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Abstract: The aim of this paper is to model the elastic–plastic uniaxial behaviour of a quenched and
tempered steel. The common Chaboche isotropic kinematic hardening model (CIKH) is introduced,
and a physics-based procedure is proposed to determine its parameters. This procedure is based
on strain- and stress-controlled tests and is focused on the stabilized cycles. The imposed cycle
properties are the hysteresis area, the stress range, the slope at the inversion points, obtained from the
stabilized cycles of strain-controlled tests, and the ratcheting rate extracted from a stress-controlled
test. The novelty of the algorithm is to determine the hardening parameters from the global properties
of the cycle rather than imposing a pointwise fitting, which is also implemented to calculate the
parameters for a comparison. The Bouc–Wen model showed great flexibility in describing nonlinear
behaviours, corresponding to different physical phenomena, through an appropriate tuning of its
parameter values. In this paper, another optimization approach is developed to estimate the Bouc–
Wen coefficients and accurately describe the same experimental cycles. The performances of the
Bouc–Wen model are compared with the predictions of the Chaboche model, and a discussion
comparing the techniques used to reproduce cyclic plastic behaviour is provided.

Keywords: cyclic plasticity; kinematic hardening; closed-form expressions; numerical algorithms;
nonlinear hysteretic behaviour

1. Introduction

An accurate description of the effect of plastic strain on the mechanical behaviour
of materials is necessary for a reliable prediction of the mechanical response beyond the
elastic limit. There are many industrial applications in which plasticity plays a fundamental
role, such as contact mechanics [1], fatigue analysis [2] and residual stresses’ analysis [3].
In our previous paper, Ref. [4], it is evident that, without considering plasticity around
the notch, the stress predictions could reach very high values, which are approximately
similar to the ultimate stress of the material and not meaningful for cyclic loading analysis.
The Chaboche kinematic hardening (CKH) model is a powerful constitutive law to model
the plasticity of metals. It was introduced by Chaboche [5], extending the Armstrong and
Frederick model [6] by adding multiple backstress components with different properties. It
can also be efficiently combined with the isotropic hardening rule proposed by Voce [7],
as in Refs. [8–10], and both hardening rules are implemented in Ansys commercial finite
element software [11]. The combination of a CKH model and Voce isotropic hardening
model results in the Chaboche isotropic kinematic hardening (CIKH) model. The CKH
model has often been involved in fatigue analyses, as in [12–14]. In these papers, the
theory of critical distances and the strain energy density criterion, which are efficient tools
for predicting the fatigue life of components, were used, combined with the CKH model
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showing better predictions rather than maintaining a simple, linear, elastic behaviour. This
model was also employed in contact mechanics problems, as in Ref. [15].

In recent years, researchers made some modifications to the original formulation of
the CIKH model, as in [16,17]. In this latter paper, a refinement was proposed to properly
model the ratcheting rate, then elaborated in [18]. A backstress with a threshold was
introduced. Below this threshold the backstress behaves according to linear Prager rule,
while it behaves like Chaboche nonlinear hardening model above the threshold. The
concept of the backstress with threshold was extended in [19] to model both the ratcheting
rate and the mean stress relaxation. Alternatively, to properly model the ratcheting rate,
in Ref. [20] a multiplicative hardening rule was introduced, in which one of the two
coefficients of some backstress components is a function of another dimensionless, second-
order, internal variable that nonlinearly evolves as the backstress components of the CIKH
model. This approach was applied to model the cyclic plastic behaviour of Steel 316 L and
Carbon Steel 1026 in [20], and was then extended to aluminium alloy 7075-T6 in [21,22], and
to Ti-6Al-4V in [23]. The CKH model is generally combined with the Von Mises yielding law
but, in [24], it was employed together with the Hill yielding law for anisotropic metals [25];
for example, to model the cyclic plastic behaviour of Maraging 300, obtained through
additive manufacturing technologies.

In principle, the stabilized cycles of strain-controlled tests alone can be engaged to
determine the parameters. However, if the transient of the stress-controlled test plays a
fundamental role in further analyses, the ratcheting rate must also be considered. In [26,27],
the ratcheting rate was employed to calculate the parameters, whereas in [28,29] both uni-
axial stress-controlled tests and strain-controlled tests were exploited. The algorithms used
to calculate these parameters can follow different approaches, such as genetic algorithms,
as in [30,31], particle swarm optimization in [32], and the differential evolution algorithm
in [33]. All of these techniques require a great computational effort.

Alternatively, the Bouc–Wen (B-W) model [34,35] is widely used to replicate the
hysteretic behaviours of systems such as wire rope isolators [36], piezoelectric actuators [37]
and seismic isolation in [38]. Given the widespread diffusion of this model, the development
of identification procedures that can relate B-W parameters to the experimental data are
crucial. In [39], dynamic tests were developed to characterize wire rope isolators, and then
the Levenberg–Marquardt (L-M) algorithm [40,41] was engaged to obtain the parameters.
In [42], a novel method of attenuating vibration using vacuum-packed particles as the
materials responsible for energy dissipation was investigated and a genetic algorithm
was performed; in [43], the vibratory behaviour of a full-scale steel cantilever beam was
studied and a hybrid evolutionary algorithm, which utilized selected stochastic operators,
heuristics and problem-specific information, was involved.

In this manuscript, a novel procedure to calculate CIKH model parameters was
exploited. The procedure was carried out on three strain-controlled tests and one stress-
controlled test. The cycle properties that were imposed were the hysteresis area, the
stress range, the slope at the inversion points, the average stress and the average plastic
strain. These were all extracted from the stabilized cycles of strain-controlled tests, and the
ratcheting rate extracted from the stress-controlled test. This can be motivated considering
that a good prediction of the global properties of the stabilized cycle is generally sufficient
in fatigue analyses. Multiaxial fatigue criteria, in fact, generally require global quantities
of the stabilized cycle to be applied. Once the CKH model parameters were obtained, the
model was also refined with the introduction of a fourth backstress and then the Voce
isotropic hardening law. In addition to this, the determination of CKH model parameters
was conducted by using a classical pointwise fitting between the experimental data and
the modeled curve. In addition, a B-W model was engaged to reproduce cyclic loadings.
Cyclic plasticity is a nonlinear hysteretic behaviour, and therefore pertinent to the range of
application of the B-W model. The parameters were computed using the L-M algorithm, as
proposed in [44].
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Section 2 is dedicated to explaining the theoretical background of the CIKH model and
B-W model. In Section 3, the experimental data employed in this work are presented, and
the proposed procedure to calculate CIKH model parameters, together with the algorithm
used to determine Bouc–Wen constants, are formalized. In Section 4, the results of the
calibration techniques are exposed. The results obtained with a classical pointwise fitting
are initially shown. The results according to the proposed procedure are then presented,
and, finally, the results obtained using Bouc–Wen are reported. In Section 5, a discussion
and comparison between the three approaches are provided, together with suggestions for
future studies about the modeling of cyclic plastic behaviour.

2. Theoretical Background
2.1. Mathematical Formalization of CKH Model

In this paragraph, the aim is to derive the differential equation about the CKH model
for a uniaxial loading case, according to [4]. In a plain specimen under uniaxial stress, the
stress tensor is given by (1), where x indicates the loading direction.

S =

σxx 0 0
0 0 0
0 0 0

 (1)

The total strain tensor is obtained by adding the plastic strain tensor and the elastic
strain tensor, as in Equation (2).

εtot = εel + εpl (2)

When creating an elastic–plastic analysis, the first component is the yield law, which,
in this case, is the common Von Mises yield criterion. The evolution of the yield surface
according to this criterion is formalized in Equation (3).

F =

√
3
2
(SD − χ) : (SD − χ)− σY = 0 (3)

In this latter equation, SD is the deviatoric component of the stress tensor S, σY is
the elastic limit of the material and χ is the backstress tensor. The second fundamental
part is the plastic flow rule. Prandtl–Reuss is the plastic flow rule associated with the Von
Mises yield function and is presented in Equation (4). This is not the only plastic flow rule
suitable for an elastic–plastic analysis.

dε
pl
xx =

[
σxx − 0.5

(
σyy + σzz

)]
dλ

dε
pl
yy =

[
σyy − 0.5(σxx + σzz)

]
dλ

dε
pl
zz =

[
σzz − 0.5

(
σxx + σyy

)]
dλ

dε
pl
xy = 3

2 σxydλ

dε
pl
xz =

3
2 σxzdλ

dε
pl
yz =

3
2 σyzdλ

(4)

The plastic flow rule allows for us to understand which of the plastic strain tensor
components are not null, but it is not able to calculate their values, as dλ remains unknown
in Equation (4). To accomplish this, it is necessary to introduce a hardening rule. The CKH
model is described by the differential Equation (5):

dχi =
2
3

Cidεpl − γiχidp (5)
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In Equation (5), Ci and γi are the contants of the CKH model and dp is defined in
Equation (6).

dp =

√
2
3

dεpl : dεpl (6)

Focusing on only a plain specimen under uniaxial loading, the incremental plas-
tic strain tensor is given in Equation (7), whereas the backstress tensor is reported in
Equation (8) for each backstress component.

dεpl = dε
pl
xx

1 0 0
0 −0.5 0
0 0 −0.5

 (7)

χi =
2
3

χi

1 0 0
0 −0.5 0
0 0 −0.5

 (8)

Equation (7) is consistent with the Prandtl–Reuss plastic flow rule, which states that
the incremental plastic strain tensor and the deviatoric component of the stress tensor
are parallel. Equation (8) provides the backstress tensor form used for each backstress
component. After substituting Equations (1) and (8) into Equation (3), it is possible to
obtain the relationship between the stress and the backstress for an uniaxial loading case
(Equation (9)), where µ is equal to 1 during positive loading (tending-to-tensile stress),
while it is equal to −1 during negative loading (tending to compression). In Equation (9),
χ = ∑k

i=1 χi and k indicate the number of backstress components that are considered.

σxx = µσ0 + χ (9)

The backstress tensor for each component in Equation (8) is multiplied by the scalar
factor 2

3 , and this last statement is justified by the fact that the yielding surface is translated
in the deviatoric stress space, and omitting this term results in a scalar factor term in
Equation (9). By substituting Equations (7) and (8) into Equation (5) and considering that,
for an uniaxial loading case, dp = |dε

pl
xx|, Equation (10) provides a general representation

of the evolution of each backstress component.

2
3

dχi

1 0 0
0 −0.5 0
0 0 −0.5

 =
2
3

Ci

1 0 0
0 −0.5 0
0 0 −0.5

dε
pl
xx −

2
3

γiχi

1 0 0
0 −0.5 0
0 0 −0.5

|dε
pl
xx| (10)

Rearranging Equation (10), the expression governing the dynamic of each backstress
component, according to the CKH model for a uniaxial loading case, can eventually be
obtained in Equation (11).

dχi = Cidε
pl
xx − γiχi|dε

pl
xx| (11)

2.2. Mathematical Formalization of B-W Model

The conventional B-W model is described by four equations, as in (12), according to
the studies conducted by Bouc [34] and Wen [35]. The model considers x and ẋ as inputs
and Y and z as outputs. 

Y = Y2(z + Y1)

Y2 = bcx

Y1 = k1x + k2sign(x)x2 + k3x3

ż = ẋ(α− (γ + βsign(ẋ)sign(z)) z n)

(12)

The last differential equation in (12) represents the evolution of the hysteretic variable
z, which allows for one to replicate the amplitude of the hysteresis cycle. The variable Y1 is
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described with a polynomial function similar to a nonlinear spring, the second equation
is an exponential function, and all the equations, from the second to the fourth, included
in Equation (12), are combined in the first one. Observing the last equation of (12) the
time dependence can easily be eliminated and an equivalent form is then provided in
Equation (13):

dz = dx(α− (γ + βsign(dx)sign(z)) z n) (13)

This equation (13) can be further improved, as in (14), by considering another parame-
ter δ, which allows for one to emphasize the asymmetry in the width of the hysteresis cycle
as described in [43].

dz = dx((α + δx)− (γ + βsign(dx)sign(z)) z n) (14)

After reconsidering the Bouc–Wen model used in our case, the inputs are the total
strain (εxx) and the sign of its differential (dεxx), while the output is the stress along the
loading direction (σxx).

3. Materials and Methods
3.1. Experimental Data

The material involved in this work was 42NiCrMo4 quenched and tempered steel.
The technical drawing of the plain specimen engaged to perform both strain-controlled
tests and stress-controlled test is shown in Figure 1, where dimensions and tolerances are
reported. The experimental data were sampled with a frequency of 10 Hz, and the strain-
rate was approximately ±2.5× 10−3 s−1. The yield and the ultimate strengths, extracted
from the tensile test performed according to ASTM E8/E8M-11 [45], are SY = 500 MPa
and SU = 700 MPa, respectively. Rε is defined as the ratio between the minimum and
the maximum imposed total strain during the strain-controlled test. Regarding the strain-
controlled tests performed at Rε ≈ −1, the sampling was continuous due to the relatively
low number of cycles, whereas, during the strain-controlled test executed at Rε 6= −1, the
sampling was carried out by blocks, as the number of cycles was much higher.
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Figure 1. Technical drawing of the specimen used to perform both strain-controlled tests and stress-
controlled test.

The choise of material investigated in this study does not represent any limitation to
the proposed procedure, as no hypothesis about the material was introduced during the
procedure and the CIKH model is generally engaged to model the plasticity of metals. The
proposed technique can be extended to any metal with a sufficient ductile behaviour. Three
strain-controlled tests and one stress-controlled test were performed on plain specimens.
Two of the strain-controlled tests were conducted at Rε ≈ −1 and are shown in Figure 2,
where the stabilized cycles are indicated in red (Cycle I and Cycle II), while the rest of the
loading history is indicated in grey. Some useful experimental data about the stabilized
cycles Cycle I and Cycle II, which are needed to determine the constants of the CKH model,
are reported in Table 1. The extreme stress values of the stabilized cycles of strain-controlled
tests are indicated with σstab

max and σstab
min .
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Cycle I Cycle II

Figure 2. Strain-controlled tests performed at Rε ≈ −1: (a) loading I, (b) loading II.

Table 1. Useful experimental data extracted from Cycle I and Cycle II.

Stabilized
Cycle ∆εp ∆σ (MPa) A (mJ/mm3) dσ

dεp

∣∣∣
σ=σstab

max

(GPa)

Cycle I 1.43% 1.03× 103 12.0 5.81
Cycle II 0.50% 918 3.61 20.2

In Figure 3a, a qualitative trend for a stress-controlled test on a plain specimen is
reported in the σ-εp coordinates, and the meaningful experimental inputs regarding the
stress-controlled test are indicated. The red line in Figure 3a indicates an open ratcheting
cycle, which ranges from the maximum plastic strain of cycle N to the minimum plastic
strain, and then again reaches the maximum plastic strain of cycle N + 1.

N, number of cycles

σ
(M

P
a)

εp

(a)

max

p,N
max

p, 1N +

min

p,N

m
ax

m
in

p
,

p
,

,
N

N




(b)

Increasing damage

linear ratcheting range

r

p

Figure 3. (a) Example of a stress-controlled test for a plain specimen with meaningful quantities
reported; (b) experimental trend of the maximum and minimum plastic strain per cycle of the
stress-controlled test involved in the work.

Using the experimental inputs from the stress-controlled test, two important quantities
for further analysis are defined in Equations (15) and (16).

∆εa
p,N =

εmax
p,N+1 + εmax

p,N

2
− εmin

p,N (15)
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∆εs
p,N =

εmax
p,N+1 − εmax

p,N

2
(16)

Superscripts “s” and “a” stand for shift and amplitude, respectively. These quantities
are, in principle, not constant, but numerical simulations using the Chaboche model sug-
gested that ∆εa

p,N and ∆εs
p,N are always asymptotically stable. According to Refs. [46–48],

a constant ratcheting rate was reported after an initial settling phase; therefore, ∆εa
p,N

can be replaced with ∆εa
p in Equation (15), and ∆εs

p,N can be replaced with ∆εs
p in (16).

The experimental ratcheting rate, extracted from the stress-controlled test conducted at
R ≈ −0.66, is shown in Figure 3b, where the maximum and minimum plastic strain per
cycle are reported. The determination of ∆εa

p and ∆εs
p, to employ them in the computation

of the model parameters, must be carried out by considering that the CKH model cannot
reproduce the final part of the graphic in Figure 3b, unless the damage in the model was
included so that only the “linear” part of Figure 3b was considered. This zone was taken
from approximately the second cycle of the loading until the twentieth, and this is indicated
in Figure 3b.

3.2. Efficient Procedure to Calculate CKH Parameters

In this work, a CKH model with three backstress components was considered, and
the dynamics of each component, according to our procedure for a qualitative loading
with Rεp = 0, are explained in Figure 4, where the stabilized cycles are indicated in red.
Rεp is defined as the ratio between the minimum and maximum imposed plastic strain
during the plastic strain-controlled test. γ1 was taken as the highest gamma value, so the
first backstress has a rapid dynamic. As shown in Figure 4a, this is responsible for the
hysteresis area of the stabilized cycle of the plastic strain-controlled test. γ2 was modeled
as being much lower than γ1, and the trend of the second backstress is shown in Figure 4b.
Its contribution to the hysteresis area of the stabilized cycle is almost null. γ3 was imposed
as exactly null; thus, according to Equation (11), the third backstress evolves linearly, as
in Figure 4c. Note that the quantity of the x-axis of Figure 4 is the plastic strain, since the
numerical simulations were plastic-strain-controlled. This last situation is experimentally
challenging, and the experimental tests are always strain-controlled. As explained in [49],
all the expressions shown in the rest of the paper regarding suggested procedure to identify
CKH parameters, which were, in principle, obtained from plastic-strain-controlled tests,
were generalized to strain-controlled tests without loss of meaning.

εp

χ3
χ1

εp

χ1max,stab

χ1min,stab

3,0εp

χ2

χ2max,stab

χ2min,stab

(a) (b) (c)
1max,stab 1min,stab = 2max,stab 2min,stab =

Figure 4. Qualitative explanation of the behaviour of each backstress component according to the
proposed procedure: (a) rapid backstress, (b) slow backstress, (c) linear backstress.

To calculate CKH constants, the procedure of [49] is briefly recalled. The values of C3
and χ3,0 were first determined using the stabilized cycles of strain-controlled tests executed
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at Rε ≈ −1 and Rε 6= −1. The linear system that must be solved is Equation (17), where
σm

(
σm = σmax+σmin

2

)
and εp,m

(
εp,m =

εp,max+εp,min
2

)
are the experimental inputs.{

χ3,0 + C3εp,m,I = σm,I

χ3,0 + C3εp,m,II = σm,II
(17)

Equations (18)–(20), used to model the global properties of the stabilized cycles of
strain-controlled tests, have a general meaning and, in this case, they were all applied to the
loadings performed at Rε ≈ −1. C2 and C1 were determined as a function of γ1, using the
slope at the inversion points of the experimental stabilized cycles of strain-controlled tests.
Assuming γ2∆εp � 1, which is reasonable considering the low value of γ2, the nonlinear
system (18) was obtained.

C1

(
1− tanh

(
γ1∆εp,I

2

))
+ C2 = −C3 +

dσ
dεp

∣∣∣
σ=σstab,I

max

C1

(
1− tanh

(
γ1∆εp,II

2

))
+ C2 = −C3 +

dσ
dεp

∣∣∣
σ=σstab,II

max

(18)

In Equation (18), the values of dσ
dεp

∣∣∣
σ=σstab

max
and ∆εp are the experimental inputs. The

elastic limit was also determined as a function of γ1, in Equation (19), again assuming
γ2∆εp � 1. σL,I =

∆σI
2 −

C1
γ1

tanh
(

γ1∆εp,I
2

)
− C2+C3

2 ∆εp,I

σL,II =
∆σII

2 −
C1
γ1

tanh
(

γ1∆εp,II
2

)
− C2+C3

2 ∆εp,II
(19)

In Equation (19), the experimental inputs are ∆σ and ∆εp and, in principle, σL,I and
σL,II should be coincident. As this does not occur in practice, but the value of the elastic
limit is unique for the material, it was defined as σL =

σL,I+σL,II
2 . The last useful property of

the stabilized cycle of the strain-controlled test is the hysteresis area, which was modeled,
depending on γ1 and assuming γ2∆εp � 1, as in Equation (20) for Cycle I and Cycle II,
respectively. 

Amod
I = 2σL∆εp,I + 2

(
C1
γ1

∆εp,I − 2 C1
γ2

1
tanh

(
γ1∆εp,I

2

))
Amod

II = 2σL∆εp,II + 2
(

C1
γ1

∆εp,II − 2 C1
γ2

1
tanh

(
γ1∆εp,II

2

)) (20)

The experimental inputs in these latter two equations are the same as those brought
into play during elastic limit computation. Different error functions were then introducted:

• An error function that quantifies the discrepancy between the elastic limits deduced
from the two independent cycles:
Σ =

∣∣∣ σL,I−σL,II
σL

∣∣∣
• The relative error function on the prediction of the hysteresis area of cycle I:

ΛI =
Amod

I −AI
AI

• The relative error function on the prediction of the hysteresis area of cycle II:

ΛII =
Amod

II −AII
AII

These three functions were combined into a global error function defined in (21):

ψ(γ1) = (1− α)Σ2 + α
(

Λ2
1 + Λ2

2

)
(21)

where α can balance the importance of considering the hysteresis area of the stabilized cycle
of strain-controlled tests rather than the amplitude of the stabilized cycle of strain-controlled
tests, or vice versa, and the value of α is imposed in the range [0, 1]. After obtaining the
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value of γ1 that minimized the global error function in (21), which is indicated with a
red arrow in Figure 5, C1, C2 and σL were updated following Equations (18) and (19). A
qualitative graphic of the global error function (21) for different values of α is reported in
Figure 5.

γ1

Ψ
, e

rr
or

fu
nc

tio
n

Increasing
values of α

0.5 =

Figure 5. Qualitative trend of ψ(γ1) for different values of α.

To calculate the value of γ2 the stress-controlled test was exploited and the exper-
imental ratcheting rate was involved. Considering a CKH model with two backstress
components, the relationship between σm and ∆εa

p and ∆εr
p is provided in Equation (22), in

accordance with [49].

σm =
2

∑
i=1

Ci

γi

sinh
(

γi∆εr
p/2

)
sinh

(
γi∆εa

p

) (22)

As, generally, γi∆εr
p � 1 for each backstress component due to the small plastic strain

increment per cycle, a simplified form of Equation (22) was used, as in Equation (23).

σm =
∆εr

p

2

2

∑
i=1

Ci

sinh
(

γi∆εa
p

) (23)

After obtaining γ1, Equation (23) can easily be inverted and γ2 can be found. It is
interesting to highlight that, according to Equation (22), plastic shakedown

(
∆εr

p = 0
)

can
occur only for null values of the average stress. The superscript of the sum in Equation (23)
is 2, but the model involved in the work employed three backstress components. The
maximum value of the third backstress component, due to its linear trend, evolves cycle
per cycle, as in Equation (24).

χmax
3, i+1 = χmax

3, i + C3∆εr
p (24)

According to Equation (24), it is clear that the only achievable equilibrium, according
to the CKH with three backstress components, is given by ∆εr

p = 0, which means that only
plastic shakedown can occur as equilibrium. Therefore, ∆εa

p and ∆εr
p cannot be considered

constant anymore. In Figure 4, it is qualitatively shown, according to the full demonstration
in [49], that the maximum and the minimum values of the first and second backstress
components are exactly opposite for the stabilized cycle of a strain-controlled test. This
last statement can be further extended to stress-controlled tests [49]. The average stress of
the stabilized cycle of the stress-controlled test can be related to its corresponding average
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plastic strain, similarly to Equation (17), and the average plastic strain value of the stabilized
cycle is formalized in Equation (25).

εm
p =

σm − χ3,0

C3
(25)

If the value of C3 is high, then the average plastic strain of the stabilized cycle is low,
and can be reached after few cycles. Despite this, by exploiting a fully relaxed stabilized
cycle arising from a test at Rε 6= −1, the obtained value of C3 is generally smaller than the
values of C1 and C2; due to this, a certain number of cycles are needed to reach the plastic
shakedown. Therefore, ∆a

p and ∆εr
p can still be considered constant without any loss of

accuracy, and Equation (23) continues to be a valid expression to calculate the value of γ2.
The determination of the parameters of the CKH model with three backstess components,
according to the proposed procedure, is finally resumed in the steps below:

• The determination of C3 and χ3,0, extracted from the average stress and average plastic
strain of the experimental stabilized cycles of two strain-controlled tests;

• The slope at the inversion points was used to determine C1 and C2;
• The elastic limit was computed as the average of the elastic limit of Cycle I and Cycle

II, exploiting the stress amplitude and plastic strain amplitude of the stabilized cycles
of strain-controlled tests;

• The hysteresis areas of the stabilized cycles I and II were modeled and used the same
experimental inputs as the elastic limit computation;

• Three error functions based on the elastic limit and the hysteresis area of the stabilized
cycle I and II were introduced and combined in a global error function (21);

• The value of γ1 was found to be that which minimized the global error function (21),
and C1, C2 and σL were then updated following Equations (18) and (19);

• γ2 was the last parameter to be computed by exploiting the experimental ratcheting
rate and according to Equation (23).

The first step considered one strain-controlled test executed at Rε 6= −1 and one at
Rε ≈ −1 (Loading II). From the second to the last steps, the two strain-controlled tests
realized at Rε ≈ −1 were considered. The last step involved the stress-controlled test.

The use of three strain-controlled tests and one stress-controlled test allows to achieve
an equal number of unknown parameters and equations. However, this combination of
tests is not strictly necessary. In fact, according to [49], two strain-controlled tests with
different amplitudes and different mean points, of the stabilized cycles, plus one stress-
controlled test, is enough to calculate the parameters. In this study, as explained later, the
strain-controlled test performed at Rε 6= −1 did not have a consistent hysteresis area of the
stabilized cycle, and so was only engaged to calculate the values of C3 and χ3,0.

3.3. Algorithm to Calculate B-W Parameters

The determination of the parameters of the B-W model was carried out using the
command lsqnonlin of Matlab Software [50]. This provides a nonlinear least squares
fit, and various algorithms can be used. In this case, the L-M algorithm was employed.
To briefly explain this algorithm, consider a nonlinear system, as in (26), where vector q
gathers the variables of the problem.

Ψd = Q(q) (26)

Ψd indicates the desirable configuration and J(q) indicates the Jacobian of the vectorial
function Q(q) obtained as J(q) = ∂Q

∂q . The problem can be solved with an iterative proce-
dure in which a linear approximation from the step i to i + 1 is assumed as in Equation (27).

Q(qi + ζ) = Q(qi) + Jζ (27)
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The value of ζ at each step was determined by using the L-M iterative technique,
which consists of a linear system solution, as shown in Equation (28).(

Jt J + λI
)
ζ = Jt(Ψd −Q(qi)) (28)

In the linear system, (28) λ is a powerful leverage, which allows for one to obtain
different method behaviours: for low values of λ, the algorithm tends toward the Newton–
Raphson method, whereas for high values of λ, it tends toward the gradient method. The
possibility of varying the value of λ during the iteration allows for one to prefer the gradient
method next to the singularities, while Newton–Raphson method lacks accuracy, while
far from singularities, the Newton–Raphson method is preferred because it converges to
the solution more quickly than the gradient method. In our case, B-W constants were
determined to minimize the difference between the computed output and the experimental
output.

4. Results and Validation

In the first part of this section, the results obtained through pointwise fitting are
exposed. In the middle part, firstly, the stabilized cycles of the strain-controlled tests and
the ratcheting rate of the stress-controlled test are reproduced by exploiting the calculated
coefficients according to the proposed procedure for the CKH model with three backstress
components. Then, the improvements due to the introduction of the fourth backstress are
exposed, and the outcomes of the calculation of Voce isotropic hardening law parameters
are shown. In the final part of the section, the results obtained through the Bouc–Wen
model are presented.

4.1. Determination of CKH with Pointwise Fitting

The determination of CKH parameters was also carried out using a pointwise fitting
between the experimental data represented by the stabilized cycles of the strain-controlled
tests performed at Rε ≈ −1 and the modeled curve obtained by Equation (9) and Equa-
tion (11), with three backstress components imposing γ3 = 0. The fitting was conducted on
cycle I, then validated on cycle II and vice versa. For this operation, the Matlab software
was employed and the command fit [50] was engaged, which provides a nonlinear least
squares fit with the default Matlab algorithm. The results are shown in Figures 6 and 7.

(a)

σ
(M

P
a)

εtot

(b)

σ
(M

P
a)

εtot

Calibration Validation

310−

Figure 6. Comparisons between experimental and modeled stabilized cycles of strain-controlled tests
using a pointwise fitting: (a) cycle I, used for calibration, (b) cycle II, used for validation
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Figure 7. Comparisons between experimental and modeled stabilized cycles of strain-controlled tests
using a pointwise fitting: (a) cycle I, used for validation, (b) cycle II, used for calibration

Considering Figure 6, whose results present a better forecast than those of Figure 7, the
ratcheting was validated with the parameters obtained from the first computation. In this
case, an in-depth discussion should occur regarding the validation of the stress-controlled
test. Starting from Equation (11), the evolution of the nonlinear backstress components can
be obtained, as in Equation (29).{

χi =
Ci
γi
+ (χi,0 − Ci

γi
)exp(−γi(εp − εp,0) if εp − εp,0 > 0

χi = −Ci
γi
+ (χi,0 +

Ci
γi
)exp(−γi(εp,0 − εp) if εp,0 − εp > 0

(29)

The maximum value of the first of Equation (29) is given by limεp→∞ χi = χmax
i = Ci

γi
,

whereas the minimum value of the second of Equation (29) is given by limεp→−∞ χi =

χmin
i = −Ci

γi
. Some other considerations are needed to analyze the linear backstress,

where the maximum and the minimum value reached during the entire cycle loading are
provided by χmax

3 = χ3,0 +C3

(
εmax

p − εp,0

)
and χmin

3 = χ3,0 +C3

(
εmin

p − εp,0

)
, respectively.

Recalling Equation (9), the maximum and the minimum values of the stress obtained during
the cyclic loading can be expressed by σmax

xx = σ0 + χmax
1 + χmax

2 + χmax
3 and σmin

xx = −σ0 +
χmin

1 + χmin
2 + χmin

3 , respectively. It is clear that once the parameters are obtained from
the fitting, the values of χmax

1 , χmax
2 , χmin

1 and χmin
2 can be determined. Regarding stress-

controlled tests, the values obtained from σ0 + χmax
1 + χmax

2 and from σ0 + χmin
1 + χmin

2 are
far from the maximum and the minimum values of the imposed stress, and can only be
reached by exploiting the third backstess. Depending on the values of C3 and χ3,0, these can
be obtained at very high plastic strain values. In Figure 8, a piece of the first modeled ramp
of the stress-controlled test is shown. The parameters used to reproduce the blue curve in
Figure 8 were those obtained by fitting Cycle I. At reasonable total strain values for the first
ramp, a flat zone is observed; this means that, due to the parameter values obtained from
the fitting, the first and the second backstress components immediately saturate to values
that are not high enough to reach the maximum value of the imposed stress. The third
backstress, due to the low values of C3 and χ3,0 obtained from the fit, cannot contribute to
the total modeled stress for “low” total strain values. As a consequence, only very high
total strain values, then very high plastic strain values, could allow for the total stress to
reach the target. This last point has no physical meaning, and nothing would change by
using the parameters obtained by fitting Cycle II, given that, as shown in Table 2, the values
of C3 and χ3,0 are still too low.

The values of Chaboche parameters obtained with a pointwise fitting are reported in
Table 2.
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P
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εtot

Very high value of total strain 

to reach the imposed stress

Figure 8. Comparison between the experimental first ramp of stress-controlled test and the modeled
first ramp of stress-controlled test through the coefficients obtained with the pointwise fitting.

Table 2. Numerical values of CKH model parameters obtained with the pointwise fitting.

Extracted From C1 (MPa) γ1 C2 (MPa) γ2 C3 (MPa) χ3,0 (MPa) σL (MPa)

Cycle I 78.23× 103 677 16.68× 103 122 0.463 −6.46 298
Cycle II 114.7× 103 971 28.55× 103 245 0.017 −6.35 274

4.2. Validations of the Proposed Procedure with Three Backstresses

The results obtained according to Equation (17) are summarized in Figure 9, where the
stabilized cycle of the loading conducted at Rε 6= −1 is shown and, together with Cycle II,
this was used to calculate the values of C3 and χ3,0. In Figure 9, the experimental midpoints
of the stabilized cycles satisfy the linear trend of the third backstress component, and it is
also important to highlight that the stabilized cycle of the strain-controlled test performed
at Rε 6= −1 may be not fully relaxed.

σ
(M

P
a)

εp

Cycle I

Cycle II

Cycle III

Not fully 

relaxed
C3

Figure 9. C3,0 and χ3,0 to predict the relationship between the mean plastic strain of the stabilized
cycle and mean stress of the stabilized cycle.
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In Figure 10, comparisons between the experimental and the simulated stabilized
cycles executed at Rε ≈ −1 are reported. The simulated curves were reproduced by param-
eters C1, C2, γ1, γ2, C3 and χ3,0 obtained with Equations (17)–(21). The simulated models
tend to not properly reproduce the zone near the elastic limit, especially in Figure 10b.

σ
(M
Pa
)

εtot

σ
(M
Pa
)

εtot

(a) (b)

310−

Figure 10. Comparisons between the experimental and simulated stabilized cycles using the sug-
gested procedure: (a) Cycle I, (b) Cycle II.

The determination of γ2 and the corresponding validation of the ratcheting rate need a
particular focus. The experimental strain-controlled test conducted at Rε 6= −1 is not fully
relaxed, and this means that a high value of C3 resulted from the proposed procedure. If
the value of C3 is high, then the modeled average plastic strain of the stabilized cycle is low,
and can be reached after few cycles, resulting in an early plastic shakedown. This could not
allow one for one to reproduce the linear trend of Figure 3b, given that Equation (23) is still
not accurate enough to compute the value of γ2. Nevertheless, to show that the procedure
can reproduce the ratcheting-rate, the value of C3 can be set as equal to 0 and its value,
obtained from the proposed procedure, can be switched to C2, obtaining a final value of C2,
which is C

′
2 = C2 + C3. The results are then reported in Figure 11.

N, number of cycles

(a) (b)

σ
(M

P
a)

m
ax

p
,N



εtot

Figure 11. (a) Comparison between the experimental and simulated ratcheting rate using the pro-
posed procedure, (b) a comparison between the experimental and simulated stress-controlled load-
ing cycles.
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The values of CKH parameters obtained following the proposed procedure are pre-
sented in Table 3.

Table 3. Parameters obtained following the proposed procedure for CKH model with three backstress
components.

C1 (MPa) γ1 C2 (MPa) γ2 C3 (MPa) χ3,0 (MPa) σL (MPa)

69.21× 103 426 2.836× 103 4.63 2.669× 103 −4.86 316

4.3. Introduction of the Fourth Backstress

To better reproduce the zone near the elastic limit, a fourth backstress, which is more
rapid than the first, was added and calibrated on Cycle II. In Figure 12, εB and εD indicate
the strains that correspond to the elastic limit for the modeled curve; then, εA = εB, εC = εD,
σA 6= σB and σC 6= σD. After a high value of γ4 was imposed, the aim was to find the
ratio of C4 and γ4, which minimized the error function defined in (30). This is equal to the
imposition of a coincident point A with point B, and point C with point D, in Figure 12.

ϕ

(
C4
γ4

)
= |σA − σB|2 + |σC − σD|2 (30)

After the introduction of the fourth backstress, the value of σL must be updated
according to Equation (19); thus, the value of σ

′
L is ultimately given by (31)

σ
′
L = σL −

C4

γ4
(31)

Another interesting consideration about the evolution of the modeled hysteresis area of
the stabilized cycle of strain-controlled tests, due to the introduction of the fourth backstress,
is explained in Figure 13a where the hysteresis area decreases with the increasing value
of C4

γ4
. Observing Equation (20) and updating the value of σL following (31), it is evident

that the area must decrease. Nevertheless, the prediction of the cycle amplitude, provided
by Equation (19), remains unchanged because of the high value of γ4. In Figure 13b, a
comparison between the experimental Cycle II and its modelling is shown. Dashed line
was obtained through the procedure with the three backstress components, while the solid
line was obtained by adding the fourth backstress component. Figure 13b highlights the
improvement provided by the fourth backstress near the elastic limit zone.
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εtot

A

B

C

D

A B −

D C −

310−

Figure 12. Graphical explanation of the procedure used to introduce the fourth backstress component.
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Figure 13. (a) Evolution of the modeled hysteresis area of stabilized cycle with respect to a change
in C4

γ4
, (b) improvements in the prediction near the elastic limit for Cycle II by adding the fourth

backstress component.

Definitive comparisons between the simulated stabilized cycles (with four backstress
components) and the experimental stabilized cycles of strain-controlled tests performed at
Rε ≈ −1 and Rε 6= −1, are shown in Figure 14.

σ
(M
Pa
)

εtot

Cycle II

Cycle IIICycle I

Figure 14. Comparisons between the experimental and simulated stabilized cycles after adding the
fourth backstress component for Cycle I, Cycle II and Cycle III.

The addition of the fourth backstress did not change the constant values reported in
Table 3, except for the new elastic limit σ

′
L. The numerical values of the parameters are all

gathered in Table 4.

Table 4. Numerical values of the parameters obtained by following the proposed procedure for CKH
model with four backstress components

C1 (MPa) γ1 C2 (MPa) γ2 C3 (MPa) χ3,0 (MPa) σ
′
L (MPa) C4 (MPa) γ4

69.21× 103 426 2.836× 103 4.63 2.669× 103 −4.86 240 381.8× 103 5× 103



Appl. Sci. 2023, 13, 2961 17 of 23

It is worth noting that, in Ref. [24], where a successive trial-and-error continuous
optimisation approach, using the Matlab software, was engaged to calculate the parameters,
some differences can be highlighted with respect to the values shown in Table 4. In
particular, in [24], a model with three backstress components was employed, but the value
of γ3 was not assumed to be null. This was the lowest of the γ values, but still much higher
than the value of γ2 obtained through the procedure proposed in this work. In [8], an
optimization algorithm based on the Newton trust region method and an accumulated
true strain term was exploited to calculate the parameters for CIKH with two backstress
components. The obtained γ2 value was much higher than that obtained through the
procedure proposed in this study. In Ref. [3], a pointwise fitting was performed and
the obtained value of γ2 was still much higher than that obtained through the proposed
procedure. In sum, clear differences regarding the values of γ2 were obtained using the
proposed procedure with respect to the classical approaches available in the literature.

4.4. Isotropic Hardening

A well-known fact is that the the elastic limit initially depends on the cumulated
plastic strain; thus, an isotropic hardening model (Voce) was introduced to account for this
phenomenon. The exponential istropic hardening rule of Voce is formalized in Equation (32),
where Q and b are the equation parameters and p is the same as in Equation (6). σ0
corresponds to the elastic limit when p = 0.

σY = σ0 + Q(1− exp(−bp)) (32)

For high values of the cumulated plastic strain (p→∞), Equation (33) provides a rela-
tionship between the constant value of the elastic limit of the CKH model and Voce’s equation.

σL = σ0 + Q (33)

The transient during the initial cycles, as shown in Figure 15, ending at the stabilized
Cycle II, was used to find the value of Q and b. In particular, the maximum stress value at
the inversion points is described by Equation (34), whereas the minimum stress value is
given by Equation (35).

σmax
N =

4

∑
i=1

χmax
i,N + σY(p) (34)

σmin
N =

4

∑
i=1

χmin
i,N − σY(p) (35)

By substituting Equation (33) in Equation (32), Equation (36) can be obtained. σY is
the experimental input found by exploiting Equations (34) and (35); therefore, the values of
Q and b were obtained through a least-squares fit of Equation (36).

σY − σL = −Q exp(−bp) (36)

The result of the least-squares fit operation is then resumed in Figure 16, where a
comparison between the experimental data and the best-fit curve is provided.

The numerical values of the constants of Voce istropic hardening model are reported
in Table 5. There were no differences between those obtained for CIKH model with three
backstress components and those obtained with four backstress components except for the
value of σ0.



Appl. Sci. 2023, 13, 2961 18 of 23

σ
(M
P
a)

εtot

Y

Inversion points

( )p

3
10

−


Figure 15. Cycle II transient used to calculate the parameters of the Voce model by exploiting the
stress values at the inversion points.
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Figure 16. Best-fit curve and experimental data that can predict the trend in the elastic limit.

Table 5. Numerical values of the parameters of Voce isotropic hardening model.

Model σ0 (MPa) Q (MPa) b

3 backstress 385 −69 44.5
4 backstress 309 −69 44.5

4.5. Results of B-W Model

In this section, the B-W model’s ability to predict cyclic plasticity is presented. The
parameter values were obtained using the entire first cyclic loading, tested at Rε ≈ −1; then,
cycle II was validated, and vice versa. After this, the stress-controlled test was also used to
obtain the values of B-W parameters, and cycle I and cycle II were employed for validation.
In the case of the stress-controlled test, considering what is stated in Section 3.1, only a few
initial cycles (from the second to the fifth) were considered. The ability of the B-W model to
predict the stabilized cycles of strain-controlled tests is shown in Figures 17–19, whereas in
Figure 20, the stress-controlled test and its corresponding modeled trend is presented.
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Figure 17. Comparisons between the experimental and modeled stabilized cycles of strain-controlled
tests using B-W model: (a) cyclic loading I, used for calibration, (b) cycle II, used for validation.
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Figure 18. Comparisons between experimental and modeled stabilized cycles of strain-controlled
tests using B-W model: (a) cycle I, used for validation, (b) cyclic loading II, used for calibration.
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Figure 19. Comparisons between experimental and modeled stabilized cycles of strain-controlled
tests using B-W model: (a) cycle I, used for validation, (b) cycle II, used for validation. The stress-
controlled test was involved in calibration.
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Figure 20. Stress-controlled test used for calibration of B-W model parameters with its corresponding
modeled trend.

The numerical values of the B-W model parameters obtained for the three different
cases are summarized in Table 6.

Table 6. Obtained values for the parameters of B-W model.

Extracted From α (MPa) β (MPa1−n) γ (MPa1−n) n δ (MPa) c k1 (MPa) k2 (MPa) k3 (MPa)

Strain-controlled test I 15.4 0.391 0.184 0.858 −0.041 0 0.674 0 0
Strain-controlled test II 14.7 0.011 0.005 1.940 −0.086 0 2.94 0 0
Stress-controlled test 15.5 0.068 0.036 1.290 −0.026 0 0.479 0 0

5. Conclusions

In this work, we used a novel procedure to identify CIKH model parameters. Three
strain-controlled tests and one stress-controlled test were used to implement the proce-
dure. Two strain-controlled tests were performed at Rε ≈ −1, whereas the third one was
conducted at Rε 6= −1. From the strain-controlled tests, we extracted the stabilized cycles
(Cycle I and Cycle II for the strain-controlled tests performed at Rε ≈ −1 and Cycle III
for the strain-controlled test executed at Rε 6= −1), and we determined the global proper-
ties of the stabilized cycles, namely, the slope at the inversion points, the hysteresis area,
the stress amplitude, the average stress and the average plastic strain. The experimental
stress-controlled test provided the ratcheting rate. The procedure validations are shown
in Figures 10 and 11, and an accurate matching can be seen between the modeled curves
and the experimental curves. A fourth backstress was added to improve the prediction
near the elastic limit, as shown in Figure 14, resulting in a high level of local accuracy. The
model was then completed by the determination of the Voce isotropic hardening model
parameters, eventually obtaining the CIKH model. A pointwise fitting was used to deter-
mine the parameters of the CKH model with three backstress components. Figure 6 can
better reproduce the experimental data than Figure 7. This is due to the wider range of
experimental total strain, on which the fitting of Figure 6 was developed. However, the
parameters obtained by fitting Cycle I cannot reproduce the extreme points of Cycle II, as in
Figure 6b, and the numerical values of parameters C3 and γ2 are not physically meaningful.
Therefore, it was not possible to reproduce the ratcheting rate. The Bouc–Wen model was
also considered to reproduce the cyclic plastic behaviour, and the parameters obtained
to fit the entire cyclic loading I showed a better ability to reproduce the stabilized cycles
of strain-controlled tests than those obtained that fit the entire cyclic loading II and the
stress-controlled test. This is shown in Figures 17–19, and is due to the wider range of total
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mechanical strain in Cycle I. The parameters of the Bouc–Wen model, obtained by fitting
the stress-controlled test, allow for the reproduction of the ratcheting rate, but not at the
quality level obtained by following the proposed procedure. To conclude, the proposed
procedure to calculate CIKH model parameters is physics-based, and is only formulated
on closed-form expressions, which show how the parameters govern each global property.
The equations are easily manageable, whereas, when a pointwise fitting is performed, the
optimization dynamic behind the software is not fully understandable. The proposed
technique involves four experimental cyclic loadings, which are still a reasonable number
to determine the model parameters in an efficient way. This last statement allows for one to
cover more experimental cases instead of completing the fitting on only one cycle, which
clearly results in a good prediction for that cycle but can lack accuracy if validated on a
cycle with a different R from that used for the calibration.

Some qualitative expectations about the numerical values of certain parameters of the
CIKH model, obtained through the proposed procedure, can be provided. The value of C1
is expected to be higher than the value of C2. The value of γ2 is expected to fall in the range
1–10, or even below this, whereas the value of C3 is lower than C1 and C2. The value of σL
is expected to be of the same order, but lower than the yield strength obtained through the
monotonic test. To eventually improve the zone near the elastic limit, a fourth backstress
can be added and a high value of γ4 is recommended, such as γ4 ≥ 5000.

The limit of this study is that it is focused on a uniaxial case. However, there are some
applications; for example, fatigue analyses of notched components loaded under torsion
and so multiaxially, as in [12], where the CKH model parameters were calibrated on the
uniaxial loading case according to the proposed procedure, which allowed for accurate
fatigue strength predictions to be obtained. Investigations of the calibration techniques
used for the determination of CIKH model parameters for multiaxial loading cases can
further improve this work. In addition to this, the Bouc–Wen model, according to the
results presented in this work, clearly shows the potential to properly describe the cyclic
plastic behaviour, apart from the reproduction of the ratcheting rate. This could be an initial
basis for finding ways to improve the mathematical form of this model and include an
accurate prediction of the ratcheting. However, the application of the B-W model is limited
to the uniaxial case, since its mathematical form is only suitable for this case.
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