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Abstract 

The present study proposes an analytical approach to describe contact pressure and wear evolution in line 

and point contacts. Starting from the unworn condition, described by Hertz theory, modifications of 

geometry and pressure distribution due to wear are included. Under the basic assumption of parabolic wear 

and pressure profiles, derived from Finite Element simulations, simple equations governing the phenomenon 

are derived, where the maximum wear depth evolution is described by a first order differential equation 

which can be easily solved. Interestingly, the maximum pressure remains dependent on the radius of 

curvature at the nominal contact point according to Hertz theory, but pressure is not null at the extremes of 

the contact region. The contact width can be derived from equilibrium conditions and wear law. The reliability 

of the procedure is proved by the perfect agreement with Finite Element simulations. 

Keywords 

Wear, wear model, Archard wear law, non-conformal contact, contact pressure, pin-on-plate wear test. 

 

1. Introduction 

The evolution of contact pressure and surface geometry as wear occurs is a challenging tribological issue, 

that has stimulated the interest of many researchers also because of its important consequences in the 

operational life of mechanical components. Many approaches have been applied to solve this problem, from 

purely analytical [1,2], to numerical [3–5], some including also lubrication [4,5], surface roughness [6], or with 

peculiar wear behaviour such as cross-shearing of UHMWPE [7]. 

Most frequently, the complete description of contact and wear evolution is achieved by means of Finite 

Element simulations [3,8–11] or boundary element models, e.g. [12,13]. However, they can be rather 

complex and require a skilled user to correctly set the numerous parameters typically involved in these 
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analyses. In a few cases, a combined semi-analytical approach, e.g. [14], or numerical method based on FFT-

accelerated procedure were adopted, e.g. [2,15,16]. Purely analytical formulations for estimating wear have 

been proposed in the past for different tribological pairs, such as for articular joint implants also by the 

present authors, e.g. [7,17,18]. 

An exhaustive review of the numerous analytical or semi-analytical models available in the literature is far 

beyond the aim of this study. Among them, the simplest ones are usually based on geometrical assumptions, 

i.e. the contact width calculated as the chord of the spherical/cylidrical pin, and/or assume a uniform 

pressure distribution, as the global incremental wear model (GIWM) in [19]. Also the more complex model 

developed by Argotov [20], where a the general Hertzian contact is assumed, does not consider the complete 

evolution of pressure but only its asymptotic trend, when it is almost uniform. Most frequently, the solution 

requires a discretization both in time and space, with an iterative procedure where pressure can be 

considered constant within each step . Differently, here we propose a very simple procedure for quantifying 

wear and contact pressure continuous evolution from the very initial phase to the asymptotic behaviour for 

non-conformal line/point contacts. In our previous studies, we assumed a constant (unworn) geometry, 

without updating it due to wear effects and therefore maintaining a constant pressure distribution over time. 

In this study, a continuous modification of the geometry is considered in a completely analytical formulation, 

which however moves from fundamental observations of the wear and pressure distributions we obtained 

from Finite Element simulations [21,22]. As proved in our recent study [23], for the simulated test case, 

pressure distribution is not affected by friction at least until f  0.4. Thus, the present study can be extended 

also to frictional contacts and can provide rapid and reliable indications to tribologists and engineers.  

 

2. Theoretical Background 

Before entering the main equations used in the proposed procedure, its foundations are recalled in the 

present section. 

2.1 Plane curve geometry 

Let us consider a planar curve  in the x-y plane. It can be described in parametric or explicit form, i.e. 

{
𝑥 = 𝑥(𝑞)
𝑦 = 𝑦(𝑞)

 or 𝑦 = 𝑦(𝑥) 

The use of the parametric or explicit form can be chosen to simplify the curve initial equation and wear 

evolution description. The explicit form is useful when wear can be assumed to occur in the y-direction, as in 

this case. We will use 

 𝑦0 = 𝑦0(𝑥) (1) 

for the new/unworn profile, and 

 𝑦(𝑡, 𝑥) = 𝑦0(𝑥) + ℎ(𝑡, 𝑥) (2) 



for the worn curve, depending on time, through the wear depth term ℎ(𝑡, 𝑥). 

One important feature of the curve for contact pressure description is its curvature (𝑡, 𝑥), or its inverse, 

the curvature radius 𝑟𝑐(𝑡, 𝑥) 

 (𝑡, 𝑥) =
𝑦′′

(1+𝑦′2)3 2⁄   and 𝑟𝑐(𝑡, 𝑥) = 1/(𝑡, 𝑥) (3) 

where   𝑦′ =
𝜕𝑦

𝜕𝑥
   and 𝑦′′ =

𝜕2𝑦

𝜕𝑥2
. 

2.2 Wear law 

The Archard wear law is frequently used when abrasion and adhesion are the main wear mechanisms 

involved in the process. It provides a simple relationship between the local wear rate ℎ̇ and the contact 

pressure p 

 ℎ̇(𝑡, 𝑥) = 𝑘 𝑣(𝑡, 𝑥)  𝑝(𝑡, 𝑥) (4) 

having denoted with k the wear factor and with 𝑣 the sliding velocity.  

Thus, at a given instant t, the linear wear and the loss volume can be obtained by the following integrals 

 ℎ(𝑡, 𝑥) = 𝑘 ∫ 𝑝(𝜏, 𝑥)
𝑡

0
𝑣(𝜏, 𝑥) 𝑑𝜏    (5) 

 𝑉(𝑡) = ∫ℎ(𝑡, 𝑥)𝑑𝐴 = 𝑘 ∫𝑝(𝑡, 𝑥) 𝑣(𝑡, 𝑥) 𝑑𝐴     (6) 

where A is the contact area. 

2.3 Hertzian contact equations 

As already mentioned, according to [23], pressure distribution is not affected by friction, so in the present 

study, Hertz solution for non-conformal 2D contacts [24] was used and therefore is briefly recalled in this 

section. Let us consider two bodies in point contact in C, having curvature radii 𝑟1 and 𝑟2 respectively, both 

made of linear elastic materials, each one characterised by a Young modulus (𝐸1 and 𝐸2) and a Poisson ratio 

(1 and 2) (Figure 1). We first define the equivalent radius of curvature 

 𝑟𝑒𝑞 = (
1

𝑟1
+

1

𝑟2
)
−1

 (7) 

and the equivalent Young modulus 

 𝐸𝑒𝑞 = (
1−1

2

𝐸1
+
1−2

2

𝐸2
)
−1

 (8) 

The characteristics of pressure distribution differ in case of Line Contact (LC), e.g. cylinder on plane, or Point 

Contact (PC), e.g. sphere on plane. In the first case, F  represents a load per unit length, while it is a force in 

PC. The maximum contact pressure is related to geometric and material properties as follows 



 𝑝𝐻
𝐿𝐶 = √

𝐹 𝐸𝑒𝑞

𝜋 𝑟𝑒𝑞
 ,          𝑝𝐻

𝑃𝐶 =
1

𝜋
√
6 𝐹 𝐸𝑒𝑞

2

 𝑟𝑒𝑞
2

3

 (9) 

According to Hertz, the contact pressure is distributed in a small area around the nominal contact point C 

limited by the contact half-width in LC or radius in PC given by 

 𝑎𝐻
𝐿𝐶 = 2√

𝐹 𝑟𝑒𝑞

𝜋 𝐸𝑒𝑞
 ,         𝑎𝐻

𝑃𝐶 = √
3

4

𝐹 𝑟𝑒𝑞

 𝐸𝑒𝑞

3

 (10) 

Both in LC and PC, pressure is maximum at the centre of the contact region and null at the boundary, 

following a semi-elliptical distribution 

 𝑝(𝑥) = 𝑝𝐻√1 − (
𝑥

𝑎𝐻
)
2

 (11) 

where x is a radial coordinate in PC. 

 

Figure 1 Schemes assumed in Hertz’ theory for the cases of (a) line contact between two cylinders and (b) the point 
contact between two spheres.  

3. Material and Methods 

3.1 Test cases 

As test case for the procedure, the wear evolution in a pin, with head radius r0 sliding over a plane, with 

constant velocity v is considered. The cylinder and the plane are assumed to be made of the same material 

(𝐸 and  ), but only the pin is considered to undergo to wear, following the Archard wear law.  

This simple scheme was used to describe two different cases (Figure 2): 

1) pin-on-plate test where the pin has a cylindrical head, defining a line contact (LC); 

2) pin-on disc/plate test where the pin has a spherical head, defining a point contact (PC). 
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Figure 2 Schemes of the test cases: (a) line contact: pin-on-plate test, (b) point contact: pin-on-plate/disc test. 

For numerical values, we referred to our previous studies already available in the literature, where we used 

Finite Element (FE) simulations to solve the problems: [21] for LC and [22] for PC. In Table 1, the main data 

used in the present study are reported, while further details on the FE models can be found in [21,22].  

 

Table 1. Main data for the two numerical test cases. 

Test case r0 (mm) E (GPa)  F k (mm3/N) vs (mm/s) d (mm) 

LC [21] 10 200 0.3 100 (N/mm) 10-8 1 1320 

PC [22] 5 210 0.3 21 N 1.25 10-7 25 3000 

 

3.2 Basic equations 

3.2.1 Unworn geometry 

The general background summarized in Sec.2 can be adapted to the specified test cases, starting from the 

description of the unworn geometry of the pin (Figure 3). 

 

Figure 3 Definition of the geometry in the x-y plane.  

In the x-y reference system, the lower portion of the circumference containing C is defined by  

 𝑦0(𝑥) = 𝑟0 [1 − √1 − (
𝑥

𝑟0
)
2
] (1.a) 
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3.2.2 Wear distribution 

According to Finite Element simulations, the wear profile during wear evolution has always a parabolic 

distribution, that can be expressed as 

 ℎ(𝑡, 𝑥) = {
ℎ𝑀(𝑡) [1 − (

𝑥

𝑎(𝑡)
)
2
]

0,   |𝑥| > 𝑎(𝑡)
,   |𝑥| ≤ 𝑎(𝑡) worn portion (12) 

This is a fundamental hypothesis as the whole procedure relays on it.  

To completely determine the wear profile at a given instant, we need to know ℎ𝑀(𝑡) and 𝑎(𝑡).  

The wear volume can be obtained by integrating eq.(12) ℎ(𝑡, 𝑥) over time and contact area, that in this case 

gives simply 

 𝑉(𝑡) = 𝑘 𝑣 𝐹 𝑡. (13) 

3.2.3 Worn profile 

Replacing eqs.(1.a) and (12) in eq.(2), the worn profile of the pin becomes 

 𝑦(𝑡, 𝑥) =

{
 
 

 
 𝑟0 [1 − √1 − (

𝑥

𝑟0
)
2
] + ℎ𝑀(𝑡) [1 − (

𝑥

𝑎(𝑡)
)
2
] , |𝑥| ≤ 𝑎(𝑡)

𝑟0 [1 − √1 − (
𝑥

𝑟0
)
2
] , |𝑥| > 𝑎(𝑡)

 (14) 

It should be noted that in eq.(14) wear is considered to occur in the y-direction, along the normal to the 

plane. 

3.2.4 Curvature of the worn profile 

Since wear modifies the curve profile, the radius of curvature changes with time too. If we focus on the 

curvature in the nominal contact point C, eq.(3) can be written as 

 (𝑡, 𝑥 = 0) = 𝐶(𝑡) =
1

𝑟0
+
𝜕2ℎ

𝜕𝑥2
|
𝑥=0

=
1

𝑟0
− 2

ℎ𝑀(𝑡)

𝑎(𝑡)2
=

1

𝑟0
(1 − 2

𝑟0 ℎ𝑀(𝑡)

𝑎(𝑡)2
) (15) 

 𝑟𝐶(𝑡) = 𝐶(𝑡)
−1 = 𝑟0  (1 − 2

𝑟0 ℎ𝑀(𝑡)

𝑎(𝑡)2
)
−1

 (16) 

3.2.5 Pressure profile 

In the initial condition, the Hertzian solution is adopted, with 𝑟𝑒𝑞 = 𝑟0. Thus, the maximum pressure and the 

contact half-width in the unworn state, according to eq.(9) and (10) are 

     𝑝0
𝐿𝐶 = √

𝐹 𝐸𝑒𝑞

𝜋 𝑟0
                𝑎0

𝐿𝐶 = 2√
𝐹 𝑟0

𝜋 𝐸𝑒𝑞
  (17) 

   𝑝0
𝑃𝐶 =

1

𝜋
√
6 𝐹 𝐸𝑒𝑞

2

 𝑟0
2

3
              𝑎0

𝑃𝐶 = √
3

4

𝐹 𝑟0

 𝐸𝑒𝑞

3

 (18) 



for line and point contacts. As wear increases, the pressure profile changes rapidly. The distribution observed 

from Finite Element simulations appears quasi-parabolic, with non-null values at the extremes (Figure 4). 

Indeed, according to the Archard wear law in eq.(6), pressure is proportional to the linear wear rate, that is,  

 ℎ̇(𝑡, 𝑥) = {
ℎ̇𝑀(𝑡) + [2

ℎ𝑀(𝑡)

𝑎(𝑡)2
𝑎̇(𝑡) − ℎ̇𝑀(𝑡)] (

𝑥

𝑎(𝑡)
)
2

0,   |𝑥| > 𝑎(𝑡)
,   |𝑥| ≤ 𝑎(𝑡) (19) 

Thus,  

 𝑝(𝑡, 𝑥) = {
1

𝑘 𝑣
 {ℎ̇𝑀(𝑡) + [2

ℎ𝑀(𝑡)

𝑎(𝑡)
𝑎̇(𝑡) − ℎ̇𝑀(𝑡)] (

𝑥

𝑎(𝑡)
)
2
}

0,   |𝑥| > 𝑎(𝑡)
,   |𝑥| ≤ 𝑎(𝑡) (20) 

Since we assumed a uniform sliding velocity in the contact region, at every instant the contact pressure has 

a parabolic profile (Figure 4) according to the following 

 𝑝(𝑡, 𝑥) = {
𝑝𝑀(𝑡) + [𝑝𝑎(𝑡) − 𝑝𝑀(𝑡)] (

𝑥

𝑎(𝑡)
)
2

0,   |𝑥| > 𝑎(𝑡)
,   |𝑥| ≤ 𝑎(𝑡) (21) 

where 

 𝑝𝑀(𝑡) =
ℎ̇𝑀(𝑡)

𝑘 𝑣
 (22) 

 𝑝𝑎(𝑡) = 𝑝(𝑡, 𝑥 = ±𝑎(𝑡)) =
2 

𝑘 𝑣

𝑎̇(𝑡)

𝑎(𝑡)
 ℎ𝑀(𝑡) (23) 

It must be noted that 𝑎(𝑡) is the contact half-width but it cannot be obtained from Hertz theory, i.e. eq.(10). 

On the contrary, the maximum pressure 𝑝𝑀(𝑡) can be estimated by eq.(9), depending on the curvature radius 

in the nominal contact point as stated by Hertz, i.e. 

     𝑝𝑀
𝑃𝐶(𝑡) = √

𝐹 𝐸𝑒𝑞

𝜋 𝑟𝐶(𝑡)
                𝑝𝑀

𝐿𝐶 =
1

𝜋
√
6 𝐹 𝐸𝑒𝑞

2

 𝑟𝐶
2(𝑡)

3
 (24) 
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Figure 4 Assumed trends of wear depth and pressure profiles. 

3.2.6 Equilibrium equation 

At the initial instant, the equilibrium is implicitly guaranteed by Hertz equations. As wear proceeds, the 

following equilibrium equation should be considered 

𝐹 = ∫𝑝(𝑡, 𝑥) 𝑑𝐴 

For linear contacts, we have 

 𝐹 = ∫ 𝑝(𝑡, 𝑥) 𝑑𝑥
𝑎(𝑡)

−𝑎(𝑡)
=

2

3
𝑎(𝑡)(𝑝𝑎(𝑡) + 2 𝑝𝑀(𝑡)) (25) 

that, substituting eqs.(22)-(23) in eq.(25), gives 

3

4
𝑘 𝑣 𝐹 = ( 𝑎̇(𝑡) ℎ𝑀(𝑡) + 𝑎(𝑡)ℎ̇𝑀(𝑡)) =

𝑑

𝑑𝑡
( 𝑎(𝑡) ℎ𝑀(𝑡)) 

In this specific case where 𝑘, 𝑣, 𝐹 are constant, the following equation is obtained 

 (
3

4
𝑘 𝑣 𝐹)  𝑡 =  𝑎(𝑡) ℎ𝑀(𝑡) (26) 

representing an important relationship between the maximum wear depth, the contact half-width and time. 

The same equation can be obtained from the Archard law. Indeed, taking into account the parabolic wear 

distribution, the wear volume can be written as 

𝑉(𝑡) = ∫ℎ(𝑡, 𝑥)𝑑𝐴 = ∫ ℎ𝑀(𝑡) [1 − (
𝑥

𝑎(𝑡)
)
2

]
𝑎(𝑡)

−𝑎(𝑡)

d𝑥 =
4

3
 𝑎(𝑡) ℎ𝑀(𝑡) 

that, with eq.(13), confirms eq.(26). 

For point contacts, due to the axial-symmetry about the y-axis, we have 

 𝐹 = 2𝜋 ∫ 𝑥 𝑝(𝑡, 𝑥) 𝑑𝑥
𝑎(𝑡)

0
=

𝜋

2
𝑎2(𝑡)(𝑝𝑎(𝑡) + 𝑝𝑀(𝑡)) (27) 

Also in this case, applying the global Archard equation, another useful relationship can be achieved 

𝑉(𝑡) = ∫ℎ(𝑡, 𝑥)𝑑𝐴 = 2𝜋∫ 𝑥 ℎ𝑀(𝑡) [1 − (
𝑥

𝑎(𝑡)
)
2

]
𝑎(𝑡)

0

d𝑥 =
𝜋

2
 𝑎2(𝑡) ℎ𝑀(𝑡) 

  (
2

𝜋
𝑘 𝑣 𝐹)   𝑡 = 𝑎2(𝑡) ℎ𝑀(𝑡) (28) 

3.2.7 Solving equations 

a) Line contact 

Putting all the things together, inserting eq.(17) in eq.(20), we obtain 

     𝑝𝑀
𝐿𝐶(𝑡) = √

𝐹 𝐸𝑒𝑞

𝜋 𝑟𝐶(𝑡)
= 𝑝0  (1 − 2

𝑟0 ℎ𝑀(𝑡)

𝑎(𝑡)2
)
0.5

 (29) 

and also 



  ℎ̇𝑀(𝑡) = 𝑘 𝑣 𝑝0 (1 − 2
𝑟0 ℎ𝑀(𝑡)

𝑎(𝑡)2
)
0.5
=  ℎ̇𝑀0  (1 − 2

𝑟0 ℎ𝑀(𝑡)

𝑎(𝑡)2
)
0.5

 (30) 

Using eq.(26) to calculate 𝑎(𝑡) 

 𝑎(𝑡) = (
3

4
𝑘 𝑣 𝐹) 

𝑡

  ℎ𝑀(𝑡)
= 𝑐𝐹𝐿

𝑡

  ℎ𝑀(𝑡)
 (31) 

where 

𝑐𝐹𝐿 =
3

4
𝑘 𝑣 𝐹 

and inserting it in eq.(30), the solving differential equation can be derived 

  ℎ̇𝑀(𝑡) =  ℎ̇𝑀0 (1 − 2 𝑟0
ℎ𝑀(𝑡)

3

𝑐𝐹𝐿
2  𝑡2

)
0.5

 (32) 

b) Point contact 

Repeating the above passages for point contact, we have 

     𝑝𝑀
𝑃𝐶(𝑡) =

1

𝜋
√
6 𝐹 𝐸𝑒𝑞

2

 𝑟𝐶
2(𝑡)

3
= 𝑝0  (1 − 2

𝑟0 ℎ𝑀(𝑡)

𝑎(𝑡)2
)
2/3

 (33) 

  ℎ̇𝑀(𝑡) =  ℎ̇𝑀0  (1 − 2 𝑟0
 ℎ𝑀(𝑡)

𝑎(𝑡)2
)
2/3

 (34) 

Using eq.(28) to calculate 𝑎(𝑡) 

 𝑎(𝑡) = √( 
2

𝜋
𝑘 𝑣 𝐹 ) 

𝑡

  ℎ𝑀(𝑡)
= √𝑐𝐹𝑃

𝑡

  ℎ𝑀(𝑡)
 (35) 

here 

𝑐𝐹𝑃 =
2

𝜋
𝑘 𝑣 𝐹 

and inserting it in eq.(34), the solving differential equation can be derived 

  ℎ̇𝑀(𝑡) =  ℎ̇𝑀0 (1 − 2 𝑟0
ℎ𝑀(𝑡)

2

𝑐𝐹𝑃 𝑡
)
2/3

 (36) 

3.2.8 Procedure 

Contact and wear evolution are completely determined once   ℎ𝑀(𝑡), 𝑎(𝑡), 𝑝𝑀(𝑡) and 𝑝𝑎(𝑡) are known. 

As first step, eq.(32) for line contacts or eq.(36) for point contacts must be solved. This can be obtained 

numerically, e.g. using ode23 solver in Matlab® for t>0 or in a discrete form implementing a simple cycle. 

Once   ℎ𝑀(𝑡) is known, 𝑎(𝑡) can be computed by eq.(31) or (35), 𝑝𝑀(𝑡) using eq.(29) or (33), 𝑝𝑎(𝑡) from 

eq.(25) or (27) for LC or PC, respectively. The whole procedure requires only four simple lines in Matlab®, in 

addition to input data. 



4. Results and discussion 

As results of the proposed procedure, in this section we report the obtained trends of the maximum pressure 

𝑝𝑀 and maximum wear depth ℎ𝑀 during the wear process, versus the travelled distance d, both for LC and 

PC. For validation purposes, analytical results are compared to FE simulations [21,22]. 

For both LC and PC, the wear of the pin produces a fast decrease of the maximum contact pressure 𝑝𝑀, 

depicted at the top of Figure 5(a,b), caused by a more and more conformal contact. Accordingly, the 

maximum wear depth ℎ𝑀 increases non linearly during the running in-phase, whilst almost linearly 

approaching to the steady state phase, as shown at bottom of Figure 5(c,d). 

The increase of contact conformity is well captured by the evolution of contact pressure 𝑝(𝑡, 𝑥), wear depth 

ℎ(𝑡, 𝑥) and worn profiles 𝑦(𝑡, 𝑥) at a few selected instants, given in Figure 6, for LC (on the left) and the PC 

(on the right). In particular, as far as the wear proceeds, the pressure profile flattens, as shown at the top of 

Figure 6(a,b), and thus the pressure at the centre and the edges of the contact/worn area tends to reach the 

same value, as well described in Figure 7. Accordingly, the wear depth, always with a parabolic profile, 

increases in magnitude and width: the curvature radius of the pin increases, the worn profile flattens as 

plotted at the centre of Figure 6(c, d), thus increasing the contact area. 

Since a higher k and a longer travelled distance were simulated in the case of PC with respect to LC, the steady 

state phase of the wear process is shown more clearly for the PC: pM and pa assume the same values for a 

travelled distance higher than about 100 mm (Figure 7), resulting characterized by flat pressure and worn 

profiles. 

The perfect agreement between analytical and FE results both for LC and PC is demonstrated by almost 

overlapped curves of 𝑝𝑀, ℎ𝑀, and pressure and worn profiles at given time instants.  

The main difference between analytical and FE results consists in the presence of characteristic pressure 

peaks at the extremes of the worn regions in the FE solution. This is due to a kind of edge effect, with a 

concentrated loads, generated by the elements at the borders of the worn region, having a discontinuous 

tangent and curvature of the profile. 

The proposed procedure starts with wear, i.e. when t>0. Since it is assumed that at the beginning the contact 

pressure is described by Hertz solution and then becomes parabolic (Fig.6), a ‘transition’ phase from the 

elliptic to the parabolic profile should occur. Actually, we did not deepen this transition, because things would 

not change if we could extend the parabolic trend also for t=0. Figure 8 compares for the LC case, the contact 

pressure profiles in unworn conditions according to the Hertzian theory, the parabolic profile and the FE 

simulations [21]. They appear very similar, the parabolic profile fits well the contact width estimated by FE 

simulations, larger that the elliptic hertzian solution. Another difference is the slope of the pressure profile 

at the borders of the contact, infinite for an Hertzian contact, finite for other two profiles.   

With respect to other studies in the literature, e.g. [19,20], in this case a continuous evolution of pressure 

and wear is obtained with a very simple procedure. 



 

 

Figure 5 Maximum pressure (top) and wear depth (bottom) history in a line contact (a, c) and ina point contact (b, d): comparison 
between analytical results and FE simulation([21] for LC and [22] pr PC). 

 

(MPa)

d (mm)

[19]

d (mm)

(mm)

[19]

(MPa)

d (mm)

[20]

d (mm)

(mm)

[20]

LINE CONTACT POINT CONTACT

(a) (b)

(c) (d)



 

Figure 6 Profiles of contact pressure (top), wear depth (centre) and worn geometry (bottom) at different travelled distances d (mm) 
for line contact (a, c, e)and point contact (b, d, f): comparison between analytical results and FE simulations ([21] for LC and [22] pr 

PC). 
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Figure 7 Time history of the maximum contact pressure pM and the contact pressure pa at the edge of the worn region for the line 
contact (a) and the point contact (b). 

 

 

Figure 8 Comparison of the contact pressure profiles in unworn conditions according to Hertzian theory, parabolic profile and FE 
modelling [21]. 

5. Conclusions 

The present study proposes an analytical approach to describe pressure and wear evolution in line and point 

contacts. Starting from the unworn condition, described by Hertz theory, modifications of geometry and 

pressure distribution due to wear are included. The basic assumption, derived from FE studies, is that the 

wear and pressure profile are parabolic. Under this hypothesis a simple procedure was developed, where the 

Hertzian formula for estimating the maximum pressure remains valid during the whole wear process. On the 

other hand, the contact half-width or radius must be estimated by equilibrium condition and Archard wear 

law. With these simple observations, the evolution of pressure and wear can be easily implemented in few 

lines of code in Matlab or similar softwaew: the maximum linear wear depth can be calculated by solving a 

first order differential equation, and then all the other relevant quantities can be easily obtained. 
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Two numerical test cases were considered to validate the procedure, providing results almost overlapped to 

Finite Element solutions, thus proving the reliability of the assumption and of the procedure. 

One of the major achievements of the proposed analytical approach consists in the simplicity of its 

implementation and in the extremely low computational cost, few seconds, for the prediction of long term 

wear. This study can help researchers and engineers to achieve rapid and reliable results on wear and 

pressure evolution in many practical problems.  
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