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Abstract: Prostate cancer (PC) is polygenic disease involving many genes, and more importantly a
host of gene–gene interactions, including transcriptional factors. The WSB1 gene is a transcriptional
target of numerous oncoproteins, and its dysregulation can contribute to tumor progression by
abnormal activation of targeted oncogenes. Using data from the Cancer Genome Atlas, we tested
the possible involvement of WSB1 in PC progression. A multi-dimensional scaling (MDS) model
was applied to clarify the association of WSB1 expression with other key genes, such as c-myc, ERG,
Enhancer of Zeste 1 and 2 (EHZ1 and EZH2), WNT10a, and WNT 10b. An increased WSB1 expression
was associated with higher PC grades and with a worse prognosis. It was also positively related to
EZH1, EZH2, WNT10a, and WNT10b. Moreover, MDS showed the central role of WSB1 in influencing
the other target genes by its central location on the map. Our study is the first to show a link between
WSB1 expression and other genes involved in PC progression, suggesting a novel role for WSB1
in PC progression. This network between WSB1 and EZH2 through WNT/β-catenin may have an
important role in PC progression, as suggested by the association between high WSB1 expression
and unfavorable prognosis in our analysis.
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1. Introduction

Prostate cancer (PC) is the most common cancer in men in the western world and it is
estimated that over 350,000 men worldwide die of PC every year, with the second-highest
mortality among American men [1]. Although overall cancer mortality rates continue
to decline, this progress may be attenuated by rising incidence for breast, prostate, and
uterine corpus cancers, which also happen to have the largest racial disparities in mortality,
considering that black men benefit more from screening in general and from the integration
of personalized biomarkers because they are more likely to harbor genomically aggressive
cancer, even with clinically low-risk disease [1]. Indeed, it was recently reported that,
after two decades of decline, PC incidence is now increasing by 3% annually [1]. It is
clear, therefore, that a great need remains to improve how PC is diagnosed and treated.
Sub-stratification of PC into genetic subtypes can represent the basis of a more rational
therapy for PC, especially considering that current clinical tools fail to reliably differentiate
aggressive tumors from non-aggressive ones in order to predict therapeutic response [2].

PC is a polygenic disease involving many genes, and more importantly a host of
gene–gene interactions [3]. Over two hundred susceptibility loci have been identified in
genome-wide association studies [4], explaining why PC has one of the highest heritability
scores of all cancers at 57% [5]. Nevertheless, polygenic risk scores have not been par-
ticularly effective in improving the ability to identify men with PC, providing accuracy
comparable with the serum prostate-specific antigen (PSA) test and family history [6].
Gleason grading, introduced in the late 1960s, represented for several decades one of the
most successful supports in clinical routine [7]. The most recent revision of the Gleason
grading system, according to The International Society of Urological Pathology (ISUP)
consensus recommendations and also adopted by the WHO classification of prostate [8–10],
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represented a significant improvement in managing prostate cancer patients. However,
alongside the only grade assessment, the evaluation of new prognostically robust factors
can provide a further refining in patients risk stratification [11]. For example, studies focus-
ing on specific target genes showed a slightly better predictive outcome because selecting
patients with a high grade of proliferation and DNA repair activity can improve an early
identification of an aggressive PC with potentials for metastatic development [12].

A class of target genes with the potential to increase the early cancer identification and
tumor development is constituted by those involved in DNA damage response by targeting
homeodomain-interacting protein kinase 2, such as WSB1 [13]. This protein (WSB1) is a
member of the WD-protein subfamily, which contains seven WD40 repeats and a SOCS
box in the C-terminus [14,15]. It is a direct transcriptional target of several other proteins
involved in cancer metastasis [16]. An integrative genomics approach identifies WSB1 as a
target gene of Hypoxia Inducible Factor-1 (HIF1) and c-myc [17,18] in the core response to
hypoxia. In these instances, WSB1 was found to be significantly upregulated under hypoxic
conditions in osteosarcoma cells [19]. Moreover, WSB1 expression has been associated with
tumor incidence and metastatic potential in pancreatic and hepatocellular cancer [13,20].
However, how WSB1 may contribute to tumor initiation and progression is unknown; Kim
et al. [21,22] showed that WSB1 promotes tumor metastasis by inducing VHL degradation
and acts as a tumor promoting factor by mediating ATM degradation and so overcoming
the main barrier of tumor formation. As far as we know, no data exist regarding the role of
WSB1 in PC.

Early detection of localized PC remains a key clinical challenge considering that
life expectancy of patients for men with localized prostate cancer is high, as 99% over
ten years, while late stages diseases, with the onset of distant metastases, have a very
short survival (only 30% at five years) [23,24]. Several multidisciplinary investigations
are ongoing in PC research, in order to increase the knowledge of the molecular basis of
this disease and of its progression, improving the identification of new prognostic factors.
The WSB1 gene is a transcriptional target of numerous onco-proteins and dysregulation of
transcriptional factors can in turn contribute to tumor progression by abnormal activation
of targeted oncogenes. Among the most promising, we assessed the role of c-myc, which is
expressed at every stage of cancer development and is one of the most common upregulated
genes in PC [25,26], and of the enhancer of Zeste (both EZH1 and EZH2), the catalytic
subunit of the Polycomb repressive complex 2 (PRC2), again a gene strongly upregulated
in PC [27,28], and also involved in the c-myc regulation [29,30]. Alternatively, WSB1 can
promote c-myc expression through the WNT/β-catenin pathway, comprising WNT ligands,
which are 350–400 amino acids long lipid-modified glycoproteins and CTNNB1 gene-
encoded multifunctional β-catenin proteins [31]. In canonical WNT/β-catenin signaling,
the activation of WNT leads to translocation of β-catenin into the nucleus, which in turn
acts as a co-activator of transcription factors [32]. Among the different physiological and
pathological functions performed by WNT/β-catenin signaling, its role in the induction
and progression of different types of cancers has been described [33]. WNT signaling
activation via CTNNB1 amplification are also frequent, occurring in approximately 10–30%
of advanced prostate cancer cases [34–36].

Fusion of androgen-regulated transmembrane protease serine 2 (TMPRSS2) and ETS
transcription factor, v-ets erythroblastosis virus E26 oncogene homolog (ERG) genes is a
common somatic alteration in PC, resulting in overexpression of ERG oncogene, a member
of the ETS transcription factor family [37,38]. However, the role of ERG-status molecular
subtyping in prognosis of prostate cancer is under debate. Several studies concluded high
ERG expression as a good prognostic marker [39–41], whereas other publications showed
an inverse association [42,43].

Based on the results in literature regarding other cancer types, we tested the possible
involvement of WSB1 in PC progression. Specifically, we investigated the association of
WSB1 expression with other above reported key target genes (c-myc, ERG, EHZ1, EZH2,
WNT10a, and WNT 10b) using data obtained from The Cancer Genome Atlas (TCGA,
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https://tcga-data.nci.nih.gov/tcga/ accessed on 2 May 2023). Moreover, we used multidi-
mensional scaling models (MDSs) in order to propose novel mechanisms of WSB1-mediated
PC progression. MDS is a graphical method by which a set of variables or items (genetic
associations in our sample) is represented by a set of points in two or higher dimensional
space. As the latter often resembles a geographical map, MDS results are often referred as a
‘map’. The distance between two points on the MDS map is defined by the ‘dissimilarity’
of the corresponding variables. Although there is a multitude of possible dissimilarity
measures that can be used in MDS, in our sample it was based on the Pearson correlation
coefficient. The higher the correlation between the expression of two genes, the closer to
each other should these items be represented on the MDS map. The aim of MDS was to
represent these dissimilarities as accurately as possible by Euclidean distances in a low
dimensional space, simultaneously for all the genes considered.

2. Materials and Methods
2.1. TCGA Database

We downloaded and processed the clinical data, such as age, radical prostatectomy
grading, disease-free interval (DFI), overall survival (OS), and IlluminaHiSeq gene expres-
sion profiles of 496 PC patients from the TCGA data portal. The International Society
of Urological Pathology (ISUP) consensus recommendations also adopted by the WHO
classification of prostate [8–10] was used to update the Gleason score (GS) of the original
TCGA data: Group 1 for GS ≤ 6; 2 for GS 7, 3 + 4; 3 for GS 7, 4 + 3; 4 for GS 8, and 5
for GS 9, 10. We decided to create two categories, including ISUP 1, 2, and 3 grades into
low, and 4 and 5 grades into high group, in order to minimize the probability for too much
variation. The age at the diagnosis was provided in years, whereas DFI and OS were
expressed in months.

2.2. Statistical Analysis

Pearson’s r was used to calculate the bivariate correlations among clinical output and
target gene expression, and to evaluate the correlation between WSB1 expression and the
other target genes. To test the differences in the average of gene expressions by GS, we
used t-tests. A stepwise regression analysis was run to identify the best predictors of WSB1
expression among the correlated genes. All analyses were considered significant at the
α-level = 0.05

Survival analyses were performed using the Kaplan–Meier method with the Wilcoxon
log-rank test for statistical significance. Kaplan–Meier is a non-parametric statistic used
to estimate the survival function from lifetime data. In medical research, it is often used
to measure the fraction of patients living for a certain amount of time after treatment. A
plot of the Kaplan–Meier estimator is a series of declining horizontal steps which, with a
large enough sample size, approaches the true survival function for that population. The
value of the survival function between successive distinct sampled observations (“clicks”)
is assumed to be constant. A typical application might involve grouping patients into cate-
gories, for instance, those with WBS1 low-activation and those with WBS1 high-activation.
In the graph, the difference in DFI and OS can be estimated. To generate a Kaplan–Meier
estimator, at least two pieces of data are required for each patient (or each subject): the sta-
tus at last observation (event occurrence or right-censored), and the time to event (or time
to censoring). If the survival functions between two or more groups are to be compared,
then a third piece of data is required: the group assignment of each subject.

Finally, to identify the independent association among gene expressions, a Multi-
Dimensional Scaling analysis was run. This technique is useful in mapping the similarities
among the various genes. Distances between variables were derived looking at partial
correlations (i.e., proximities) among variables, which were subsequently used to create
a matrix of distance can be displayed graphically. The closer two or more variables are
on the map, the more highly correlated they are, while the farther apart they are, the less
correlated they are. To test the reliability of the model, we check for both S-stress (how

https://tcga-data.nci.nih.gov/tcga/
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well the variables fit into the model) and the percentage of the original variance explained
(RSQ). Typically, S-stress of 0.1 or lower and RSQ of 0.8 or higher are considered acceptable.

All analyses were performed using SPSS 28.1 (IBM, Armonk, NY, USA).

3. Results
3.1. TCGA Database

The average age of the 496 PC ± patients was 61.03 ± 6.82 years (range 41–78 years).
The reported DFI was 32.18 ± 24.84 months (range 1–165), OS was 35.78 ± 25.86 months
(range 1–165). The age of diagnosis was negatively related to both DFI (r = −0.128; p = 0.004)
and OS (r = −0.113; p = 0.012), whereas OS was positively related to the DFI (r = 0.914;
p < 0.001).

Table 1 showed the distribution of the PC grading groups by ISUP consensus recom-
mendations. Tumors with high grade, corresponding to groups 4 and 5, showed a higher
probability to have a shorter DFI, with a significant p-value (t488 = 3.69; p = 0.05), confirming
that men with high grade tumors had higher probability to have a shorter time without the
disease (Figure 1). OS was not significant related to the grading groups.

Table 1. Number of PC patients by ISUP consensus grading after radical prostatectomy.

Grade Group GS N

1 6 (3 + 3) 44
2 7 (3 + 4) 146
3 7 (4 + 3) 101
4 8 (4 + 4, 3 + 5, 5 + 3) 64
5 9, 10 (4 + 5, 5 + 4, 5 + 5) 141
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Figure 1. Differences in DFI among grading groups by the ISUP consensus recommendations. Low
group included grade 1, 2, and 3 by ISUP (1 for GS ≤ 6; 2 for GS 7, 3 + 4; 3 for GS 7, 4 + 3); high group
included grade 4, and 5 by ISUP (4 for GS 8, 4 + 4, 3 + 5, 5 + 3; 5 for GS 9 and 10, 4 + 5, 5 + 4, 5 + 5).
* High grade PC showed a higher probability to have a shorter DFI, with a significant p-value
(p = 0.05).

T-test was used to check if different grading groups were related to the expression of
the target genes; tumors with advanced grades showed higher WSB1, EZH2, and WNT10b
expression levels (t494 = 6.005 p < 0.0001); t494 = 7.308 p < 0.0001; t494 = 1.98 p = 0.048,
respectively), whereas the other genes were not significantly related to grade score (all
p-values > 0.075).
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3.2. Association among Gene Expressions

Among the target genes under investigation, it was found that gene expressions were
highly correlated (Table 2). Specifically, WSB1 was positively related to EZH1, EZH2,
WNT10a, and WNT10b, but not to ERG, Myc, HIF1alpha, and WSB2.

Table 2. Correlation among gene expressions.

ERG MYC HIF1a EZH1 EZH2 WSB2 WNT10b WNT10A

WSB1 0.070 0.048 0.017 0.317 ** 0.144 ** –0.070 0.106 * 0.129 **
ERG 0.113 * 0.019 –0.226 ** –0.039 0.458 ** 0.144 ** –0.186 **
MYC 0.189 ** 0.019 0.347 ** –0.005 0.131 ** –0.167 **
HIF1alpha –0.250 ** 0.130 ** 0.201 ** –0.030 –0.219 **
EZH1 –0.222 ** –0.441 ** 0.008 0.412 **
EZH2 0.113 * 0.050 –0.181 **
WNT10b 0.149 ** –0.243 **
WNT10a 0.037

(**) = Significant values p < 0.01 (two tails). (*) = Significant values p < 0.05 (two tails).

To identify the independent association among the significant correlations an MDS
was run (Figure 2). The S-stress was 0.061 and the RSQ was 99%, thus indicating a good
reliability of this model. The central role of WSB1 in influencing the other target genes was
demonstrated by its central location on the map.
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Figure 2. Map of the association among the variables included in the multidimensional scaling (MDS)
model: the central role of WSB1 in influencing the other target genes was demonstrated by its central
location on the map.

Finally, a stepwise linear regression analysis among the variables included in the
MDS confirmed that the expression of WSB1 was specifically associated with EZH1 (step 1,
R2 = 0.1), EZH2 (step 2, R2 = 0.15), whereas adding both WNT10b (step 3, R2 = 0.15) and
HIF1alpha (step 4, R2 = 0.15) did not significantly increase the predictive value of the model
(Table 3).

3.3. Survival Curves

Kaplan–Meier curves showed a shorter DFI and OS in patients with high WSB1
expression in comparison with patients with low WSB1 levels (Generalized Wilcoxon
χ2 = 13.280, p < 0.001 and χ2 = 6.196, p = 0.013, respectively) (Figure 3). Taken together with
the previously reported association between elevated WSB1 expression and high tumor
grade, these survival data demonstrated that WSB1 overexpression was correlated with
unfavorable prognosis, suggesting WSB1 as a clinical biomarker for prostate cancer.
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Table 3. Stepwise regression of the dependent variable WS1 by other genes expression.

Model
Not-Standardized Coefficients Standardized Coefficients

t p
B Standard Error β

1
(Constant) 6221 K 1339 K 4.645 0.000

EZH1 1.195 0.161 0.317 7.420 0.000

2

(Constant) 1853 K 1543 K 1.201 0.230

EZH1 1.384 0.161 0.367 8.607 0.000

EZH2 2.110 0.398 0.226 5.294 0.000

3

(Constant) 1258 K 1560 K 0.807 0.420

EZH1 1.377 0.160 0.365 8.596 0.000

EZH2 2.063 0.397 0.221 5.190 0.000

WNT10b 4.104 1.845 0.092 2.224 0.027

4

(Constant) −804 K 1851 K −0.435 0.664

EZH1 1.454 0.164 0.385 8.865 0.000

EZH2 1.997 0.397 0.214 5.024 0.000

WNT10b 4.229 1.840 0.095 2.298 0.022

HIF1-α 0.058 0.028 0.088 2.055 0.040

Model R R-Squared Adapted
R-Squared Standard Error Value

1 0.317 a 0.100 0.098 7,746,629.967

2 0.386 b 0.149 0.145 7,543,005.092

3 0.396 c 0.157 0.152 7,512,987.926

4 0.405 d 0.164 0.158 7,488,512.108

a Predictors: (constant), EZH1; b Predictors: (constant), EZH1, EZH2; c Predictors: (constant), EZH1, EZH2,
WNT10b; d Predictors: (constant), EZH1, EZH2, WNT10b, HIF1-α.
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χ2 = 6.196, p = 0.013, respectively).
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4. Discussion

Currently, clinical factors are most used for prostate cancer patient’s prognosis evalua-
tion. Introducing clinical tools such as the GS coupled with the more recent advances in PC
grading have significantly optimized prognostic evaluation in clinical practice [7,8]. The
usefulness of PC grading was confirmed in our study, where PC patients with high grade
scores showed a significantly lower DFI. It was puzzling that in our dataset, OS was not
significantly related to the grading groups. This result, which is in disagreement with most
of the data in literature [10], can be interpreted in several ways. Very likely, this is due to
the fact that patients included in our sample had a significantly lower than average level of
cancer aggressivity, as confirmed by the high survival rates recorded in the database. This
sampling problem could have created an unbalanced number of prostate cancer patients
with low grade in our series, as also recently reported by Brundage et al. [44], who also
reported that GS was not associated with either progression-free survival or overall sur-
vival in their cohort, a fact likely due to the infrequent number of patients in their study
with a low or intermediate GS. Inconsistencies of this nature make even more relevant
the need for molecular tools to be associated with the diagnosis and prognosis of PC.
Predicting disease progression and prognosis plays an essential role in guiding patient
goals, expectations, and treatment strategies. As the cost of genetic analysis decreases, it
is becoming increasingly feasible for patients to undergo genetic and genomic screening
to define and individualize the biology of each patient’s cancer. Ideal future models will
likely incorporate some of these clinical factors in conjunction with direct measures of
biology such as WBS1 expression among other genomic alterations. Moreover, the benefit
of testing not only one driver gene, but more probably a combination of factors is becoming
evident, and in this way our new insights into a putative transcriptional regulatory circuit,
controlling other gene expressions, may represent a tool for a better manage in prostate
cancer patients.

This is why the main goal of the present study was to assess the potential of WSB1
as an oncogene in PC. Our analysis confirmed this hypothesis, showing a link between
WSB1 expression and the progression of PC, in terms of both higher grades and clinical
output (OS and DFI). It is of particular interest that results including both clinical data and
WSB1 expression were useful in discriminating OS in our database, whereas the latter by
themselves were not. It was also hypothesized that WSB1 can represent a key pathway in
the activation of several other oncogenes. As a matter of fact, our results suggested this
direct relationship, as indicated by the central role of WSB1 in the MDS analysis.

WSB1 is a member of the WD-protein subfamily, and it is a transcriptional factor as a
part of an E3 ubiquitin ligase complex. Over the past two decades, the number of studies on
E3 ubiquitin ligase and transcriptional factors has explosively grown, considering their role
in cancer and other diseases [45]. Several studies have demonstrated that dysregulation
of transcriptional factors is involved in carcinogenesis and tumor progression, and new
insights into transcriptional programs dysregulation may represent a benefit in cancer
patients management [46]. Vulnerabilities in transcriptional program can be predicted by
genetic changes with consequent dysregulation of specific gene expression profiling and
different transcriptional addiction seemed to be active in specific subsets of cancer. Alter-
ation of transcriptional network, following transcription factors deregulation, is involved
also in the prostate cancer model [47]. Considering that cancer arises from an interplay of
different oncogenic hits, we made efforts trying to define a model of a transcriptional regu-
latory circuit, controlling other gene expression thereby driving prostate tumor behavior
and progression.

WSB1 is a HIF-target and seems to accelerate malignant progression in several tumors
by increasing hypoxic microenvironment via HIF1alpha [19]; however, Haque et al. showed
that [46] WSB1 expression does not significantly increase HIF1alpha mRNA levels, as might
be expected. Accordingly with this previous study, we did not find an association between
WSB1 and HIF1alpha gene expression level; the loop may have formed by WSB1 and
HIF1alpha can be also related to decreased protein degradation beyond through increased
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transcription, or to the degradation of diverse proteins associated with the cellular response
to hypoxia. In fact, regulation of cellular response to hypoxia has been shown as only one
of the key regulator functions of WSB1 and other protein targets of WSB1 are also involved
in other cancer pathways [48].

The first novelty of our study was the prognostic value of WSB1 in PC. The statistical
difference in the Kaplan–Meier curves showed an involvement of WSB1 in PC progression,
as testified by patients with a higher radical prostatectomy grade were also characterized
by a lower DFI. Although significantly different, in our data the curves were fairly close
together, confirming that WSB1 can be just one of many genetical checkpoints involved.
Looking at the two curves more closely, we noticed that the biggest differences were for
men with DFI between 10 and 50 months. At higher DFI levels, the two curves tended
to overlap. This can be explained in many ways; we believe that because our database
was mostly comprised by men with mid-grade tumors, the variability at higher DFI levels
was artificially low. It would be of extreme interest to know the relationship between
mRNA and protein expression. Unfortunately, the data available for us did not offer such
correlation. This is a limitation of our report and certainly a future goal to assess the role of
WSB1 in PC progression and its potential use in clinical settings.

Also, as far as we know, our study is the first to show a link between WSB1 expression
and others target genes involved in PC progression, also suggesting a novel role for WSB1
in PC progression and a key pathway downstream of WSB1. Based on our results of
PC data extracted from the TCGA database, we believe that WSB1 can recruit EZH2 to
the β-catenin transcriptional complex. WNT/β-catenin signaling comprises WNT ligands,
which are 350–400 amino acids long, lipid-modified glycoproteins, and CTNNB1 gene-
encoded multifunctional β-catenin proteins [31]. In canonical WNT/β-catenin signaling,
the activation of WNT leads to translocation of β-catenin into the nucleus, which in turn
acts as a co-activator of transcription factors [49]; the stabilization of β-catenin protein is a
key process in transducing WNT signaling, and this association specifically enhances WNT
target gene transactivation. An up-regulation of the components of WNT/β-catenin, in
particular of WNT10a and WNT10b, along with change in the expression pattern of β-catenin
has been documented in cancer patients [33]. The central role of WSB1 in our MDS analysis
prompted us to think that WSB1 mediates EZH2-induced WNT signaling hyperactivation.
The body of evidence showed that EZH2 was able to control several specific transcription
factors [50]. One of the novelties of our study was the putative crosstalk between WSB1
and EZH2, presenting important hints for future investigation of PC, in consideration of
their association with advanced grades and their role as unfavorable prognostic factors.
The different roles of the paralogues EZH1 and EZH2 need to be further studied in PC;
data in literature showed a different expression pattern for EZH1, found in dividing and
differentiated cells, and EZH2, only present in highly proliferative cells [51,52] in T-cell
lymphomas patients, but no data exist in prostate cancer. There are also two WSB proteins,
WSB1 and WSB2, based on their number of WD motifs, with an amino acid sequence
similarity of 65% and with surprisingly both similar and conflicting properties; more
attention has been focused in literature on the function of WSB1, with dysfunctional WSB1
expression closely related to tumorigenesis and progression [53]. Zhang et al. showed [54]
high WSB2 levels associated with clinicopathological features in patients with melanoma.
In our model no correlation was found between WSB1 and WSB2, confirming their different
role in cell signal transduction in various cancer models.

C-myc is demonstrated to be involved not only in tumor initiation, but also in cancer
progression [55], an important point to keep in mind considering that WSB1 was also
reported as a direct target gene of c-myc [56]. In our study we did not find a direct
correlation of WSB1 with c-myc; c-myc oncogene expression was correlated with EZH and
WNT, so WSB1 seemed to promote the expression of c-myc, not directly, but through the
WNT/β-catenin pathway. This putative network between WSB1 and EZH2, with c-myc
activation through WNT/β-catenin may have an important role in PC progression, as
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suggested by the association between high WSB1 expression and the unfavorable prognosis
we found in our analysis.

The TMPRSS2-ERG gene fusion occurs in ~50% of PC patients [37], which makes it
the most frequent alteration observed in human PC. Zoma et al. [57] recently reported that
EZH2 interacts with ERG, methylating it at lysine 362, and so increasing ERG oncogenic
activity by enhanced transcription of ERG target genes. In our model, aberrant overex-
pression of ERG seemed to be linked to PC progression, as previously reported [58,59],
by a transcriptional network with c-myc, EZH1, WSB2, and WNTa and WNTb, suggesting
another way of WNT/β-catenin pathway activation.

In conclusion, we provided new insights in PC progression showing promises in
targeting the transcription factor WSB1; however, working with the TGCA database has
clear limitations that are shared in our work and the translation into patients’ management
provides a clinical impact. Moreover, although the central role of WSB1 in mediating other
oncogenes appeared clear, alternative models involving different pathways of activations
should be tested. Further investigation of this WSB1-mediated circuit will help to further
clarify the PC biology, and potentially discover new potential therapeutic targets for the
more aggressive PC forms.
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