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Heterogeneous catalysis is an essential tool for the development of both emerging
and established chemical processes, as well as for their economic and environmental
sustainability. Supported catalysts are largely used in the manufacture of a wide range of
fine and specialty chemicals [1,2]. From this perspective, much effort is currently focused
toward the rational design of supported catalysts by exploiting innovative approaches
aimed at finely-tuning the morphological, structural and textural features of both the active
phase and the support [3,4]. Towards the final goal of attaining improved catalytic processes
with minimal penalty to the environment, this ambitious objective can be effectively
combined with the current, fast progress of other enabling technologies. Among these
innovative approaches, the use of non-conventional green reaction media or solvent-free
conditions, flow-chemistry, and alternative energy-transfer techniques stand as the most
promising strategies [5–9].

This Special Issue tackles some of the topics above, including examples of the devel-
opment of supported catalysts for either batch or continuous-flow applications, and their
use in chemo-, regio-, and stereoselective organic transformations for the synthesis of fine
and specialty chemicals, as well as of non-conventional green solvents.

The selective hydrogenation of α,β-unsaturated ketones to the corresponding satu-
rated ketones represents a key transformation step for the synthesis of pharmaceuticals
and flavors and fragrances. In this view, Cavuoto et al. [10] report highly efficient silica-
supported Cu-based catalysts prepared by chemisorption–hydrolysis (CH) technique as a
valid alternative to conventionally used noble metal- or Ni-based systems. Silica-based
supports with different surface areas and pore volumes were studied, highlighting the
role of the silica support on the efficiency of the catalyst. Moreover, an unprecedented use
of heterogeneous Cu-based systems for the chemoselective reduction of α,β-unsaturated
sulfones was reported.

Benzimidazole derivatives are largely used in pharmaceutical chemistry. Peng et al. [11]
report for the first time the use of HfCl4 supported on carbon as an efficient, recyclable,
and easily removable catalyst for the synthesis of 1,2-disubstituted benzimidazoles by
condensation of N-substituted o-phenylenediamines and aldehydes.

Fusini et al. [12] reported Pd NPs by metal vapor synthesis immobilized on a com-
mercially available poly(4-vinylpyridine) resin, cross-linked with divinylbenzene, as an
effective and recyclable supported catalyst in air atmosphere for the Suzuki–Miyaura
reaction, one of the most employed and powerful reactions for the synthesis of biaryl and
alkene derivatives.

Methoxycarbonylation reactions may be key steps in the production of industrial
products, such as detergents, cosmetics, and pharmaceuticals. Aikiri et al. [13] report the
application of palladium complexes immobilized on MCM-41 for the methoxycarbonyla-
tion of 1-hexene to give mainly linear esters. The heterogeneous nature of the catalyst was
confirmed by filtration experiments and poisoning tests, as well as its recyclability.
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Glyceric acid derivatives are important biochemical intermediates, that find applica-
tions in pharmaceuticals. Wang et al. [14] describe a series of Au-based catalysts supported
on mesoporous supports (transition metal oxides or mixed oxides) having different compo-
sitions and structures. The role of the support on the selective oxidation of glycerol with
hydrogen peroxide to obtain glyceric acid was studied in detail.

Efficiency in the preparation of supported catalysts can be an especially demanding
task when the covalent immobilization of an organic ligand is pursued. Pucci et al. [15]
disclose an effective and chromatography-free route to tris(triazolyl) units covalently linked
to beads or monolithic polystyrene resins. The corresponding Cu(I) complexes proved
to be competent catalysts for the Huisgen 1,3-dipolar cycloaddition between azides and
alkynes, both in batch and continuous-flow reactors.

On the other hand, Rossi et al. [16] explore the use of 3D printing as enabling tool in
organic synthesis. They successfully describe the use of stereolithography to obtain in a
cheap and highly reproducible manner 3D-printed thiourea-embedded devices, differing
in shape and accessible surface. The microreactors obtained by this approach were tested
in the continuous-flow, organocatalyzed Friedel–Crafts alkylation of N–Me–indole with
trans-β-nitrostyrene.

Finally, Ding et al. [17] report the synthesis of propylene carbonate as alternative green
solvent to be used in organic synthesis. The obtainment of the said cyclic carbonate from 1,2-
propylene glycol and urea was conveniently attained by designing a hydrotalcite-derived
mixed metal oxide catalysts with tailored acid/base properties.

We sincerely thank all authors for their contributions, as well as the editorial team of
Catalysts for their support.
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