◦, are defined recursively as:
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ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ◦ϕ

One can define ⊤, ⊥, ∨, →, ↔, and ♦ (in L�) as usual. In the language L◦, we
also define the operator • so that •ϕ stands for ¬ ◦ ϕ.

2.1 Semantics

Structurally, the relational semantics we will use for the logics in both languages
are the same, but the clauses in the definition of truth will differ.

Definition 2.1 (Frame and Model). A frame F is an ordered pair 〈W,R〉, where
W is a non-empty set of states and R ⊆ W ×W . A model M = 〈F, V 〉 is a
frame along with a valuation function V : V ar → P(W ).

Intuitively, V assigns, to each variable p, the set of states at which p will
be considered true. The truth of a formula of L�, with respect to a model and
state, is defined as normal.

M,w |= p iff w ∈ V (p)
M,w |= ¬ϕ iff M,w 6|= ϕ

M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ

M,w |= �ϕ iff M,x |= ϕ for all x s.t. wRx

For the L◦ formulas, the propositional formulas are treated identically, and
the interpretation of ◦ is given by:

M,w |= ◦ϕ iff either M,w 6|= ϕ or, for all x ∈W , if wRx then M,x |= ϕ

Thus, for •, we have:

M,w |= •ϕ iff M,w |= ϕ and there exists an x ∈W s.t. wRx and M,x 6|= ϕ

A formula is said to be true in a model M when it is true at every state in
M . A formula is said to be valid with respect to a frame F when it is true in
every model based on F , and a formula is valid with respect to a class of frames
when it is valid on each frame in the class.

One can view these clauses as providing a unified definition of the truth of a
formula, regardless of the language used. That is, when evaluating L◦-formulas,
one will utilize the semantic condition for ◦, but not the one for �, though one
could, if one wished, consider that clause present. However, despite this, we
think it is convenient to use the following notational convention: M,x |=ri α

indicates that we are evaluating α in the context of the clauses appropriate for
L◦, or, equivalently, that α is a formula in the language L◦. However, when
clear from the context, we will not stress the semantic context.

It is also worth pointing out that while ◦ϕ can be defined within the context
of normal modal logic as ϕ → �ϕ, it is not the case that �ϕ can always be
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defined within L◦ [4]. In extensions of T, however, it can be regarded as an
abbreviation of ϕ ∧ ◦ϕ.2

2.2 Mirror Reduction

Consider the following definition, from [4, p. 50].

Definition 2.2 (Mirror Reduction). Let F = 〈W,R〉 and Fm = 〈W,Rm〉 be
frames such that Rm ⊆ R and R \Rm ⊆ {〈x, x〉 : x ∈ W}. Then Fm is said to
be a mirror-reduction of F . Two frames are said to be mirror-related, F1 ∼m F2,
when they are mirror reductions of a common frame.

More casually stated, Fm is just the result of removing some reflexive arrows
from F . Though this is a straightforward concept, its utilization sheds some
immediate light on the behaviour of formulas (and, hence, logics) in the language
L◦ with respect to the semantics outlined above. Immediately, for example, one
can obtain the following lemma.

Lemma 2.3 ([4], Lemma 4.2). Let Fm be a mirror reduction of F . Then for
any models M and Mm, based on F and Fm, respectively, and any x ∈W ,

M,x |=ri α iff Mm, x |=ri α

for all L◦-formulas α.

Proof. This is proved by way of a straightforward induction on the complexity
of formulas. We include only the case for ◦.

Assuming M,x |=ri ◦ϕ, we have that either M,x 6|=ri ϕ or, for all y ∈ W , if
xRy then M,y |=ri ϕ. In the first case, from the induction hypothesis, we have
that Mm, w 6|=ri ϕ, and so Mm, x |=ri ◦ϕ.

So assume that for all y ∈W , if xRy then M,y |=ri ϕ. Then, since R
m ⊆ R,

we have if xRmy then M,y |=ri ϕ, and from the induction hypothesis we obtain
xRmy implies Mm, y |=ri ϕ, as desired.

In the other direction, consider Mm, x |=ri ◦ϕ. Again, if Mm, x 6|=ri ϕ then
we are finished. So assume that Mm, x |=ri ϕ and that for all y ∈ W , if xRmy

then Mm, y |=ri ϕ. From the induction hypothesis we have that if xRmy then
M,y |=ri ϕ. But now, since we have thatM

m, x |=ri ϕ, we also haveM,x |=ri ϕ,
and so if xRy then M,y |=ri ϕ, as desired.

2Below, we will exploit this understanding of �ϕ when defining a translation between the
languages L

� and L
◦. And while it is not always a genuine definition, it can be assumed,

harmlessly, in a wide variety of cases, which will be detailed.
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Perhaps the most interesting, and applicable, aspect of this theorem is the
following corollary:

Corollary 2.4 ([4], Lemma 4.2). If F1 ∼m F2 then, for all L◦-formulas α,

F1 |=ri α iff F2 |=ri α.

In [4], a sound and complete axiomatization was presented for the simplest
logic that is insensitive to reflexivity. That is, an axiom system in the language
of L◦ was demonstrated to be sound and complete with respect to the class of all
frames. Extensions of this logic, however, were not fully explored. For example,
in [4] the following open problem was posed: Provide a natural axiomatization
for the set of L◦-formulas that are valid on the class of reflexive frames [4, p. 48].
[5] solved this open problem by proving:

Theorem 2.5 ([5], Proposition 3.5). Let KX be any normal modal logic between
K and KT: K ⊆ KX ⊆ KT. Then the following are equivalent, for α a formula
of L◦:

1. α is valid over the class of all frames;

2. α is valid over the class of all frames for KX;

3. α is valid over the class of all reflexive frames.

The proof provided by [5], however, was based on the canonical construction
(which differed from the one offered by [4]) of the basic logic. The point we
would like to make here is that, in fact, this result (and others similar to it) is
a direct corollary of the mirror-reduction results given above, as the following
proof demonstrates.

Proof. Clearly, validity for the class of all frames implies validity for the class of
KX frames. Similarly for the move from KX to KT frames. Thus, just assume
that a formula α is valid in all reflexive frames. We have to show that it is valid
in all frames whatsoever. Assume this not to be the case. That is, assume that
there is a frame on which one can invalidate α. In this case, such a frame is a
mirror-reduction of a fully reflexive frame, and so we would have that the fully
reflexive frame also invalidates α, and this is obviously a contradiction.

Therefore, by providing an axiomatization for the basic logic, [4] also pro-
vided an axiomatization for the logic of all reflexive frames, and all intermediate
logics, thereby answering his own question.

Obviously, such a result can be generalized to some extent.
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Proposition 2.6. Let L ⊆ LX ⊆ LT be normal modal logics and CL, CLX,
and CLT be the classes of L, LX, and LT frames, respectively. Then, if it is the
case that the addition of all possible reflexive arrows to a frame in CL results in
a frame in CLT, then, for any α ∈ L◦, α is valid in CL iff it is valid in CLX iff
it is valid in CLT.

As in the specific case of K and T, the reason is simply mirror-reduction.
To provide another illustration of this observation, one can consider the

logics K4 ⊆ K4X ⊆ K4T = S4. Recall that the class of K4 frames are
the transitive frames and the S4 frames are transitive and reflexive. Then,
because the addition of all reflexive arrows preserves transitivity, we immediately
obtain the result that if one can axiomatize the reflexive-insensitive logic (in L◦)
corresponding to the transitive frames, then one also has axiomatized the logic
for transitive reflexive frames, and all intermediate logics as well. This result
is also contained in [5], where, once again, a canonical model construction is
used in the proof once an adequate axiomatization has been provided for K4

(by means of the axiom (◦ϕ ∧ ϕ) → ◦(◦ϕ ∧ ϕ)).
On the contrary, if one cannot add reflexive arrows to a frame while pre-

serving the relevant structural properties, then this result clearly does not hold.
For example, we can consider the logics situated between K5 and S5.3 K5 is
characterized by the class of euclidean frames (if xRy and xRz then yRz) and
S5 by the class of frames in which R is an equivalence relation. However, when
one adds reflexive arrows to a euclidean frame one need not obtain an S5 frame,
because this might require the extra step of taking the closure (of R) under the
euclidean condition. Thus, the jobs of axiomatizing these classes of frames, in
the reflexive-insensitive setting, are separate.

The following definition will be useful when proving soundness and com-
pleteness for systems, as we will below. It is simply an attempt to formalize the
effect of mirror-reduction on soundness and completeness results.

Definition 2.7. Let C be a class of frames, and let L be a logic in the language
L◦. Then we say that L is m-characterized by C if L is sound and complete with
respect to C

m = {F : ∃F ′ ∈ C(F ∼m F ′)}.4

3 The Minimal Logic

For the remainder of this paper we will be concerned with logics in the language
L◦ and their relationships with logics in L�. In order to properly define the

3
K5 is the logic obtained by adding the axiom ♦ϕ → �♦ϕ to K.

4Notice that the notion of m-characterization is weaker than the standard one, and it is
also different from the notion of LEA-characterizability as defined in [4].
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logics in L◦ with which we are concerned, we will make use of the following
axiom schemata (found in [5]):

b0 ◦⊤
b1 •ϕ→ ϕ

b2 (◦ϕ ∧ ◦ψ) → ◦(ϕ ∧ ψ)
as well as the rule

bN from ⊢ ϕ→ ψ one can obtain ⊢ (◦ϕ ∧ ϕ) → (◦ψ ∧ ψ).

Definition 3.1 (RI-Logics). An RI-logic is a set of L◦ formulas that con-
tains all substitution instances of propositional tautologies, all instances of the
schemata b0, b1, and b2, and is closed under the rules Modus Ponens, bN , and
Uniform Substitution.

For now, following [5], we can call the smallest RI-Logic BK.

Proposition 3.2. The following are theorems of BK:

1. ((◦ϕ ∧ ϕ) ∨ (◦ψ ∧ ψ)) → ◦(ϕ ∨ ψ)

2. ϕ ∨ ◦ϕ

3. ϕ→ (◦(ϕ→ ψ) → (◦ϕ→ ◦ψ))

In addition, the following rules are derivable:

1. from ⊢ ϕ↔ ψ one can obtain ⊢ ◦ϕ↔ ◦ψ

2. from ⊢ ϕ one can obtain ⊢ ◦ϕ

Proof. We will give a proof of the two rules. Though this result was referred to
in [5], an explicit derivation was not provided.

For the first rule, assume that ⊢ ϕ ↔ ψ. We will just prove one direction.
The other direction is obtained in exactly the same manner.

1. ⊢ (◦ϕ ∧ ϕ) ↔ (◦ψ ∧ ψ) from the rule bN
2. ⊢ (◦ϕ ∧ ϕ) → ◦ψ from line 1
3. ⊢ (◦ϕ ∧ ¬ϕ) → ¬ψ since ⊢ ϕ↔ ψ

4. ⊢ ¬ψ → ◦ψ because ⊢ ψ ∨ ◦ψ
5. ⊢ (◦ϕ ∧ ¬ϕ) → ◦ψ lines 3 and 4
6. ⊢ ((◦ϕ ∧ ϕ) ∨ (◦ϕ ∧ ¬ϕ)) → ◦ψ lines 2 and 5
7. ⊢ (◦ϕ ∧ (ϕ ∨ ¬ϕ)) → ◦ψ line 6
8. ⊢ ◦ϕ→ ◦ψ

The second rule is just a consequence of the first. If ⊢ ϕ then ⊢ ϕ↔ ⊤, and
so, from the first rule, ⊢ ◦ϕ↔ ◦⊤. Because ⊢ ◦⊤, we have ⊢ ◦ϕ, as desired.
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Theorem 3.3. BK is sound with respect to the class of all frames.

A proof of this result can be found in both [4] and [5].

4 Completeness

We can prove an immediate completeness result for BK by way of a standard
canonical model construction. The basic construction is the same as the one in
[5]. (In light of Theorem 2.5, we will then have that the logic BK is sound and
complete with respect to CT, and, in fact, Cm

K
.) In addition, we will show that

this result generalizes to cover a much wider range of modal logics.
The canonical model MBK

= 〈WBK
, RBK

, VBK
〉 is defined as follows:

WBK
:= the set of all maximal BK-consistent sets of formulas;

RBK
:= {〈x, y〉 ∈ WBK

×WBK
: λ(x) ⊆ y}, for λ(x) := {ϕ ∈ FormL◦ :

(ϕ ∧ ◦ϕ) ∈ x};

VBK
(p) = {x ∈WBK

| p ∈ x}.

As a matter of convenience, for the remainder of this section we will omit
subscripts.

Remark 4.1. Note, at the outset, that by definition our canonical model is going
to be reflexive. That is, it will always be the case that λ(x) ⊆ x, since if ϕ ∈ λ(x),
then it must be that ϕ, ◦ϕ ∈ x.

Proposition 4.2. The relevant version of the Lindenbaum lemma holds. That
is, any BK-consistent set of formulas can be extended to a maximal set.

Lemma 4.3 ([5], Propositions 3.1, 3.2 and 3.3). The following properties hold
of λ(x).

1. λ(x) 6= ∅

2. if ϕ,ψ ∈ λ(x) then ϕ ∧ ψ ∈ λ(x)

3. if ϕ ∈ λ(x) and BK ⊢ ϕ→ ψ, then ψ ∈ λ(x)

We can then obtain the usual truth lemma.

Lemma 4.4 (Truth Lemma). For any L◦-formula α, and any maximal set w,

MBK
, w |=ri α iff α ∈ w.

Again, the proof is in [5].

Theorem 4.5. The logic BK is strongly complete with respect to the class of
all frames.
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4.1 Generalized Completeness

We can generalize the above completeness result significantly. In particular, will
show that completeness results for normal modal logics can, under quite general
circumstances, be imported into the setting of RI-logics. We require, however,
a translation between the formulas of these languages.

Definition 4.6. Define the following translation from formulas of L� to formu-
las of L◦.

p◦ = p

(¬ϕ)◦ = ¬(ϕ◦)
(ϕ ∧ ψ)◦ = ϕ◦ ∧ ψ◦

(�ϕ)◦ = ◦(ϕ◦) ∧ ϕ◦

In addition, for a normal modal logic L, define L◦ to be the smallest RI-logic
containing ϕ◦ for every ϕ ∈ L.

Theorem 4.7. K◦ = BK. That is, K◦ is the smallest RI-logic.

Proof. Clearly, BK ⊆ K◦.
In the other direction, we will show that if α is a theorem of K, then α◦ is a

theorem of BK, and so K◦ ⊆ BK. We can achieve this by way of an induction
on proofs.

First, if α is an instance of the K schema, then it is of the form �(ϕ→ ψ) →
(�ϕ→ �ψ). In this case, α◦ is

(◦(ϕ◦ → ψ◦) ∧ (ϕ◦ → ψ◦)) → ((◦ϕ◦ ∧ ϕ◦) → (◦ψ◦ ∧ ψ◦)).

Assume that this formula is not valid. In this case, there would be a model
M and world w, at which

M,w |=ri ◦(ϕ
◦ → ψ◦) ∧ (ϕ◦ → ψ◦)

but at which

M,w 6|=ri (◦ϕ
◦ ∧ ϕ◦) → (◦ψ◦ ∧ ψ◦).

It must then be the case that

M,w |=ri ◦ϕ
◦ ∧ ϕ◦

while

M,w 6|=ri ◦ψ
◦ ∧ ψ◦.
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Note that it is impossible forM,w 6|=ri ψ
◦, because we have thatM,w |=ri ϕ

◦

and also M,w |=ri ϕ
◦ → ψ◦.

Therefore, it must then be the case that

M,w 6|=ri ◦ψ
◦.

From the semantic clause governing ◦, this entails thatM,w |=ri ψ
◦ but that

there exists some y s.t. wRy and M,y 6|=ri ψ
◦.

However, in light of the fact that M,w |=ri ◦ϕ
◦ ∧ ϕ◦, ϕ◦ must hold at y.

That is,

M,y |=ri ϕ
◦.

Also, because M,w |=ri ◦(ϕ
◦ → ψ◦) ∧ (ϕ◦ → ψ◦), we also have that

M,y |=ri ϕ
◦ → ψ◦.

This gives M,y |=ri ψ
◦, a contradiction. Therefore, all translation instances

of the K schema are valid. From the completeness result of BK above, they
must also be theorems of BK.

Lastly, α might be the result of applying a rule of inference to some formulas
(the translations of which are already in BK). The cases for Modus Ponens and
Uniform Substitution are immediate, from the definition of the ◦ translation.

In case α is the result of applying necessitation to some β, then α is of the
form �β. But (�β)◦ is just ◦β◦ ∧ β◦. From our assumption we already know
that β◦ ∈ BK, and so ◦β◦ is also in BK, from proposition 3.2. Therefore, so is
◦β◦ ∧ β◦.

This completes the proof that K◦ ⊆ BK. Therefore, K◦ = BK.

In light of this result, we will henceforth refer to the minimal RI-logic as
K◦. Additionally, notice that (�ϕ→ ϕ)◦ = (◦(ϕ◦)∧ϕ◦) → ϕ◦ is a tautology in
K◦, and so T◦ = K◦. In light of Theorem 2.5, this should not be surprising.

By utilizing this translation, we can obtain completeness results for a wide
variety of RI-logics.

In order to do so, recall the following, standard, definitions and results (see
[1] for all details).

Definition 4.8 (Bounded Morphism). Let F1 = 〈W1, R1〉 and F2 = 〈W2, R2〉
be frames. Then f : W1 → W2 is a bounded morphism from F1 to F2 when the
following two conditions are met:
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(forth) xR1y implies f(x)R2f(y);

(back) if f(x)R2z, then there is a w s.t. xR1w and f(w) = z.

When there is a surjective bounded morphism from F1 onto F2, written F1 ։

F2, F2 is said to be a bounded morphic image of F1.

Definition 4.9 (Generated Subframe). Let F1 = 〈W1, R1〉 and F2 = 〈W2, R2〉
be frames. F2 is a generated subframe of F1, written F2 ֌ F1, when F2 is a
subframe of F1 and the following condition holds:

if x ∈W2 and xR1y, then y ∈W2.

Theorem 4.10. Let F1 and F2 be frames and α a modal formula.

If F1 ֌ F2, then F2 |= α implies F1 |= α;

If F1 ։ F2, then F1 |= α implies F2 |= α.

Definition 4.11 (Canonical Logic). A normal modal logic L is said to be canon-
ical when the frame of its canonical model is an L-frame. (That is, when all
L-theorems are valid on the canonical frame.)

Our goal is to prove the following.

Theorem 4.12. Let L be a normal modal logic that is canonical. Furthermore,
let its canonical frame be contained in the class CL. Then L◦ is also complete
with respect to CL.

We will proceed by constructing an isomorphism between the canonical
model for L◦ and a generated subframe of the canonical model for L. Specifi-
cally, we will construct an injective bounded morphism from the canonical model
of L◦ to that of L. This is a proof strategy taken from [3]. We only modify their
technique slightly, to accommodate for the ◦-operator in our logics.

Consider a mapping from V ar onto FormL◦:

V ar → FormL◦

p 7→ p∗

This map exists since our sets of formulas are countable. Now extend it
recursively to a map:

Form
L� → FormL◦

α 7→ α∗

11



where α∗ is defined similarly to Definition 4.6:
(¬ϕ)∗ = ¬(ϕ∗)

(ϕ ∧ ψ)∗ = ϕ∗ ∧ ψ∗

(�ϕ)∗ = ◦(ϕ∗) ∧ ϕ∗

Except for the last clause, the above map consists in a uniform substitution
of p∗ for p in α. We call the above function the ∗-map.

Because of how L◦ is defined, the ∗-map preserves theoremhood. That is, if
β is a theorem of L, then β∗ is a theorem of L◦.

Let FL◦ = 〈WL◦ , RL◦〉 be the canonical frame for L◦, as we constructed it
before, and let FL = 〈WL, RL〉 be the canonical frame for L as it is usually
defined.

(As a remark, we notice that if the set of axioms of L◦ gives rise to an
inconsistent system, then the corresponding logic is indeed complete with respect
to any class of frames, since everything is provable. Hence, from now on, we will
just assume that L◦ is a consistent axiomatic system, and thus the set WL◦ is
non-empty.)

We can then define the following function:

f : WL◦ → WL

a 7→ {α : α∗ ∈ a} = f(a)

for any maximal consistent a ∈ WL◦ . In order to show that the above is a
meaningful definition, we have to verify that f(a) is indeed an element of WL.

Proposition 4.13. The set f(a) is maximal and L-consistent.

Proof. For what concerns consistency, assume not. Then there are formulas
α1, . . . , αn ∈ f(a) such that

L ⊢ (α1 ∧ . . . ∧ αn) → ⊥.

As a consequence of ∗ preserving theoremhood we can infer that

L◦ ⊢ (α∗
1 ∧ . . . ∧ α

∗
n) → ⊥

with α∗
1
, . . . , α∗

n ∈ a. This contradicts the consistency of a ∈WL◦ .
For maximality, again assume not. Then there is a formula α ∈ FormL�

such that neither α nor ¬α is in f(a). As a consequence, according to the
definition of f(a), neither α∗ nor ¬α∗ is in a. This contradicts the maximality
of a ∈WL◦ .

Therefore, the definition of f makes sense. We now show that f is actually
an injective bounded morphism. We proceed by means of the following claims.
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Proposition 4.14. The function f is injective.

Proof. Assume a 6= b. We must show f(a) 6= f(b). Without loss of generality,
we may assume that there is a formula θ ∈ a \ b. Since θ belongs to FormL◦,
it is equal to some p∗, for p ∈ V ar. Therefore, by maximality of b, we have
that ¬θ ∈ b. Now, since θ = p∗ we also have that ¬θ = ¬(p∗) = (¬p)∗. As a
consequence, p ∈ f(a) and ¬p ∈ f(b), thus showing that f(a) 6= f(b).

Proposition 4.15. If aRL◦b then f(a)RLf(b).

Proof. The claim consists in showing that �−
(

f(a)
)

⊆ f(b). To this aim, assume
α ∈ �−

(

f(a)
)

, and so �α ∈ f(a). Then, by definition of f(a), (�α)∗ ∈ a. By
definition of the ∗-translation, we conclude that ◦(α∗) ∧ α∗ ∈ a. This means, in
particular, that α∗ ∈ λ(a), and so α∗ ∈ b, by our hypothesis. Hence, α ∈ f(b),
by definition of f(b).

Proposition 4.16. If f(a)RLc ,then there is a b ∈ WL◦ such that aRL◦b and
f(b) = c.

Proof. Define the following set:

b0 = {α∗ : α∗ ∧ ◦(α∗) ∈ a} ∪ {β∗ : β ∈ c}.

We claim that b0 is consistent. Assume not, and let α∗, β∗ ∈ FormL◦ ∩ b0 such
that

L◦ ⊢ α∗ ∧ β∗ → ⊥.

Hence, we have the following deductions.

1. L◦ ⊢ α∗ → ¬β∗

2. L◦ ⊢ α∗ →
(

◦ (α∗ → ¬β∗) → (◦α∗ → ◦¬β∗)
)

3. L◦ ⊢ ◦(α∗ → ¬β∗)

where (2) is an instance of a theorem of L◦, as pointed out in Fact 3.2. Moreover,
since α∗ ∈ a we can show that ◦¬β∗ ∈ a. As a consequence, ¬β∗ ∧ ◦¬β∗ ∈ a.
Thus

(

�(¬β)
)∗

∈ a, and so �¬β ∈ f(a). By our hypothesis we then have that
¬β ∈ c, thus contradicting the consistency of c.

Now extend b0 to a maximal set and name it b. We have to show that
λ(a) ⊆ b and that f(b) = c.

So assume α ∈ λ(a). Since α is a formula in L◦, we know that there is
a p ∈ V ar such that p∗ = α. Hence p∗ ∧ ◦(p∗) ∈ a and so, by construction,
p∗ ∈ b0 ⊆ b. Thus α ∈ b.
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In order to show that f(b) = c it is sufficient to notice that, by construction,
c ⊆ f(b). And so the equality holds by the maximality of c.

At this stage, we have shown that f is indeed an injective bounded morphism
from the canonical frame of L◦ to that of L. Furthermore, the image of f is
a generated subframe of the canonical frame of L, and is isomorphic to the
canonical frame of L◦.5 Symbolically, we have

FL◦
∼= Fsub ֌ FL

(where Fsub is the subframe of FL). Therefore, FL◦ is actually an L-frame, from
Theorem 4.10.

Finally, assume that some formula α is not a theorem of L◦. Then, clearly,
it is not valid on the canonical frame FL◦ . In turn, we then know that there is a
generated subframe of FL, call it Fsub, on which α is not valid (since FL◦

∼= Fsub).
This then implies that α is not valid on FL (because Fsub ֌ FL and so FL |= α

implies Fsub |= α). Therefore, on the assumption that L is canonical, we have
that L◦ is complete with respect to classes of frames containing the canonical
frame of L, as desired.

This completes the proof of Theorem 4.12.

Corollary 4.17. Let L be a normal modal logic that is canonical. Furthermore,
let its canonical frame be contained in the class CL. Then L◦ is complete with
respect to C

m

L
.

5 Soundness

In this section we will give a sufficient semantic condition for a logic L◦ to be
sound with respect to CL. Though we do not obtain a single soundness theorem
that is as general as our completeness theorem, we do obtain a result that covers
a wide variety of normal modal logics and their ◦-translations. In conjunction
with Theorem 4.12, this then provides an m-characterization theorem for those
logics satisfying the condition.

Before starting, we need a lemma that connects the truth of L�-formulas
and L◦-formulas.

5Clearly, since we are considering the image of f , we obtain a bijection between the canonical
frame of L◦ and a subframe of the canonical frame for L. The fact that this bijection is in
fact an isomorphism follows from two applications of Theorem 4.10: in the one direction we
consider f , and in the other f−1, both of which are surjective bounded morphisms. Lastly, the
fact that the subframe is a generated subframe of FL is a consequence of the (back) condition
placed on f .
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Lemma 5.1. Let M = 〈F, V 〉 be a model based on F = 〈W,R〉 and let α be a
formula of the language L�. Then, for every x ∈W , the following holds:

M,x |=ri α
◦ ⇐⇒ M r, x |= α

where M r stands for the model 〈F r, V 〉, based on the frame F r = 〈W,Rr〉, given
by Rr = R ∪ {(x, x) : x ∈W}.

Proof. We prove the lemma by induction on the complexity of α. If α = p ∈ V ar,
then the result is immediate, since the valuations in the two models are identical.

If α = β∧γ, then an easy application of the inductive hypothesis shows that
the conclusion of the lemma holds.

If α = ¬β, then M r, x |= ¬β iff M r, x 6|= β iff M,x 6|=ri β
◦ iff M,x |=ri ¬β

◦.
Finally, if α = �β, then M r, x |= �β implies that for all y ∈ W s.t. xRry,

M r, y |= β. By the inductive hypothesis, this is equivalent to saying that for all
y ∈ W , xRry implies M,y |=ri β

◦. From this we obtain that for all y ∈ W s.t.
xRy, M,y |=ri β

◦ and that M,x |=ri β
◦. Thus, we have that M,x |=ri ◦β

◦ ∧ β◦,
and so M,x |=ri (�β)

◦.
In the other direction, if M,x |=ri (�β)

◦ then M,x |=ri ◦β
◦ ∧ β◦. We then

have that M,x |=ri β
◦ and so M r, x |= β. In addition, from M,x |=ri ◦β◦

we have that for all y s.t. xRy, M,y |=ri β
◦ (since the other possibility, that

M,x 6|=ri β
◦, has been ruled out). Then, from the induction hypothesis we get

that for all y s.t. xRy, M r, y |= β. But, since M,x |=ri β, we have that for all y
s.t. xRry, M r, y |= β, and so M r, y |= �β.

Definition 5.2. We will say that a class of frames C is robust with respect to
reflexivity when the following condition holds:

If F ∈ C, and F r is the result of adding all reflexive arrows to F , then F r ∈ C.

In other words, C is robust with respect to reflexivity when the reflexive
closure of each frame in C is also in C .

Notice that this is obviously not equivalent to saying that F and F r are
mirror related. First, F r is obtained, specifically, by adding arrows. In addition,
F r is completely reflexive.

Theorem 5.3. Let L be a normal modal logic that is sound with respect to a
class of frames CL that is robust with respect to reflexivity. Then L◦ is sound
with respect to CL. In fact, L◦ is sound with respect to C

m

L
.
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Proof. We will show that for every theorem ϕ of L, ϕ◦ is valid on CL. Since the
rules of K◦ preserve validity, this will imply that every theorem of L◦ is valid
on CL. Assume, for a contradiction, that this is not the case. Thus, there exists
a frame F ∈ CL, such that F 6|= ϕ◦.

Thus, there is a modelM , based on F , and a state x, such thatM,x 6|=ri ϕ
◦.

From lemma 5.1, we then have that M r, x 6|= ϕ. Therefore, F r 6|= ϕ. But if CL

is robust to reflexivity, it would have to be that F r ∈ CL, and so F r |= ϕ, a
contradiction.

Therefore, L◦ is sound with respect to CL, and also with respect to C
m

L
.

Though this result lacks the generality present in the completeness theorem,
there are still some immediate corollaries.

Corollary 5.4. Let L be any normal modal logic extending T, and let CL be
the class of all L-frames. Then L◦ is sound with respect to CL.

Proof. If L extends T, then any L frame is reflexive. Therefore, CL is obviously
robust with respect to reflexivity. Thus, L◦ is sound with respect to CL.

We can also apply this theorem in order to obtain more specific results. The
next corollary lists just some examples of this, and is in no way comprehensive.

Corollary 5.5. The following soundness results hold:

1. D◦ is sound with respect to the class of all serial frames;

2. K4◦ is sound with respect to the class of all transitive frames;

3. KB◦ (where KB = K+ (ϕ→ �♦ϕ)) is sound with respect to the class of
all symmetric frames;

4. KM◦ (where KM = K + (�♦ϕ → ♦�ϕ)) is sound with respect to the
class of all final frames.6

Proof. The classes of serial, transitive, symmetric, and final (every state is re-
lated to at least one state that is related only to itself) frames are all robust
with respect to reflexivity.

6However, note that in this case we do not have a completeness result because KM
◦ is not

canonical [2].
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Note, in addition, that soundness is going to be preserved when combining
these logics, as usual. That is, for example, we have that KB4◦ is sound with
respect to the class of transitive symmetric frames. Thus, while the soundness
result is less general than desired, in fact one can still use it to obtain soundness
results for a surprisingly wide range of normal modal logics.

However, we have already encountered one system that sits outside the scope
of the soundness theorem: K5◦. Recall that K5 is characterized by the class
of euclidean frames. However, euclidean frames are not robust to reflexivity.
To take a trivial example, one can consider the frame in which W = {x, y}
and R = {〈x, y〉, 〈y, y, 〉}. On this frame, the euclidean condition is vacuously
satisfied. However, when one adds all reflexive arrows, we obtain the frame with
the accessibility relation Rr = {〈x, y〉, 〈x, x〉, 〈y, y〉}. This is no longer euclidean,
as xRy and xRx ought to imply that yRx, but we lack this relationship. The
point, therefore, is that our soundness theorem does not, on the basis of a
soundness theorem for K5, provide us with a theorem for the translated logic
K5◦. And, in fact, it is straightforward to construct a euclidean frame that does
not validate 5◦, the translation of ♦ϕ→ �♦ϕ.

6 Axiomatizing RI-Logics

Our results so far place conditions on when L◦ will be sound and complete with
respect to the class of frames CL. So far, we have not explicitly mentioned the
issue of axiomatizing these logics, a topic that was very central to both [4] and
[5]. We can say something about this now.

As the following theorem demonstrates, in order to obtain an axiomatization
of L◦, one can simply take any adequate axiomatization of L, and add the
translations of these axioms to K◦. This is, more or less, a consequence of the
definition of L◦. Moreover, as in the case of normal modal logics, the choice of
axiomatization does not matter.

Theorem 6.1. Let L be a normal modal logic that is axiomatized by adding
some axiom A to K. Let K◦ + A◦ be the smallest RI-logic that contains all
instances of A◦. Then K◦ +A◦ = L◦.

Proof. Clearly, since A ∈ L, K◦ +A◦ ⊆ L◦, from the definition of L◦.
In the other direction assume that α ∈ L◦ but that α 6∈ K◦ +A◦.
There are two options regarding α: either it is the translation of some β that

is a theorem of L, or else it is a product of rule applications.
In the first case, since β ∈ L, and K + A is assumed to be an adequate

axiomatization of L, K ∪ {A} ⊢ β. However, this would then imply that K◦ ∪

17



{A◦} ⊢ β◦, since the application of rules in L is honored by the translation, as
was demonstrated as part of the proof of Theorem 4.7. This would then be a
contradiction, as α is β◦.

In the second case, α is the result of the application of rules to some finite
set of formulas B = {β1, . . . , βn}, where each βi (1 ≤ i ≤ n) is either an
instance of b0, b1, or b2, or the translation of some γ ∈ L. However, as we
have just demonstrated, it would have to be that for any such γ we have that
γ◦ ∈ K◦+A◦. Since all instances of b0, b1, and b2 are also obviously in K◦+A◦,
and L◦ and K◦ +A◦ are closed under the same rules, α must be in K◦ +A◦, as
desired.

An immediate corollary of this result is that if a logic L is axiomatized by
two different axiomatizations, then the translations of these axiomatizations, in
the above sense, both provide axiomatizations of L◦, as one would hope.

7 Concluding Remarks

We may describe the ◦-translation as a functor between N, the collection of all
normal modal logics, and N

◦, the collection of all non-normal modal logics in
the language L◦ that extend K◦.

F : N → N
◦

L 7→ L◦

As the results of the previous sections show, the behavior of F may be useful in
understanding the meta-theoretical properties of members of N◦.

We might then reformulate Theorem 2.5 by saying that F (T) = K◦ and
that the logic T◦ is m-characterized by CK. In the same way, Proposition 3.6
in [5] can be expressed saying that F (K4) = F (S4), and that the logic S4◦

is m-characterized by CK4. Moreover, notice that since S5 = K5 + T and T ◦

is a tautology, we have that F (K5) = F (S5). However, the logic S5◦ is not
m-characterized by CK5. As a consequence, our method is not able to give a
straightforward axiomatization of a logic in N

◦ able to be m-characterized by
CK5.

A possible development of this work—which may be of independent interest
in the study of normal modal logics—is the possibility of giving a syntactic
characterization of the semantic notion of robustness with respect to reflexivity.
Indeed we believe that, at more general level, the topics and the results of this
paper illustrate the potential usefulness of utilizing non-normal modal logics

18



in the pursuit of a better understanding of normal ones. We hope that the
content and the techniques of this paper will help foster the analysis of logics
with different modal operators that are able to give new insights into the meta-
theoretical study of normal modal logics.

In particular, one might undertake an extensive study of a ⋆-operator, whose
definition is complementary with respect to that of the ◦-operator:

M,w |= ⋆ϕ iff either M,w |= ϕ or, for all x ∈W , if wRx then M,x |= ϕ

A first step in the study of logics that may be called reflexive intolerant has
already been made in [7], in the context of epistemic logic.7 We intend to study
this further in future work.

References

[1] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge Uni-
versity Press, Cambridge, 2011.

[2] R. Goldblatt. The McKinsey Axiom is not Canonical. The Journal of Sym-
bolic Logic, 56(2): 554-562, 1991.

[3] R. Goldblatt and E. Mares. General Semantics for Quantified Modal Logic.
Advances in Modal Logic, 6: 227-246, 2006.

[4] J. Marcos. Logic of essence and accident. Bulletin of the Section of Logic
34(1): 43–56, 2005.

[5] C. Steinsvold. Completeness for various logics of essence and accident. Bul-
letin of the Section of Logic, 37(2):93–101, 2008

[6] C. Steinsvold. A note on logics of ignorance and borders. Notre Dame Jour-
nal of Formal Logic, 49(4):385–392, 2008

[7] C. Steinsvold. Being Wrong: Logics for False Belief. Notre Dame Journal
of Formal Logic, 52(3):245–253, 2011

7[7] performs a study of a slightly different operator, namely Wϕ = �ϕ ∧ ¬ϕ.

19


	1 Introduction
	2 Language and Semantics
	2.1 Semantics
	2.2 Mirror Reduction

	3 The Minimal Logic
	4 Completeness
	4.1 Generalized Completeness

	5 Soundness
	6 Axiomatizing RI-Logics
	7 Concluding Remarks

