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1 Introduction

The cornerstone paper by Heath, Jarrow and Morton [15] (hereafter HJM model)
proposes a general approach which takes the whole yield curve as an input and pro-
vides with a dynamic of all forward rates. One of its particular class, proposed by
Hull and White [18] offers a Gaussian, Markov version which offers tractable formu-
lae to deal with vanilla interest rates derivatives. The simplicity of this model allows
fruitful applications for the valuation and the hedging of some complex derivatives
(bermuda swaptions, callable floaters etc.). In particular, efficient numerical meth-
ods such as trinomial trees has been developed to deal with these products. See, for
instance, Brigo and Mercurio (Brigo07). However, the HJM model does not provide
a smile that can be fit to the implied volatilities of a given key rate.

The HJM model exploits a stochastic framework generated by a Brownian motion.
Even if rates exhibit low volatility compared to equity, large fluctuations were high-
lighted in econometric literature. See for instance [5, 6, 8, 17, 19]. A large literature
has arised to integrate jumps in HJM approach mainly by exploiting Lévy processes,
as, for instance, in [9, 10, 11]. The general law of Lévy processes is useful to fit the
data but could be seen also as a drawback. In fact, the market convention is to
express the prices of fixed-income derivatives (caps, floors, swaps, etc.) in term of
Black/Bachelier volatilities, that is using a log-normal or normal law. It is not sur-
prising that a large part of market models are derived from Black Scholes model,
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as highlighted in Brigo and Mercurio [4, chapter 10]. When stochastic volatility is
added, it is often assumed a zero correlation between rate and its volatility in order
to have a conditional log-normal setup. See Renault and Touzi [23] for the theoretical
setting and [4, pages 495-496] for the applications in interest rate modelling.

It is easy to remark that the interest in including Lévy processes in fixed income
modelling reached his peak in the first decade of 21 century and has faded away
during the second decade due to a new phenomenon: the persistence of unusual low
interest rates, see [1, 12]. That is, after, or because of, the global financial crisis of
2008 and the European debt crisis of 2010-13 the yield curves have been drawned
downward by Central Banks’ quantitative easing. For some countries, the curve
can be partially (or even totally) negative. Moreover, the volatility of bonds has
decreased and the jumps have disappeared. The situation has changed after the
corona-virus crisis with a strong recovery and the increase of inflation, particularly
in the US.

We summarize the previous empirical results by noticing that jumps cannot be
neglected in interest rate modelling, but that their distribution in time is not homo-
geneous. Jumps are in fact clustered, that is concentrated in relatively small time
windows. Hawkes processes [14] can reproduce this behaviour. Our model add to
the original HJM set-up a marked Hawkes process. Conditional on the jumps and
the intensity process, the bond evolution is log-normal. This feature is particular
important for numerical efficiency of swation pricing and is coherent with market
convention. In contrast with previous conditional log-normal model, see [4, Chapter
11], the implied volatility is not only smiled but also skewed due to the jumps.

Our model offers a smile that can be fit on the implied volatility of swaptions for a
given key rate (tenor). We harness on the log-normality of the model, conditionnaly
to jumps, and derive formula to evaluate both caplets/floorlets and swaptions. Our
model exhibits negative jumps on the zero-coupon (hence positive on the rates).
Therefore, its behaviour is compatible with the situation where globally low interest
rates can suddenly show cluster of positive jumps in case of tensions on the market.
One of the main difficulties when dealing with Hawkes jumps in the HJM model is
to keep a framework that is Markovian. In particular, it is important to preserve
the important features of the Hull and White version, especially the reconstruction
formula that provides the zero-coupons in terms of the underlying model factors. In
our case, this formula is based on two factors: a classical Gaussian one and a pure
jump martingale based on Hawkes process.

In a first section, we set-out the stochastic framework and define a general HJM
model with Hawkes jumps. Then, we consider a special case of two-factor non-
Markovian linear model. In this setting, we derive pricing formula for caplets/floorlets
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and swaptions. Then, we provide numerical applications. Especially, we fit the
model on the implied volatility of swaptions for a given tenor. We also study the
influence of the parameters of the model on the form of the smile.

2 General HJM framework with Hawkes processes

Let us set-out the following stochastic framework. Let (Ω, {Ft}t≥0,F ,Q) be a filtered
probability space, satisfying the usual conditions [20, page 10], equipped with a stan-
dard Brownian motion W and a marked Hawkes process, represented by its counting
measure ν(dt, dz), independent from W . The compensator of ν is Θ(dz)λtdt, where
Θ(dz) is a measure on (R+,B(R+)),

Throughout the paper, we assume that Θ(dz) admits moments of every orders. We
will denote by ν̃(dt, dz) the compensated measure of ν(dt, dz). The intensity of the
Hawkes process reads

λt = λ0 + β

∫ t

0
(λ0 − λs)ds+

∫ t−

0

∫
R+

zν(ds, dz) (1)

We introduce the sequence of jumps {Ti}i≤1 and marks {Zi}i≤1 of the Hawkes
process. From now on, we assume the following:

Assumption 1

β >

∫
R+

zΘ(dz)

Under this assumption, the Hawkes process is well defined, mean reverting admits
moments of every order and its Laplace Transform is known (see [2], Proposition
7.3, p. 176).

A zero-coupon is a risk-free instrument which pays 1 at a given maturity T ≥ 0. Its
price at any time 0 ≤ t ≤ T is denoted by Bt(T ), and, of course satisfies BT (T ) = 1.

We now turn our attention on the dynamics of the zero-coupons bonds. Let T? be
the finite maximal horizon of the set-up.

Definition 1 [Zero-coupons Dynamics]. For any 0 ≤ t ≤ T ≤ T?,

dBt(T )

Bt−(T )
= rtdt+ Γ(t, T )dWt +

∫
R+

J(t, T, z)ν̃(dz, dt) (2)

under the initial condition B0(t) where Γ and J are deterministic functions and
satisfy the following conditions, for any 0 ≤ t ≤ T ≤ T?:
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Well-posedness and integrability for Brownian part For t < T , Γ(t, T ) > 0

and
∫ T
0 Γ(t, T )2dt < +∞

Well-posedness and integrability for jump part J(t, T, z) > −1

Closure Γ(T, ·, T ) = 0 and J(T, T, z) = 0.

These assumptions are quite classical at this stage.

The stochastic process r denotes the risk-free short-time rate. We define also the
money market account as follows:

Q(t) := exp

(
−
∫ t

0
r(u)du

)
. (3)

In this framework, the probability Q represents the spot risk-neutral probability, i.e.
the probability with the cash as numéraire.

A direct integration of (2) yields

Bt(T ) = B0(T )E
(∫ ·

0
r(s)ds+

∫ ·
0

Γ(s, T )dWs +

∫ ·
0

∫
R+

J(s, T, z)ν̃(ds, dz)

)
t

(4)

where E () denotes the Doléans-Dade exponential.

Set T ≥ 0 and define Ct(T ) = Q(t) Bt(T )B(0,T ) . From Equation (4), we have that the

process C can be decomposed into two terms, Ct(T ) = Mt(T )Nt(T ) with

Mt(T ) = E
(∫ ·

0
Γ(s, λs, T )dWs

)
t

(5)

Nt(T ) = E
(∫ ·

0

∫
R+

J(s, T, z)ν̃(ds, dz)

)
t

(6)

The process {Mt(T )}0≤t≤T has continuous paths whereas {Nt(T )}0≤t≤T has finite
variation and captures the jumps.

Remark 1 We have the following formulation of the Doléans-Dade martingale,
{Nt(T )}0≤t≤T :

Nt(T ) =
∏
Ti≤t

(1 + J(Ti, T, Zi)) exp

(
−
∫ t

0

∫
R+

J(s, T, z)Θ(dz)λsds

)
see [22, Theorem 36, p.77].
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From now on, set J(t, T ) =
∫
R+ J(t, T, z)Θ(dz).

Proposition 1 Assume that, for any z ≥ 0, 0 ≤ S ≤ t ≤ T ,

ln (1 + J(S, T, z))− z
∫ t

S
e−β(s−S)J(s, t)ds ≤ 0

Then, {Ct(T )}0≤t≤T is a martingale with moments of every order.

Proof. The process C is the product of two local martingales, as Doléans-Dade
exponentials of martingales. According to the square integrability of Γ, see Definition
1, M is a true martingale with log-normal law and then it admits moment of every
order.

We will, now, focus on N. First, recall that the integrated form of λ is given by

λt = λ0 +
∑
Ti<t

Zie
−β(t−Ti).

Using this expression together with the form of Nt(T ) given in Remark 1, we have
the following majoration

Nt(T ) ≤ K
∏
Ti≤t

exp

[
ln (1 + J(Ti, T, Zi))− Zi

∫ t

Ti

J(s, T )e−β(s−Ti)ds

]

where K := sup0≤t≤T exp
(
−λ0

∫ t
0 J(s, T )ds

)
. Under the assumption that prevails,

the local martingale {Nt(T )}0≤t≤T is a true martingale because sup0≤t≤T Nt(T ) is
integrable, and it also has moments of every orders. Then, the process {Ct(T )}0≤t≤T
is a martingale with moments of every order as the product of two independent
martingales with moments of every order. �

One of the key elements when dealing with interest rates derivatives is the expression
of forward zero-coupons.

Proposition 2 For any 0 ≤ s ≤ t ≤ T , we obtain

Bs(T )

Bs(t)
=
B0(T )

B0(t)
Ms(t, T )Ns(t, T )
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with

Ms(t, T ) = E
(∫ ·

0
[Γ(u, T )− Γ(u, t)] [dWu − Γ(u, t)du]

)
s

Ns(t, T ) = E
(∫ ·

0

∫
R+

J(u, T, z)− J(u, t, z)

1 + J(u, t, z)
ν̂t(du, dz)

)
s

ν̂t(du, dz) = ν(du, dz)− (1 + J(u, t, z))Θ(dz)λudu

(7)

Let Ct(T ) as defined in Proposition 1. Then, dQt
dQ (s) = Cs(t) defines a probability,

known as the t-forward probability. Under Qt, {Bs(T )Bs(t)
}0≤s≤T is a martingale, more-

over, Wu − Γ(u, t)du is a standard Brownian motion and ν admits for compensator
(1 + J(u, t, z))Θ(dz)λudu.

Proof. The expressions of the forward zero-coupon is direct from (4) and the
reorganisation of both Brownian and jump parts. The existence of probability Qt is
a consequence of 1. We have, for any 0 ≤ u ≤ s ≤ t,

Cu(t)EQt
{
Bs(T )

Bs(t)
| Fu

}
= EQ

{
Cs(t)

Bs(T )

Bs(t)
| Fu

}
Injecting the expression of Cs(t) is the right-hand member, we obtain, after simpli-
fication,

Bu(t)EQt
{
Bs(T )

Bs(t)
| Fu

}
= EQ

{
exp

(
−
∫ s

u
r(v)dv

)
Bs(T ) | Fu

}
By Equation (4), and proposition 1, we can simplify the right-hand member into

EQt
{
Bs(T )

Bs(t)
| Fu

}
=
Bu(T )

Bu(t)

It shows that Bs(T )
Bs(t)

is a t-forward martingale.

The last assertions is twofold. For the Brownian part, the result is well known: see
[20, Theorem 5.1, p 191]. The form of M given by (5) gives the form of the density
of Girsanov Theorem. For the pure jump part, we can refer to [21, Theorem 10.2.6,
p. 339 ]. In this case, Equation (6) is the expression of the density of the change of
probability from compensator Θ(dz)λtdt to (1 + J(u, t, z))Θ(dz)λudu. �

3 Two-Factor Non-Markovian Linear Model

In order to carry on formal computation of zero-coupons and short-term rate, we
will need to specify the structure of volatility and jump effect. This is the purpose
of the following assumption.
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Assumption 2 For any 0 ≤ s ≤ t, Γ(s, t) = σ(s)1−e
−γ(t−s)

γ and, for a.s any z ∈ R+,

J(s, t, z) = exp
(
zj(s)1−e

−γ(t−s)

γ

)
− 1, where σ > 0 and j ≤ 0

Assumption 2 implies that the amortizing factor of both volatility and jump factor
is the same. It will play a crucial part in order to obtain a tractable form for the
short-rate. Besides, j ≤ 0 implies that J(s, t, Z) ≤ 0, hence, the jumps of the zero-
coupons are negative. It implies that the jumps of the short-rates are positive. It is
clear that both Γ and J satisfy the requirements of Definition 1.

The volatility chosen takes the form of the Hull and White model and a similar
feature is taken for the jumps. The Hull and White form of the volatility is very
close to the general form required to have a Markovian model, as shown in [24]. So
it is not a strong requirement on the Brownian part if we want to keep tractable
pricing formulae. Even with this assumption, the model with jumps is not Markovian
anymore, since the expression of the zero-coupon will depend on the whole integrated
path of the intensity λ multiplied by a deterministic mapping.

When the jumps are set to 0, i.e. J ≡ 0, we find back a version of the Hull and
White model which is Linear, Gaussian and Markovian.

Proposition 3 Assume that the jumps are exponentially distributed, i.e. Θ(dz) =
αe−αzIz≥0dz. Assume that β ≤ γ and j < −1, the process {Nt(T )}0≤t≤T is a
martingale with moments of every order.

Proof. The idea of the proof is to apply Proposition 1. In this case, direct calcula-
tion shows that

Nt ≤ K
∏
Ti≤t

eZif(t,Ti,T )

where K > 0 defined in proof of Proposition 1 and

f(t, Ti, T ) :=j(Ti)Aγ(T − Ti)−
∫ t

Ti

J(s, T )e−β(s−Ti)ds

=j(Ti)Aγ(T − Ti) +Aβ(t− Ti)−
∫ t

Ti

α

α− j(s)Aγ(T − s)
e−β(z−Ti)ds

with Ah(u) = 1−e−hu
h for any u ≥ 0 and h > 0. It is clear that sup0≤t≤T f(t, Ti, T ) =

f(T, Ti, T ). With β ≥ γ, we have Aβ(s) ≥ Aγ(s) for any s ≥ 0. By the following
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inequality, we can conclude that f(T, Ti, T ) ≤ 0 :

∀ 0 ≤ u ≤ T, f(T, u, T ) ≤ j(u)Aγ(T − u) +Aβ(u)

Hence, the end of proof. �

3.1 Short rate dynamics

First, let us define the initial (deterministic) forward rate curve f(0, )̇ by B0(t) :=
exp(−

∫ t
0 f(0, u)du),

Let us set r̂(·) := r(·)− f(0, ·). Take t = T in (4). We obtain:

−
∫ t

0
r̂(u)du =

∫ t

0
σ(s)

1− e−γ(t−s)

γ
dWs −

1

2

∫ t

0
σ2(u)

(
1− e−γ(t−u)

γ

)2

du

+

∫ t

0

∫
R+

zj(s)
1− e−γ(t−s)

γ
ν(ds, dz)−

∫ t

0

∫
R+

J(u, t, z)Θ(dz)ν(du, dz)

Next step consists in inverting the stochastic integration and the integration with
respect to time, in order to obtain on both left and right members an integral with
respect to time. It yields

−
∫ t

0
r̂(u)du =

∫ t

0

∫ u

0
σ(s)e−γ(u−s)dWsdu−

1

2

∫ t

0
σ2(u)

(
1− e−γ(t−u)

γ

)2

du

+

∫ t

0

∫ u

0
j(s)e−γ(u−s)

∫
R+

zν(ds, dz)−
∫ t

0

∫
R+

J(u, t, z)Θ(dz)ν(du, dz)du

In order to extract r̂, we need to differentiate with respect to t. For notational
convenience, set

Φ(t) :=

∫ t

0
σ2(s)e−γ(t−s)ds

h(s, t) :=

∫
R+

∂J(s, t, z)

∂x2
Θ(dz) = j(s)e−γ(t−s)

∫
R+

ze
zj(s) 1−e

−γ(t−s)
γ Θ(dz)

We obtain the following result:
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Proposition 4 Under Assumption 2, the dynamic of the short rate is given by

r(t) = f(0, t)−
∫ t

0
σ(s)e−γ(t−s)dWs +

∫ t

0
e−γ(t−s)Φ(s)ds

−
∫ t

0
j(s)e−γ(t−s)

∫
R+

zν(ds, dz) +

∫ t

0
h(s, t)λsds

Now, let us provide the reconstruction formula which enables to express the forward
zero-coupons at time t, in terms of r(t) and of λ(·).

Proposition 5 [Reconstruction Formula] For any 0 ≤ t ≤ T ,

B(t, T ) =
B(0, T )

B(0, t)
exp

(
Aγ(T − t)r(t) +

∫ t

0
b(u, t, T )λudu+ C(t, T )

)
with

b(s, t, T ) = Aγ(T − t)h(s, t)−
∫ T

t
h(s, v)dv

C(t, T ) = Aγ(T − t)
∫ t

0

σ2(s)

γ2

[
e−γ(t−u) − e−2γ(t−u)

]
du

+Aγ(T − t)
∫ t

0
e−γ(t−s)Φ(s)ds

+Aγ(T − t)f(0, t)

3.2 Caplets/floorlets pricing

A caplet (respectively, a floorlet) is a call option on a so-called “Ibor” rate (Euribor,
Libor USD, Libor GBP...), paid at the “end date” of the interest period which defines
the rates. Indeed, this Ibor rate is caracterized by 3 dates T f ≤ T s < T e:

• The date T f is the fixing date, where the rate is known

• The date T s is the start date of the interest period of the rate

• The date T e is the end date of the interest period of the rate.

The interest period [T s, T e] defines the so-called “frequency” of the rate (3, 6, 12
months for the most common frequencies). It also defined, with a specific day-count
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fraction, the coverage δ, which is the year fraction between T s and T e. The link
between the Ibor rate and the zero-coupons is given by:

L(T f , T s, T e) =
1

δ

(
B(T f , T s)

B(T f , T e)
− 1

)
The caplet price of strike K at time t = 0 writes

C(K) = δ × E
{
Q(T e)

(
L(T f , T z, T e)−K

)
+

}
By injecting the expression of the Ibor rate in terms of zero-coupons, and then,
switching to the T s-forward probability, we obtain

C(K) = B(0, T s)× ET
s

{(
1− (1 + δK)

B(T f , T e)

B(T f , T s)

)
+

}
i.e the caplet is a put on the forward zero-coupon.

According to Proposition 2,
{
B(t,T e)
B(t,T s)

}
0≤t≤T

is a QT s-martingale. This leads us to

the following result:

Proposition 6 The price at time t = 0 of the caplet of strike K written on the Ibor
rate L(T f , T s, T e) is given by

C(K) = B(0, T s)ET
s

{
BSp

(
(1 + δK)

B(0, T e)

B(0, T s)
NT f (T s, T e), 1, T f , σLGM (T f , T s, T e)

)}
where BSp(f, k, t, v) denotes the price in the Black model of a put option with forward
f , strike k, time-to expiry t and annualized volatility v. Besides, σLGM (T f , T s, T e)
is the volatility of the caplet under the Linear, Gaussian Markov version (i.e. the
model with no jumps). It is simply given by

(
σLGM (T f , T s, T e)

)2
T f = Aγ(T e − T s)2

∫ T f

0
σ2(u)e−2γ(T

s−u)du

Proof: The Brownian motion and the Hawkes process being independent, let us
consider the price of the instrument conditional to the jumps. The formula is similar
to the one in the Hull and White model (cf. [4]). The results follows. �
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3.3 Swaption pricing

A swaption is an option to enter into an interest rate swap at a given date, te,
called the expiry (at least the physically settled version that we are dealing with).
When the swap pays (respectively, receives) the fixed rate, the swaption is called
a payer (respectively, receiver) swaption and happens to be a call (respectively, a
put) on the swap rate. The swap is characterized mainly by the dates of the fixed
leg. Let t0 be the start date of the swap (typically, 2 business days after the expiry
te for Euro swaps). The payment dates of the fixed leg are given by the schedule
T := {t1, . . . , tM}, with t1 < t2 < · · · < tM . The distance tM − t0, expressed as a
number of years, is called the tenor of the swap. The associated payment coverages
(representing the year fractions of each interest periods are given by the (δi)1≤i≤M .
We define the associated level (or annuity) by

LVL(t, [T0, T ]) :=
M∑
i=1

δiB(t, ti)

The floating leg represents the sequence of consecutive Ibor rates. When neglecting
the difference between the start date of a rate and the end date of the previous one
(typically, when we do not use business days), the value of the floating leg at time
te writes (with the convention that s0 = t0 and sN = tM )

N∑
j=1

δ ×B(T e, sj)×
1

δ

(
B(te, sj−1)

B(te, sj)
− 1

)
= B(te, t0)−B(te, tM )

The price of a payer swaption at time t = 0, with strike κ, writes

Swpnp(0, [t0, T ], κ) = E
{
Q(te) [B(te, t0)−B(te, tM )− κ× LVL(te, [t0, T ])]+

}
= B(0, t0)Et0


[

1−
M∑
i=1

ci
B(te, ti)

B(te, t0)

]
+


where

ci :=

{
1 + κ× δM , if i = M
κ× δi, elsewhere



12

As in the context of Proposition 6, let us work conditionally to the jumps and marks.
In this case, according to Proposition 2, under the T0-forward probability any of the
B(te,ti)
B(te,t0)

, 1 ≤ i ≤M , is a log-normal random variable with volatility νi, defined by

ν2i := (Aγ(ti − t0))2 ×
∫ te

0
σ2(u)e−2γ(t0−u)du

Morevover, with the separability of Γ, their underlying normal laws are correlated
to 1. Thus, we can write

Swpnp(0, [t0, T ], κ)

=B(0, t0)Et0


∫ x∗

−∞

(
1−

M∑
i=1

ci
B(0, ti)

B(0, t0)
Nte(t0, ti)e

νix−
ν2i
2

)
e−

x2

2

√
2π
dx

 (8)

where x∗ (depending on the jumps) is the solution of

M∑
i=1

ci
B(0, ti)

B(0, t0)
Nte(t0, ti)e

νix
∗− ν

2
i
2 = 1 (9)

This solution always exists as the νi are positive as well as the zero-coupons and the
Nte(t0, ti). With Equations (8) and (9) at hand, a simple integration with respect
to the Gaussian density yields

Swpnp(0, [t0, T ], κ)

=Et0
{
B(0, t0)N (x∗)−

M∑
i=1

ciB(0, ti)Nte(t0, ti)N (x∗ − νi)

}

=E

{
Nte(t0)

[
B(0, t0)N (x∗)−

M∑
i=1

ciB(0, ti)Nte(t0, ti)N (x∗ − νi)

]} (10)

In Equation (10), the only random parts of the terms in the expectation operator
are Nte(t0) and x∗. They both depend of the jumps occuring on ]0, te].

4 Numerical application

In this section we conduct a numerical application to show the relevance of the
introduced model in order to price swaptions. More precisely, we show that the
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model, with a well-chosen set of parameters, is able to reproduce stylized facts of
this asset class. We work with a set of swaption contracts of start date t0 in 5 years,
tenor tM − t0 equal to 10 years, and annual payments. The strike of these swaptions
is in the interval [κATM − 4%, κATM + 4%], where κATM is the strike at the money,
defined by the forward swap rate

κATM =
B(0, t0)−B(0, tM )

LVL(0, [t0, T ])
.

In our dataset, which corresponds to the observation of the Euro zero-coupon rate
curve as of 14th June 2021, we have κATM equal to 0.678%. We also observe the
prices of these swaptions at the same date, from which we determine the annual
implied volatility under the Bachelier model, which provides us with the call price
of forward f , strike k, maturity t, and volatility v,

CB(f, k, t, v) = (f − k)×N
(
f − k
v
√
t

)
+ v
√
t× g

(
f − k
v
√
t

)
,

where N and g are respectively the Gaussian cdf and the Gaussian pdf. In the case
of a swaption of strike κ and market price Swpnmarket, the forward rate is κATM and
the implied volatility σBachelier is solution of the equation

CB(κATM , κ, T0, σ
Bachelier) = Swpnmarket.

Solving this equation numerically with the Newton-Raphson algorithm, we represent
the smile of implied volatilities in Figure 1.

Remark 2 The use of Bachelier model, i.e. normal volatility, to quote the swap-
tions has been generalized to the Euro rates, which have been negative for many
years.

Following the Hawkes-HJM approach, we can generate swaption prices with equa-
tion (10), which defines the price as an expectation of a given transformation of the
Hawkes process. We evaluate the expectation thanks to a Monte Carlo method. We
thus have to simulate Hawkes processes in the time interval [0, TM ]. To this end, we
use the exact simulation method of Dassios and Zhao [7]. This method provides us
with the quadruplet (ntM , {Ti}

ntM
i=1 , {λTi}

ntM
i=1 , {Zi}

ntM
i=1 ), where ntM is the number of

jumps simulated in the interval [0, tM ], Ti is the ith jump time, λTi is the intensity
at this time, and Zi is the mark of the i-th jump.

In the general framework of the Hawkes-HJM model, we focus on a particular
specification. Indeed, we assume that the distribution Θ is of exponential type:
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Θ(dz) = α exp(−αz)dz. We also assume that the functions σ and j, introduced in
Assumption 2, are constant. Finally, our model has globally six parameters: σ, j,
γ, β, λ0, and α.

For a given set of these six parameters, we calculate the price of eleven swaptions
of various strikes with the Hawkes-HJM model. Then, we translate these model
prices in implied volatilities under the Bachelier model. The results is displayed
in Figure 1, in which each curve represents a particular set of parameters, namely
γ = 0.1, β = 0.05, λ0 = 2, and α = 100, with the parameters σ and j fixed so as
to get an implied volatility equal to the true implied volatility for the at-the-money
swaption.

Figure 1: Implied volatility of the swaption contracts under the
Bachelier model for the market prices (dotted line) and for prices
obtained by simulations with the Hawkes-HJM model (continuous
lines), as a function of κ− κATM .

We observe that the Hawkes-HJM model reproduces properly the smile of the true
implied volatilities of swaptions. This smile is even more pronounced for larger
jumps, that is for a larger |j|. On the contrary, values of j close to 0 lead to an
almost flat curve, indicating the relevance of the jumps in the rate dynamic.

For each set of parameters, all the prices are computed with the same series of
pseudo-random numbers, in order to avoid that the differences of prices for swaptions
of different strikes comes from an inaccuracy of the Monte Carlo method. In this
numerical application, we have considered 1,000 simulations in the Monte Carlo
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method, which leads to a satisfying accuracy, as reported in Figure 2, in which we
display the standard deviation of the output of our method as a function of the
number of Monte Carlo simulations.

Figure 2: Monte Carlo error, defined as the standard deviation of
the implied volatility (obtained from the model prices evaluated
with a given number of simulations in the Monte Carlo method),
relatively to the average implied volatility (obtained with the same
method). Parameters of the model are σ = 0.0057, j = −1, and the
same values as in Figure 1 for the other parameters. The swaption
considered is at the money.

Finally, we want to get some insight on the role of each parameter of the Hawkes-
HJM model on the shape of the volatility smile. We thus study the sensitivity of the
smile to a change in only one parameter. Results are gathered in Figure 3. A higher
γ, that is a smaller impact of jumps and volatility on rates, tends to move globally
the smile downwards but may also reinforce the skew, with still a strong volatility for
in-the-money swaptions. A higher value of λ0, that is the more frequent occurrence
of jumps, tends to translate the smile upwards without any obvious impact on the
skew. A higher value of α, that is the occurrence of smaller jumps, moves the smile
downwards and tends to flatten the right-hand side of the curve. Regarding β, the
strength of the mean reversion of the intensity process, the sensitivity study has not
led to any obvious interpretation, since the smile does not change significantly when
increasing or decreasing, even to a large extent, the value of this parameter.
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Figure 3: Volatility smiles when changing only one parameter: γ,
λ0, α, and β. The reference set of parameters (red curve) corre-
sponds to (σ, j, γ, β, λ0, α) = (0.008, −0.4, 0.1, 0.05, 2, 100).

5 Conclusion
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