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Abstract: In this paper, open queuing networks with Poisson arrivals and single-server infinite buffer

queues are considered. Unlike traditional queuing models, customers are served (with exponential

service time) in batches, so that the nodes are non-work-conserving. The main contribution of this

work is the design of an efficient algorithm to find the batch sizes which minimize the average

response time of the network. As preliminary steps at the basis of the proposed algorithm, an

analytical expression of the average sojourn time in each node is derived, and it is shown that

this function, depending on the batch size, has a single minimum. The goodness of the proposed

algorithm and analytical formula were verified through a discrete-event simulation for an open

network with a non-tree structure.

Keywords: open queuing networks; batch service; optimization

MSC: 60K20

1. Introduction

The recent growing interest in queuing networks with batch services is motivated
by their use as mathematical models of packet switching networks [1], wireless sensor
networks [2], manufacturing systems [3–6], Web servers [7], data-processing systems [8]
and transportation systems [9].

The analysis of queues with batch services was originally introduced in [10,11]
and extended to queuing networks in [12]. A review of the main results on queues with
batch services can be found in [13,14].

Such a feature as batch service significantly complicates the model analysis, since it
violates the one step assumption, which is at the basis of product-form queuing networks.
Indeed, in general it is not possible to obtain a product-form of the stationary distribution [6,15]
for a queuing network with batch services, and this consideration strongly limits their practical
applicability. To overcome this problem, approximate analysis methods, based on mean
value analysis (MVA) [1] or the decomposition method [6,16], have been proposed in the
literature. In [15], an infinitesimal operator was constructed to obtain a stationary distribution.
In [17–22], a product form of the stationary distribution for queuing networks was obtained
under certain assumptions. In more detail, Chao et al. [18] supposed that at service completion,
the entire batch coalesces into a single unit, and it either leaves the system or goes to another
node according to given routing probabilities; the product-form solution of such a model
can provide relevant bounds for the behavior of assembly processes, especially when the
system is operating under heavy traffic. In [19], conditions were obtained under which
Markovian queues (i.e., with Poisson arrivals of batches of tasks and exponential task-service
times), with both batch arrivals and departures, have a geometric queue length probability
distribution at equilibrium. Furthermore, in [20], response time density was obtained for
a tandem pair of such Markovian queues. Miyazawa and Taylor [21] considered queuing
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networks with batch arrivals and departures, in which additional batches arrive to the nodes
when they are empty. The introduction of these extra arrivals made it possible to obtain a
geometric stationary distribution, which is a (stochastic) upper bound for the original network.
Such systems were further analyzed by Chao [22], who proved that the stationary distribution
satisfies a set of non-standard partial balance equations and that the extra arrivals are the
necessary and sufficient conditions for having a product form solution, as well as for the
partial balance equation to hold.

In addition to the above-discussed probabilistic analysis, both theoretical [23,24]
and practical [3–5,8,25] parameter optimization of queuing networks with batch services
represent open issues of significant relevance. In more detail, one of the classes of
optimization problems involves determining the optimal size of the batch, since it has
a significant impact on network performance. Rabta and Reiner [3] proposed a general-
purpose genetic algorithm and an approximate decomposition procedure for determining
optimal batch sizes in a multi-product manufacturing system with the goal of minimizing
the total cycle time. The problem of determining the optimal buffer size in a material
handling system with constraints on throughput and cycle time was addressed in [4]
by using queue decomposition and an iterative method. In more detail, in a material
handling system a vehicle moves back and forth between consecutive workstations that
have input/front and output/rear buffers. The system was analyzed as an open queuing
network, in which input buffers corresponded to single-server queues with batch arrivals,
workstations were modeled as traditional single-server queues and the output buffers
corresponded to queues with batch services.

In [5], a queuing network with batch services was used to model semiconductor
fabrication facilities. A procedure for distributing plant resources was proposed, which
ensures the minimum cost of equipment for a given set of technical characteristics (volume
and cycle time targets). Kar and Harrison [8] investigated data processing systems: the
optimization problem of finding the batch size by maximizing the throughput was solved
using mean-field techniques. Finally, [25] dealt with M/G[a,b]/1/N queues with bulking
threshold a and maximum service capacity b; by means of renewal theory, busy period
analysis and decomposition techniques. It was shown how increasing the bulking threshold
affects performance indexes, such as the mean waiting time and the time-averaged number
of loss customers. Then, a necessary and sufficient condition for the optimal bulking
threshold that minimizes the expected waiting time was established, and an algorithm
which guarantees to find the optimal threshold in polynomial time was proposed.

This paper extends the results published in [15,26] for queuing networks consisting
of M/Mb/1 systems, where b denotes the batch size. In more detail, in [26], based on the
fact that the stationary distributions of the considered M/Mb/1 queue and an M/M/1
queue with (adequately chosen) state-dependent service rates are identical, a product-form
for the stationary distribution of a general queuing network with batch services has been
obtained. Taking advantage of our previous result, in this work the analytical expression of
the average response time of the queuing network is obtained, and it is shown that it has
one minimum. This is the basis for the main original contribution of the paper, represented
by an algorithm for finding the optimal batch sizes that minimize the mean response time.

It should be noted that similar results were recently derived in [27] for infinite servers
queues: Using the factorial moment generating function, the authors obtained a product-
form for the stationary distribution of the M/Mb/∞ system; showed that the stationary
distributions of the M/M1/∞ (i.e., b = 1) and M/M/∞ queues are identical; and derived
some performance indexes. In general, the assumption of infinite servers simplifies the
tractability of queuing systems, and to the best of our knowledge a similar analysis has not
been extended to the single server case.

The rest of the paper is organized as follows. Section 2 describes the main features of
open queuing networks with batch services, and Section 3 introduces the equivalent Jackson
network, originally proposed by the authors in [26]. Then, in Section 4, the expressions of
the average sojourn time in each node and of the response time of the network are derived.
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Section 5 presents the main original contribution of this paper, namely, an optimization
algorithm for finding the vector of the batch sizes for which the average response time is
minimal. Finally, Section 6 numerically illustrates the original contributions of the paper.

2. Statement of the Problem

The paper deals with large-scale networks with batch services and individual routing
of the customers. In more detail, a continuous-time open queuing network N consisting of
L nodes, Si, i = 1, . . . , L, and an external traffic source S0 is considered. The arrival process
is Poissonian with rate λ0, and customer transitions between nodes Si, i = 1, . . . , L, are
described by the routing matrix Θ = (θij), i, j = 0, . . . , L, where θij defines the transition
probability from node Si to node Sj.

As in classic open queuing networks, each node Si, i = 1, . . . , L, consists of an infinite
capacity single-server queue, and arriving customers are put in the waiting queue if the
server is busy. It is assumed that in node Si the customers are served in batches of size bi.
In more detail, the server stays idle until bi customers arrive at the node; if more customers
are present in the waiting queue when the server is idle, then bi customers are selected
in any order, while the others remain in the queue. The service times are exponentially
distributed with parameter µi, i = 1, . . . , L. At the end of the service, the destination node
Sj of each customer, independently of the others, is determined accordingly to the routing
probability θij, i = 1, . . . , L, j = 0, 1, . . . , L.

The following analysis is based on the assumption that the number of possible
destinations from each node Si is significantly larger than the batch size. Therefore,
the simultaneous arrival of two or more customers in a node has an infinitesimal probability,
and the input flow in each node of N can be approximated as a Poisson stream of customers
with intensity depending on λ0 and Θ = (θij).

The state of the network is described by a vector s = (s1, . . . , sL), where si indicates
the number of customers at node Si. Hence, the state space of the queuing network N can
be denoted as X = {s : si ≥ 0}.

The first step is to determine the stationary distribution π(s) = (π1(s1), . . . , πL(sL)),
s ∈ X, for the queuing network N, where the stationary distributions πi(si) in the nodes Si,
si = 0, 1, . . . , i = 1, . . . , L, can be calculated considering each node in isolation, as originally
proved in [26] and briefly summarized in the next section.

3. Single Node Analysis and Equivalent Jackson Network

Let us consider the generic node Si, i = 1, . . . , L, in isolation, with input rate λi

given by

λi =
ωi

ω0
λ0, i = 1, . . . , L, (1)

where the vector of visitation rates ω = (ω0, ω1, . . . , ωL) is the solution of the equation
ωΘ = ω with the normalization condition ∑

L
i=0 ωi = 1.

It is easy to derive the equilibrium equations for node Si:





λiπi(n) = µiπi(bi), n = 0,

λiπi(n) = λiπi(n − 1) + µiπi(bi + n), 1 ≤ n ≤ bi − 1,

(λi + µi)πi(n) = λiπi(n − 1) + µiπi(bi + n), n ≥ bi.

(2)

Let us introduce a birth–death process ξi, equivalent in steady-state probabilities to the
Markov process associated with the node Si. The process ξi is defined on the set of states
{0, 1, . . . }, with birth rates λi = λi(n), which do not depend on the state n, n ∈ {0, 1, . . . },
and death rates µ̃i(n), n ∈ {1, 2, . . . }. The state space and the parameters λi of the process ξi

correspond to the state space {0, 1, . . . } and the input rate of node Si defined by Equation (1).
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To determine the rates µ̃i(n), n = 1, 2, . . . , note that the steady-state probabilities of the
birth–death process ξi are given by

πi(k) = πi(0)
k

∏
n=1

λi

µ̃i(n)
, k = 1, 2, . . . , (3)

where

πi(0) =

(
1 +

∞

∑
k=1

k

∏
n=1

λi

µ̃i(n)

)−1

, i = 1, . . . , L.

By replacing (3) in (2), the following expressions are obtained for µ̃i(n), n = 1, 2, . . . :





µ̃i(n) = λi − µi
λ

bi
i

µ̃i(n + 1) · . . . · µ̃i(bi + n)
, 1 ≤ n ≤ bi − 1,

µ̃i(n) = λi + µi − µi
λ

bi
i

µ̃i(n + 1) · . . . · µ̃i(bi + n)
, n ≥ bi.

(4)

Let Mi = lim
n→∞

µ̃i(n); if the limit exists, then:

µiλ
bi
i = (λi + µi − Mi)M

bi
i

or
M

bi+1
i − (λi + µi)M

bi
i + λ

bi
i µi = 0 . (5)

The existence of the equivalent birth–death process ξi depends upon the existence of a
positive solution of the previous equation, which satisfies the stability condition for each
node Si.

As proved in [26], taking into account the stability condition, equation (5) has a unique
root Mi, belonging to the open interval

(
bi(λi + µi)

bi + 1
,
(λi + µi)

bi+1 − λ
bi
i µi

(λi + µi)bi

)
, (6)

which in the general case can be determined numerically. From (4) it follows that

µ̃i(bi) = µ̃i(bi + 1) = µ̃i(bi + 2) = · · · = Mi,

and the service rates µ̃i(bi − 1), µ̃i(bi − 2),. . . , µ̃i(1) can be easily derived recursively.
Since the equivalent process ξi can be built for any node Si, it is possible to define

a Jackson network Ñ with nodes S̃i, equivalent in stationary distribution to the original
queuing network N with batch services. According to the previous results for the single
node, Ñ has state-dependent service rates µ̃i(n), where n is the number of customers in
the node S̃i, n = 1, 2, . . . , i = 1, . . . , L, and its arrival rates and routing probabilities are the
same as in the original queuing network N.

Moreover, N and its equivalent network Ñ are stable if and only if the utilization
coefficient in the node Si, i = 1, . . . , L,

ρi =
λi

biµi
< 1.

Under such conditions, the stationary distribution for Ñ is given by

π(s) =
L

∏
i=1

πi(si), s ∈ X, (7)
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where

πi(si) = πi(0)
si

∏
n=1

λi

µ̃i(n)
.

4. Stationary Response Time

The stationary distribution π(s) for Ñ allows us to calculate the average values of
various performance parameters.

To characterized the queuing network as a whole, the most relevant index is the
average time spent by a customer in the queuing network, known as response time:

τ̄ =
1

λ0

L

∑
i=1

λiūi,

which is given by the weighted sum of the average sojourn times ūi in all the nodes Si.
An elegant closed-form expression for the average sojourn time is provided by the

following Theorem, which is valid for a generic node Si, i = 1, . . . , L. For sake of simplicity,
in the proof of the theorem, the subscript i identifying the node is omitted.

Theorem 1. The average sojourn time in a queuing system with batch services of fixed size b is
given by

ū =
b − 1

2λ
+

1

M − λ
, (8)

where λ is the arrival rate and M is the unique solution of (5), satisfying the stability condition.

Proof of Theorem 1. By substituting (3) into the first equation of (2), we get

λ

µ
=

λb

µ̃(1)µ̃(2) . . . µ̃(b)
,

and by taking into account the latter equality:

π(n + b) = π(0)
λ

µ

(
λ

M

)n

, n ≥ 0, b ≥ 1. (9)

Having defined x = λ
M , the system (2) can be rewritten as follows:





π(b) = π(0) λ
µ ,

π(n) = π(0)
n

∑
i=0

xi, 1 ≤ n ≤ b − 1,

π(n) = π(0)xn−b λ
µ , n ≥ b.

(10)

When taking into account Little’s law and the definition of the average number of
customers in the system, the average sojourn time is given by

ū =
1

λ

∞

∑
n=0

nπ(n),

and by substituting the expressions of the state probabilities given by (10), the previous
expression becomes

ū =
1

λ

(
π(0)(1 + x) + 2π(0)(1 + x + x2) + · · ·+ (b − 1)π(0)(1 + x + · · ·+ xb−1)+
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+
∞

∑
n=b

nπ(0)xn−b λ

µ

)

or rearrange the terms according to the powers of x:

ū =
π(0)

λ

(
(1 + x)

b−1

∑
i=1

i + x2
b−1

∑
i=2

i + · · ·+ xb−1(b − 1) +
∞

∑
n=b

nxn−b λ

µ

)
.

The next step of the proof consists in finding the value of π(0). To this end, the system (2)
can be rewritten in the form





λπ(0) = µπ(b),

λπ(1) = µπ(b) + µπ(b + 1),

. . .

λπ(b − 1) = µ(π(b) + π(b + 1) + · · ·+ π(2b − 1)),

λπ(b) = µ(π(b + 1) + π(b + 2) + · · ·+ π(2b + 1)),

. . .

By summing up all the equations of this system, we obtain

λ
∞

∑
n=0

π(n) = bµ
∞

∑
n=b

π(n)

or
∞

∑
n=b

π(n) =
λ

bµ
. (11)

By substituting (9) into (11) and applying the formula for the sum of an infinite
geometric progression, the probability of an empty system becomes

π(0) =
1 − x

b
.

The last part of the proof consists in manipulating the expression of ū, which can
be significantly simplified thanks to the specific structure of the state probabilities of the
system and the properties of M. In more detail:

ū =
1 − x

bλ

(
(1 + x)

b−1

∑
i=1

i + x2
b−1

∑
i=2

i + · · ·+ xb−1(b − 1) +
∞

∑
n=b

nxn−b λ

µ

)

or, by rearranging the terms:

ū =
1

bλ

(
(1 − x2)

b−1

∑
i=1

i + (1 − x)x2
b−1

∑
i=2

i + · · ·+ (1 − x)xb−1(b − 1)

)
+

+
1 − x

bλ

∞

∑
n=b

nxn−b λ

µ
=

1

bλ

( b−1

∑
i=1

i −
[(b−1

∑
i=1

i −
b−1

∑
i=2

i

)
x2 +

(
b−1

∑
i=2

i −
b−1

∑
i=3

i

)
x3 + . . .

+((b − 2) + (b − 1)− (b − 1))xb−1 + (b − 1)xb
])

+
1 − x

bλ

∞

∑
n=b

nxn−b λ

µ

and after simple algebraic manipulations:

ū =
1

bλ

(
b−1

∑
i=1

i −
b−1

∑
i=1

(i − 1)xi

)
+

1 − x

bλ

∞

∑
n=b

nxn−b λ

µ
.
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Applying the formulas for the sums of arithmetic and arithmetic-geometric progressions,
we obtain

ū =
b − 1

2λ
−

x2(1 − xb−1)

λb(1 − x)2
+

(b − 1)xb+1

λb(1 − x)
+

x

bµ(1 − x)
+

1

µ

and, after the inverse substitution of x = λ
M :

ū =
b − 1

2λ
−

λ2

M2 (1 −
λb−1

Mb−1 )

λb(1 − λ
M )2

+
(b − 1) λb+1

Mb+1

λb(1 − λ
M )

+
λ
M

bµ(1 − λ
M )

+
1

µ
=

=
b − 1

2λ
−

λ(Mb−1 − λb−1)

bMb−1(M − λ)2
+

(b − 1)λb

bMb(M − λ)
+

λ

bµ(M − λ)
+

1

µ
.

The sum of the second, third and fourth terms in the latter equation becomes

−λM(Mb−1 − λb−1) + (M − λ)(b − 1)λb

bMb(M − λ)2
+

λ

bµ(M − λ)
=

=
−λMb + λb M + Mbλb − Mλb − λb+1b + λb+1

bMb(M − λ)2
+

λ

bµ(M − λ)
=

=
−λMb + Mbλb − λb+1b + λb+1

bMb(M − λ)2
+

λ

bµ(M − λ)
=

bλb(M − λ)− λ(Mb − λb)

bMb(M − λ)2
+

+
λ

bµ(M − λ)
=

bλbµ(M − λ)− λµ(Mb − λb) + Mb(M − λ)λ

bMb(M − λ)2µ

and, taking into account the well-known formula:

an − bn = (a − b)(an−1 + an−2b + an−3b2 + · · ·+ abn−2 + bn−1),

and the average sojourn time can be rewritten as:

ū =
b − 1

2λ
+

bλbµ − λµ(Mb−1 + Mb−2λ + · · ·+ Mλb−2 + λb−1) + Mbλ

bMbµ(M − λ)
+

1

µ
.

Finally, from equation (5) it is easy to find that

Mb+1 − (λ + µ)Mb + λbµ = (M − λ)(Mb − µMb−1 − µMb−2λ − · · · − µMλb−2 − µλb−1) = 0.

Therefore, since M > λ,

Mb − µ(Mb−1 + Mb−2λ + · · ·+ Mλb−2 + λb−1) = 0

and then:

ū =
b − 1

2λ
+

λb

Mb(M − λ)
+

1

µ
=

=
b − 1

2λ
+

λbµ + Mb+1 − Mbλ

Mb(M − λ)µ
=

b − 1

2λ
+

Mbµ

Mb(M − λ)µ
=

b − 1

2λ
+

1

M − λ
.

Thus, we got expression (8).

Note that for b = 1, the root of the equation (5) is M = µ, and hence ū = 1
µ−λ in

accordance with the well-known result for the M/M/1 queue.
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5. Average Response Time Optimization

The average response time is a relevant performance index that depends, as highlighted in
the previous section, on the routing matrix and the node sojourn times. The latter depend on
the network parameters not only explicitly, but also through the values of the roots Mi of (5).

Assuming that the network structure and the incoming traffic rate are fixed parameters,
in this section we propose an efficient algorithm to find the optimal batch size vector
b = (b1, . . . , bL), for which the average response time of the queuing network N is minimized.

Our optimization algorithm is based on the following two considerations. Firstly,
as shown above, the evolution of each node is independent of the rest of the network
in a probabilistic sense: the arrival rate to any node of N does not change when the
service discipline (namely, the batch size) changes in other nodes, and the input rates
λi depends only on the routing matrix. Therefore, the problem of finding the minimum
average response time τ̄ of N is decomposed into solving L minimization problems for
the functions ūi(bi) in the nodes Si, i = 1, . . . , L. Secondly, the function ūi(bi) has only one
minimum for values of bi satisfying the stability condition λi < biµi.

As in the previous section, for sake of clarity, in the following we omit the subscript i, since
the same considerations are valid for all the nodes. To prove that ū(b) has one minimum, we
treat b as a continuous parameter and calculate the second derivative of ū(b) with respect to b:

ū′′ =
(M − λ)M′′ − 2(M′)2

(λ − M)3
.

From (6) it is easy to see that M converges to λ + µ as b → ∞. Moreover, the sequence
of the roots Mb is monotone increasing for any b >

λ
µ . To prove the latter statement,

consider the function
fb(M) = Mb+1 − (λ + µ)Mb + λbµ;

i.e., Mb is the largest root of fb(M) = 0. Hence:

Mb+1
b = (λ + µ)Mb

b − λbµ

and
fb+1(Mb) = Mb+2

b − (λ + µ)Mb+1
b + λb+1µ = λbµ(λ − Mb) < 0,

since Mb > λ. This means that for the batch size b + 1, the largest solution of fb+1(M) = 0
must satisfy the inequality Mb+1 > Mb, since fb+1(M) is continuous and fb+1(λ + µ) > 0.
Hence, the function y = M(b), again considering b as a continuous variable, has an
horizontal asymptote as b → ∞ and is monotone increasing; as a consequence of the
existence of a finite limit, its increase rate decreases for sufficiently high values of b, and its
second derivative M′′ must be negative. Moreover, as shown in the Figures 1–3 below for
various ratios of λ and µ, the function y = M(b) is concave (convex upwards) for all values
of b satisfying the stability condition. Furthermore, since M > λ, ūi

′′
> 0 and the average

sojourn time is a convex function (and has one minimum).
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Figure 1. Limit service rate in the node Si for λi = 1.0, µi = 2.0.

Figure 2. Limit service rate in the node Si for λi = 2.0, µi = 2.0.

Figure 3. Limit service rate in the node Si for λi = 3.0, µi = 2.0.
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Hence, we propose the following optimization algorithm to determine the optimal
batch size vector:

1. Find the vector ω solution of equation ωΘ = ω under the normalization condition

∑
L
i=0 ωi = 1.

2. Compute the arrival rates vector λ = (λ1, . . . , λL), as

λi =
ωi

ω0
λ0, i = 1, . . . , L.

3. Initialize i = 0.
4. i = i + 1. If i > L, then go to step 14.
5. Initialize k = 0 that represents the iteration number.
6. Find the initial value bi satisfying the condition λi < biµi.
7. Find the root Mi of the equation (5).

8. Calculate µ̃k
i = (µ̃k

i (1), . . . , µ̃k
i (bi)), where µ̃k

i (n) = Mi, if n ≥ bi and the rates µ̃k
i (n)

are calculated according to (4), if n < bi.
9. Calculate the stationary distribution according to (7).
10. Calculate the average sojourn time at the node Si according to (8).
11. k = k + 1 and increase bi by 1.
12. Repeat steps 7–10.

13. If ūk
i < ūk−1

i , then go to step 11. If ūk
i ≥ ūk−1

i , then decrease bi by 1 and go to step 4.
14. Return the vector b. The algorithm is complete.

6. Numerical Examples

To highlight the correctness of the results in the previous sections, we provide some
numerical examples for a single node and a large queuing network, satisfying the assumptions
under which the product-form solution was derived.

At first we focus on the sojourn time in a generic node Si, i ∈ {1, . . . , L}, with input
rate λi and service rate µi for batches of bi customers. Figures 4 and 5 show the behavior
of the sojourn time ūi(bi) for µi = 2.0 and µi = 3.0, respectively. In more detail, ūi(bi) is
plotted for different values of λi (namely, λi = 1.0, . . . , 5.0) as a function of the "allowed"
values of the batch size, i.e., the values of bi satisfying the condition ρi < 1 for the existence
of a stationary regime.

Figure 4. Average sojourn times in the node Si for µi = 2.0.
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Figure 5. Average sojourn times in the node Si for µi = 3.0.

Both figures show that the function ūi(bi) has one minimum for a specific value of ρi

depending on the system’s parameters. For instance, if λi = 1, then the optimal batch size
is one for both values of µi, whereas for λi = 2 the optimal bi is already equal to two; and
for higher input rates it depends on µi (compare the graphs for λi = 5 in Figures 4 and 5).

Next, consider the queuing network N, consisting of L = 11 nodes, with input rate
λ0 = 2, service rate vector µ = (1.1, 0.8, 1.1, 0.3, 0.4, 0.2, 0.4, 0.3, 0.2, 0.4, 0.1)
and routing matrix

Θ =




0.0 0.3 0.3 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.5 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0
0.5 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0
0.5 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0
0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1
0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1
0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1
0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1
0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1
0.7 0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
0.8 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.7 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0




.

From the source S0, the nodes S1, S2 and S3 may be reached. After being served in
these systems, the customers may return to the source S0 (i.e., leave the network) with
a probability of 0.5, and with small probabilities equal to 0.1, may move to nodes S4–S8.
After service is completed in S4–S8, the customers may go to S0 with a probability of 0.7 or
to one of the nodes S9–S11 with probabilities equal to 0.1. Finally, customers from S9–S11

leave the network with sufficiently high probabilities or move to other nodes with the same
probability of 0.1.

Links and route probabilities were chosen in such a way that the developed analysis
method can be applied. Indeed, small and comparable (in our case, equal) transition
probabilities permit one to approximate the input flow, coming to any queue from a large
number of nodes, close to a Poisson flow. Moreover, backwards paths (from S9–S11) have
been introduced to verify the applicability of the proposed methodology also to queuing
networks with a non-tree structure.

Using the optimization algorithm proposed in this paper, the optimal batch size vector
is b = (2, 2, 2, 2, 1, 2, 2, 2, 1, 1, 3). This choice leads to an average response time equal
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to 7.61, and a mean number of customers in the network equal to 15.22 (in good agreement
with the simulation estimates of 7.64 and 15.28, respectively). Here and in the following,
all the parameters, derived by discrete-event simulation, were calculated in stationary
conditions with a confidence interval of 0.01 and a confidence level higher than 0.95.

For the sake of completeness, Tables 1 and 2, respectively, show the average number
of customers and the average sojourn time in each node of the network. Note that all the
analytical values and the corresponding estimates by discrete-event simulation are very
close, confirming the applicability of the analytical approach proposed in this paper not
only for the whole queue, but also at the node level. In more detail, the largest difference
for the average number of customers, observed at node S6, is less than 5%, whereas for
the average sojourn time the maximum was attained at nodes S9 and S10, and it was equal
to 2%.

Table 1. Average numbers of customers in the nodes.

Node S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

Approximation 1.174 1.554 1.493 1.447 1.065 2.118 1.139 1.381 1.111 0.357 2.289
Simulation 1.175 1.553 1.494 1.451 1.076 2.221 1.145 1.388 1.131 0.365 2.283

Table 2. Average sojourn times in the nodes.

Node S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

Approximation 1.890 2.501 1.818 6.672 5.163 10.750 5.254 6.694 10.556 3.393 21.647
Simulation 1.890 2.501 1.820 6.691 5.219 10.769 5.280 6.720 10.735 3.468 21.684

Moreover, Table 2 highlights that the average sojourn times in nodes S6, S9 and S11

significantly exceed the values in the other nodes of the network. Since in our example the
transition probabilities are comparable, this is due to the service rates, which in these nodes
are lower than in the rest of the network.

7. Conclusions

In this paper we proposed an efficient method for the analysis of large-scale open
queuing networks with batch services and an original algorithm to determine the optimal
vector of the service batch sizes, which minimizes the average response time of the network.
The proposed algorithm can be used to determine the optimal capacity of vehicles for
various purposes, such as the transportation of passengers or goods. The algorithm is
also applicable for optimizing systems for the accumulation and subsequent processing of
customers requests, which may include information in electronic or paper forms, financial
resources, materials, parts and production waste. In more detail, due to the conditions
under which the product-form was obtained, the proposed algorithm is applicable to
large-scale networks with individual routing of the customers, assuming that the number
of possible destinations is significantly larger than the batch size.

Finally, it is worth mentioning that the memory requirement of the algorithm is O(1), and
its computational complexity is O(n), where n is the number of the values of the ū function
that must be calculated (in general, n depends on the queuing network parameters).
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