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ABSTRACT
We analyse the 𝑓 (𝑅) gravity in the so-called Jordan frame, as implemented to the isotropic Universe dynamics. The goal of the
present study is to show that, according to recent data analyses of the supernovae Ia Pantheon sample, it is possible to account
for an effective redshift dependence of the Hubble constant. This is achieved via the dynamics of a non-minimally coupled
scalar field, as it emerges in the 𝑓 (𝑅) gravity. We face the question both from an analytical and purely numerical point of view,
following the same technical paradigm. We arrive to establish that the expected decay of the Hubble constant with the redshift
𝑧 is ensured by a form of the scalar field potential, which remains essentially constant for 𝑧 . 0.3, independently if this request
is made a priori, as in the analytical approach, or obtained a posteriori, when the numerical procedure is addressed. Thus, we
demonstrate that an 𝑓 (𝑅) dark energy model is able to account for an apparent variation of the Hubble constant due to the
rescaling of the Einstein constant by the 𝑓 (𝑅) scalar mode.

Key words: supernovae: general – galaxies: distances and redshifts – cosmological parameters – dark energy – cosmology:
theory.

1 INTRODUCTION

The measurement of the Hubble constant 𝐻0 has been one of the
most challenging effort of large-scale observations of the present
Universe since the very beginning of cosmological studies. For many
decades, the value of 𝐻0 has been determined with a very low degree
of precision. However, since the beginning of the new century, the
emergence of the so-called ’precision cosmology’ allowed accurate
measurements of 𝐻0, and the possibility to test an increasingly large
set of cosmological parameters. Nowadays, a large number of differ-
ent and independent measurements of 𝐻0 are available (Di Valentino
et al. 2021) and also other crucial cosmological indicators can be
found, like the position of peaks in the cosmic microwave back-
ground (CMB) data thanks to the Planck satellite (Planck Collabo-
ration 2020).
However, the end of the previous century was characterized by a

big surprise, coming from low-redshift observations of Type Ia super-
novae (SNe Ia) recovered as standard candles: the present Universe
is accelerating (Riess et al. 1998; Perlmutter et al. 1999). This exper-
imental issue opened a new era on the understanding of the present
Universe physics, since either a dark energy component [identified
in a cosmological constant term in the so-called lambda cold dark
matter (ΛCDM) model (Weinberg 2008)], or a modified gravity the-
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ory must be postulated to represent the emerging acceleration.
In this very puzzling panorama, in recent years an additional

non-trivial observational evidence came out, called the Hubble
tension (Di Valentino et al. 2021), i.e. a discrepancy in 4.9 𝜎
between the determination of 𝐻0 via the CMB data (𝐻CMB0 =

67.4±0.5 km s−1Mpc−1) (Planck Collaboration 2020) and the local
one coming out by using low-redshift cosmological testers, like the
Cepheid-SN Ia sample (𝐻loc0 = 73.04 ± 1.04 km s−1Mpc−1) (Riess
et al. 2022).
Such a discrepancy appears hard to be straightforwardly interpreted,
and different values of 𝐻0 can be essentially traced back to two
causes: either the astrophysical characterization of the tester is inad-
equate (for instance, because their calibration or redshift evolution
are not properly fixed) or new physics, in addition to the dark energy
Universe component, must be considered (Vagnozzi 2020). The anal-
ysis pursued by the SNe Ia community, mainly represented by the
data of the Pantheon (Scolnic et al. 2018; Jones & Scolnic 2018) and
Pantheon+ (Riess et al. 2022) samples, seem to exclude the existence
of a redshift evolution of these objects and show a reliable control of
all the main sources of errors. However, some recent studies report
a possible redshift dependence of the marginalized absolute magni-
tude of SNe Ia (Kazantzidis & Perivolaropoulos 2020), or the Hubble
constant itself (Krishnan et al. 2020; Dainotti et al. 2021; Krishnan
et al. 2021; Colgáin et al. 2022a,b; Dainotti et al. 2022; Jia et al.
2022; Krishnan & Mondol 2022; Schiavone et al. 2022; Dainotti
et al. 2023a).
In particular, the two analyses by Dainotti et al. (2021, 2022),
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based on a binned distribution of the SNe Ia with equipopulated bins,
have outlined a variation of 𝐻0 as (1 + 𝑧)−𝛼 within 2 𝜎 confidence
level, with 𝛼 ∼ 10−2. The evolution of variables in astrophysics is a
well-studied subject, and it has been discussed already in the realm
of gamma-ray bursts (GRBs) (Dainotti et al. 2020). Furthermore,
in Dainotti et al. (2021), it has been stressed that the extrapolation
of the behaviour of 𝐻fit0 (𝑧) up to the CMB redshift seems to nat-
urally account for the Hubble tension feature, since a larger value
of the Hubble constant today would slowly decrease to higher red-
shifts. Other recent studies analysed and discussed the assumption of
Gaussian likelihoods in evaluating cosmic distances to obtain cos-
mological constraints by using SNe (Dainotti et al. 2023b), GRBs,
quasars, and baryonic acoustic oscillations (Bargiacchi et al. 2023).
Among several proposals for alleviating the 𝐻0 tension

(Di Valentino et al. 2021), an interesting possibility is provided by
modified gravity theories. In particular, in Dainotti et al. (2021), it
was discussed that the observed dependence of an effective Hubble
constant 𝐻eff0 (𝑧), predicted by the binning analysis of the Pantheon
sample, can be interpreted as a variation of the Einstein constant,
naturally achieved for example by 𝑓 (𝑅) gravity in the Jordan frame
(Olmo 2005a,b; Nojiri & Odintsov 2006, 2011; Olmo 2007; Sotiriou
& Faraoni 2010; Faraoni & Capozziello 2011; Nojiri et al. 2017).
These theories are endowed with an additional scalar degree of free-
dom non-minimally coupled to the metric [see Moretti et al. (2019)
for a gauge-invariant analysis], which can be used in principle for
addressing unsolved problems in the ΛCDM model, such as the 𝐻0
tension (Di Valentino et al. 2021; Odintsov et al. 2021; Nojiri et al.
2022). However, in Dainotti et al. (2022) it was shown how one of the
most reliable 𝑓 (𝑅) models, the Hu–Sawicki proposal (Hu & Sawicki
2007), is inappropriate to reproduce the desired effect. This negative
result suggested the necessity to consider an alternative dark energy
𝑓 (𝑅) model, able to account both for the Universe acceleration and
a variable 𝐻eff0 (𝑧) parameter.
The present letter is dedicated to the formulation of a model sat-

isfying such requirements, following the prescriptions in Dainotti
et al. (2021, 2022) of a decreasing trend for 𝐻eff0 (𝑧). Then, under
few assumptions, we derive the profile of the potential term for the
scalar field, which in turn allows us to reconstruct the underlying
𝑓 (𝑅) model.
The analysis is divided into two parts: the first one is characterized

by an analytical approach, while the second one relies on a pure
numerical study. The analytical formulation startswith the hypothesis
that the potential can be satisfactorily described by a dynamical
deviation from a flat region (encoding the dark energy contribute for
low redshifts). Unlike the analysis in Dainotti et al. (2021, 2022), we
do not fix a priori the form of 𝜙(𝑧), but we obtain it from the dynamics
in the Jordan frame. In the numerical analysis, we assume again the
evolution of 𝐻eff0 (𝑧), but we relax the request of a constant potential
term in a given region. It is remarkable that both the analytical and
the numerical formulations are consistent and predict a flat potential
profile in a region 0 < 𝑧 . 0.3.
An important consistency check is provided by the determination

of the 𝑓 (𝑅) form in the limit of the low redshift. We get three
contributions: a cosmological constant, a linear contribution in the
Ricci scalar 𝑅, and eventually a quadratic correction as in the 𝑅2-
gravity theory (Starobinsky 1980). It is worth emphasizing that this
modified theory reduces to the standardΛCDMmodel if the function
𝐻eff0 (𝑧) is frozen to a constant value and 𝑑𝑓 /𝑑𝑅 ≡ 1 today.
This work is organized as follows: in Sect. 2 we briefly introduce

the 𝑓 (𝑅) modified gravity in the Jordan frame within the framework
of a homogeneous and isotropic Universe; in Sect. 3 we derive the
scalar field potential, inferred from a running Hubble constant with

the redshift; in Sect. 4 we provide our numerical solutions; in Sect. 5
we obtain the functional form of 𝑓 (𝑅) in the low-redshift limit; in
Sect. 6 we summarize our key findings.
The metric signature adopted here is (−, +, +, +), and the speed

of light is 𝑐 = 1. The Newton constant is denoted with 𝐺, while the
Einstein constant is defined as 𝜒 ≡ 8 𝜋 𝐺.

2 F(R) GRAVITY IN THE JORDAN FRAME FOR A
HOMOGENEOUS AND ISOTROPIC UNIVERSE

In metric 𝑓 (𝑅) modified gravity an extra scalar degree of freedom
with respect to General Relativity (GR) occurs, by virtue of a La-
grangian density where the Ricci scalar 𝑅 is replaced by a generic
function 𝑓 (𝑅). This is manifested in the so-called Jordan frame
(Olmo 2005a,b), where the original 𝑓 (𝑅) theory is restated in the
scalar–tensor form:

𝑆𝐽 =
1
2 𝜒

∫
𝑑4𝑥

√−𝑔 [𝜙 𝑅 −𝑉 (𝜙)] + 𝑆𝑀
(
𝑔𝜇𝜈 , 𝜓

)
, (1)

where 𝑔 is the determinant of the metric tensor, 𝑆𝑀 is the action for
matter fields 𝜓. Note that in the Jordan frame the additional degree
of freedom is defined as 𝜙 = 𝑓 ′ (𝑅) = 𝑑𝑓 /𝑑𝑅, and it is controlled by
the scalar field potential 𝑉 (𝜙) = 𝜙 𝑅 (𝜙) − 𝑓 (𝑅 (𝜙)).
Considering a flat Friedmann–Lemaitre–Robertson–Walker

(FLRW) metric (Weinberg 2008), we can derive the generalized
Friedmann equation, the acceleration equation and the scalar field
equation as follows1:

𝐻2 =
𝜒 𝜌

3 𝜙
+ 𝑉 (𝜙)
6 𝜙

− 𝐻
¤𝜙
𝜙

(2a)

¥𝑎
𝑎
= − 𝜒

6 𝜙
(𝜌 + 3𝑃) + 𝑉 (𝜙)

6 𝜙
− 𝐻

2
¤𝜙
𝜙
− 1
2

¥𝜙
𝜙

(2b)

3 ¥𝜙 − 2𝑉 (𝜙) + 𝜙 𝑑𝑉
𝑑𝜙

+ 9𝐻 ¤𝜙 = 𝜒 (𝜌 − 3𝑃) , (2c)

where ¤ = 𝑑/𝑑𝑡, being 𝑡 the cosmic time in the synchronous gauge,
𝐻 (𝑡) the Hubble parameter, 𝜌 (𝑡) and 𝑃 (𝑡) the energy density and
pressure of the cosmological fluid, respectively.
Moreover, the divergenceless of the stress-energy tensor for a per-

fect fluid gives

¤𝜌 + 3𝐻 (𝜌 + 𝑃) = 0 . (3)

To solve Eqs. (2a) and (2c), which are the two independent equations,
one must also specify the equation of state, that for a barotropic fluid
is just 𝑃 (𝜌) = 𝑤 𝜌, where 𝑤 = 0 and 𝑤 = −1 hold for matter and
cosmological constant components, respectively.
Now, as it can be observed inEq. (2a), an effectiveEinstein constant

𝜒/𝜙 emerges, whose value ultimately depends on the dynamics of
the scalar field.
Cosmological models based on 𝑓 (𝑅) modified theories have been

employed to predict deviations from theΛCDMmodel and can mim-
ick cosmic acceleration in late times, without a true cosmological
constant term in the action (Hu & Sawicki 2007; Starobinsky 2007;
Tsujikawa 2008).

1 We remark that the variation of the action with respect to the scalar field 𝜙
actually results in the equation 𝑅 = 𝑑𝑉

𝑑𝜙
. It is this last expression, combined

with the trace of the equation for the metric 𝑔𝜇𝜈 , which results in Eq. (2c).
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3 ANALYTIC SOLUTION FOR THE SCALAR FIELD
POTENTIAL

In order to build the profile of the scalar field potential 𝑉 (𝜙), we
assume the presence of an effective Hubble constant𝐻eff0 (𝑧) evolving
with the redshift. The results of the analysis performed in Dainotti
et al. (2021, 2022) suggested the parametrization

𝐻fit0 (𝑧) = �̃�0
(1 + 𝑧)𝛼 , (4)

where the constants 𝛼 and �̃�0 are the fitting parameters of the anal-
ysis. Note that a decreasing trend with the redshift may address the
Hubble tension, since the extrapolation of the fitting function 𝐻fit0 (𝑧)
from 𝑧 = 0 to the recombination redshift 𝑧 = 1100might successfully
match 𝐻loc0 and 𝐻CMB0 (Dainotti et al. 2021, 2022). Then, we build
the Hubble function 𝐻 (𝑧) as:

𝐻 (𝑧) = 𝐻eff0 (𝑧)
√︃
Ω𝑚0 (1 + 𝑧)3 + 1 −Ω𝑚0 , (5)

where Ω𝑚0 is the cosmological density parameter for the matter
component. Moreover, we focus on a cosmological dust in the late
Universe (matter with 𝑃 = 0), i.e. we neglect relativistic components,
and we set 𝜌 = 𝜌0 (1 + 𝑧)3 by solving the continuity equation (3)
with 𝜌0 the present-day matter density.
To reconstruct the evolution of 𝐻eff0 (𝑧), we compare the phe-

nomenological Hubble function 𝐻 (𝑧) given by Eq. (5) and the gener-
alized Friedmann equation (2a). Considering that in a homogeneous
Universe we have 𝜙 = 𝜙 (𝑧), Eq. (2a) rewrites

𝐻2 =
1

𝜙 − (1 + 𝑧) 𝜙′
𝜒

3

(
𝜌 + 𝑉 (𝜙)

2 𝜒

)
, (6)

where 𝜙′ ≡ 𝑑𝜙/𝑑𝑧. We used the definition of redshift 𝑎0/𝑎 = 1 + 𝑧
with the standard assumption that the scale factor today is 𝑎0 = 1,
and also the fact that 𝑑𝑧/𝑑𝑡 = − (1 + 𝑧) 𝐻 (𝑧).
We define the potential as

𝑉 (𝜙) ≡ 2𝜒𝜌Λ + 𝑔 (𝜙) , (7)

where 𝜌Λ is the present value of the Universe dark energy density,
and 𝑔 (𝜙) is the deviation from a cosmological constant scenario. To
rewrite Eq. (6) in a form similar to Eq. (5) and discuss the ΛCDM
limit, we assume the existence of a region in which 𝑔 (𝜙) � 2𝜒𝜌Λ
for 0 < 𝑧 . 𝑧∗, where 𝑧∗ ∼ 0.3 is the redshift of matter-dark energy
equivalence. Hence, considering only the constant term in 𝑉 (𝜙), we
rewrite Eq. (6) as

𝐻2 =
𝐻20

𝜙 − (1 + 𝑧) 𝜙′
[
Ω𝑚0 (1 + 𝑧)3 + 1 −Ω𝑚0

]
, (8)

where we used the definitions of the critical energy density of the
Universe today 𝜌𝑐0 = 3𝐻20/𝜒 and also of the cosmological density
parameters Ω𝑚0 = 𝜌0/𝜌𝑐0 and ΩΛ0 = 𝜌Λ/𝜌𝑐0 = 1−Ω𝑚0 (flat Uni-
verse). Note also that 𝑧∗ is defined such that Ω𝑚0 (1 + 𝑧∗)3 = ΩΛ0.
From Eq. (8) one can recognize the usual terms in the Friedmann
equation in the ΛCDM scenario, up to a factor related to the scalar
field 𝜙. Indeed, comparing Eqs. (5) and (8), we can define the effec-
tive Hubble constant

𝐻eff0 (𝑧) = 𝐻0√︁
𝜙 − (1 + 𝑧) 𝜙′

. (9)

Let us now take into account the scalar field equation (2c). Using
the relation 𝜙 = 𝜙 (𝑧) and the approximation for the scalar field
potential 𝑉 [𝜙 (𝑧)] ≈ 2𝜒𝜌Λ, we obtain:

3𝐻2 (1 + 𝑧)
[
(1 + 𝑧) 𝜙′′ − 𝜙′

]
− 3 (1 + 𝑧) ¥𝑎

𝑎
𝜙′ + 𝜙 𝑑𝑉

𝑑𝜙
=

= 𝜒 (𝜌 + 4𝜌Λ) . (10)

It should be emphasized that we do not neglect the term 𝑑𝑉/𝑑𝜙 =

𝑑𝑔/𝑑𝜙, since we want to check a posteriori the viability of the ap-
proximation for the scalar field potential at low redshifts.
Furthermore, by substituting the term ¥𝜙 from Eq. (2c) in Eq. (2b),

we have
¥𝑎
𝑎
= − 𝜒

3 𝜙
(𝜌 + 𝜌Λ) +

1
6
𝑑𝑉

𝑑𝜙
− 𝐻2 (1 + 𝑧) 𝜙

′

𝜙
. (11)

Then, we combine Eqs. (5), (10), and (11), and we obtain

𝑑�̃�

𝑑𝑧
=

1
𝜙
𝜙′ − 1+𝑧2

{
3
[
(1 + 𝑧)3 + 1 −Ω𝑚0

Ω𝑚0

] [
1 − (1 + 𝑧) 𝜙

′

𝜙
+

− (1 + 𝑧)
𝐻eff 20 (𝑧)
𝐻20

(
(1 + 𝑧)

(
𝜙′′ + 𝜙

′2

𝜙

)
− 𝜙′

)]
+ 91 −Ω𝑚0

Ω𝑚0

}
,

(12)

where we rescaled the potential as a dimensionless quantity �̃� ≡
𝑉/𝑚2 with the constant 𝑚2 ≡ 𝜒𝜌0/3 = 𝐻20Ω𝑚0. To reproduce a
decreasing trend for 𝐻eff0 (𝑧) similar to 𝐻fit0 (𝑧) in Eq. (4), we require
the following condition

𝜙(𝑧) − (1 + 𝑧) 𝜙′(𝑧) = (1 − 2𝛼) 𝜙(𝑧) , (13)

which admits the solution:

𝜙 (𝑧) = 𝐾 (1 + 𝑧)2𝛼 . (14)

We fixed the initial condition 𝜙 (0) = 𝐾 at 𝑧 = 0, where 𝐾 = 1−10−7
(Hu & Sawicki 2007) denotes the deviation from a pure GR scenario
(𝜙 = 1).
As a consequence of Eq. (9), the effective Hubble constant be-

comes

𝐻eff0 (𝑧) = 𝐻0√︁
𝐾 (1 − 2𝛼) (1 + 𝑧)𝛼

, (15)

which is a decreasing function, as requested to match the values of
𝐻loc0 and 𝐻CMB0 for 𝑧 = 0 and 1100, respectively. In this regard, we
set 𝛼 = 1.1×10−2 and 𝐻0 = 72.2 km s−1Mpc−1. Note, in particular,
that the value of 𝛼 is consistent in 1 𝜎 with the fitting parameters
𝛼 = 0.009 ± 0.004 used in the analysis of three redshift bins in
Dainotti et al. (2021).
Finally, by substituting 𝜙(𝑧) from Eq. (14) and 𝐻eff0 (𝑧) from

Eq. (15) into Eq. (12), we can easily integrate to obtain 𝑔(𝑧) and
reconstruct analytically the scalar field potential. After long but
straightforward calculations, we obtain:

�̃� (𝑧) = �̃� (0) + 6𝛼
1 − 𝛼

{
2 (2 + 𝛼) 1 −Ω𝑚0

Ω𝑚0
ln (1 + 𝑧)

+ 1 + 2𝛼
3

[
(1 + 𝑧)3 − 1

]}
, (16)

where we set the integration constant �̃� (0) = 6 (1 −Ω𝑚0) /Ω𝑚0,
coming from 𝑉 [𝜙 (𝑧 = 0)] = 2𝜒𝜌Λ. After solving relation (14) for
𝑧 = 𝑧 (𝜙), we rewrite the potential as

�̃� (𝜙) = �̃� (𝜙 = 𝐾) + 6𝛼
1 − 𝛼

{
2 + 𝛼
𝛼

1 −Ω𝑚0
Ω𝑚0

ln
(
𝜙

𝐾

)
+ 1 + 2𝛼

3

[(
𝜙

𝐾

) 3
2𝛼

− 1
]}

. (17)

Such a procedure can be demonstrated to be consistent with the
method outlined in Nojiri et al. (2009), which adapted to our scalar–
tensor reformulation amounts to directly integrate in 𝜙 in the equation
𝑑𝑉
𝑑𝜙

= 𝑅, once the equality 𝑅 = 6 ¤𝐻 + 12𝐻2 and the expressions
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for 𝜙(𝑧) and 𝐻 (𝑧) in Eqs. (14) and (15) are taken into account.
An explicit calculation shows that the two results coincide up to
the numerical factor 1−2𝛼1−𝛼 ∼ 1, since 𝛼 ∼ 10−2, guaranteeing the
consistency of the two approaches. This very small discrepancy is
due to the approximationwe considered in constructing the analytical
model (we disregarded the small term 𝑔(𝑧) in themodified Friedmann
equation 6). The numerical treatment, which follows in the next
section, is clearly consistent to the method in Nojiri et al. (2009)
up to the desired order of approximation. In particular, a numerical
approach is clearly needed to get the function 𝑁 (𝑅), being 𝑁 the
e-folding variable introduced in Nojiri et al. (2009), which is not
analytically solvable.
The profile of �̃� can be appreciated in Fig. 2 (we fixed the value

Ω𝑚0 = 0.298 Scolnic et al. (2018)), and it can be considered nearly
flat for 0 < 𝑧 . 𝑧∗, where the percentage variation of �̃� is about 1.6%,
which validates our hypothesis on a dark energy-dominated era. We
conclude this section by noting that in general for 𝑓 (𝑅) theories the
stability of scalar perturbations, i.e. the absence of tachyonic modes
in the Jordan frame (Moretti et al. 2019), implies on a Minkowski
background that 𝑑

2𝑉
𝑑𝜙2

> 0when evaluated in 𝜙𝑚𝑖𝑛, with 𝜙𝑚𝑖𝑛 defined

by 𝑑𝑉
𝑑𝜙

= 𝑅𝑚𝑖𝑛 = 0. In our case, however, since Eq. (17) is reliable
only for a cosmological setting, we can simply look at the behaviour
with the redshift of the ratio between the square root of the second
potential derivative and the Hubble function, as suggested by Brax
et al. (2008). As illustrated in Fig. 3, this ratio is indeed greater than
unity for 𝑧 = 0, and increases with increasing values of 𝑧, implying, in
agreement with the conclusions of Brax et al. (2008), that our model
is coherent with the requirements of the chameleon mechanism.

4 NUMERICAL ANALYSIS OF THE MODEL

We now relax the assumption on the existence of a flat region of the
scalar field potential for 0 < 𝑧 . 𝑧∗, but we continue to consider
the presence of an effective Hubble constant 𝐻eff0 (𝑧). Let us proceed
with a complete numerical analysis of the system (2a) (2c), which
we want to solve in terms of 𝜙(𝑧) and 𝑉 [𝜙(𝑧)].
First, we rewrite the generalized Friedmann equation (2a) in the

variable 𝑧, isolating the dimensionless scalar field potential

�̃� (𝑧) = 6
{
𝐻eff 20 (𝑧)
𝐻20

[
(1 + 𝑧)3 + 1 −Ω𝑚0

Ω𝑚0

]
×

×
[
𝜙(𝑧) − (1 + 𝑧) 𝜙′(𝑧)

]
− (1 + 𝑧)3

}
, (18)

where we used Eq. (5) and the fact that 𝜌 ∼ (1 + 𝑧)3.
Secondly, we rewrite the scalar field equation (2c) as:[
(1 + 𝑧)3 + 1 −Ω𝑚0

Ω𝑚0

] {
𝐻eff 20 (𝑧)
𝐻20

[
(1 + 𝑧)2 𝜙′′(𝑧) − 2 (1 + 𝑧) 𝜙′(𝑧)

]
+
𝐻eff0 (𝑧)
𝐻20

𝑑𝐻eff0 (𝑧)
𝑑𝑧

(1 + 𝑧)2 𝜙′(𝑧)
}
+ 3
2
𝐻eff 20 (𝑧)
𝐻20

𝜙′(𝑧) (1 + 𝑧)4

− 2
3
�̃� [𝜙(𝑧)] + 𝜙(𝑧)

3𝜙′(𝑧)
𝑑�̃�

𝑑𝑧
= (1 + 𝑧)3 . (19)

Then, by substituting �̃� (𝑧) from Eq. (18) into Eq. (19) and imposing
an effectiveHubble constant like inEq. (15),we obtain a second-order
differential equation in 𝜙(𝑧). We solve numerically this equation with
the following initial conditions for 𝑧 = 0: 𝜙(0) = 𝐾 , and 𝑑𝜙/𝑑𝑧 (0) =
2𝛼𝐾 . We fixed the same values for 𝛼,Ω𝑚0, and 𝐾 adopted in Sect. 3.
In Fig. 1 we show the evolution of 𝜙with 𝑧 using a red line, while in
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Figure 1. Behaviour of the scalar field 𝜙 versus redshift 𝑧 in the Jordan
frame, assuming an effective Hubble constant 𝐻 eff0 (𝑧) in Eq. (15). The blue
line is referred to the approximated solution developed in Sect. 3, while the
red line is obtained from the numerical analysis discussed in Sect. 4, after
solving Eqs. (18) and (19). The grey vertical line denotes 𝑧 = 𝑧∗.

Fig. 2 we plot the profile of �̃� in terms of 𝑧 and 𝜙. In all these figures,
we also compare our numerical results with the respective profiles
obtained from the analytical solution based on the assumption of a
flat potential at low redshifts in Sect. 3, noting that corresponding
solutions mostly overlap for 𝑧 � 1. It should be stressed that the
potential �̃� exhibits a nearly flat profile for 0 < 𝑧 . 𝑧∗ also for the
numerical solution with a percentage variation of about 1.3%.

5 THE LOW-REDSHIFT F(R) PROFILE

We are interested in obtaining an analytical expression for the 𝑓 (𝑅)
function, reproducing both the late-time cosmic acceleration and a
running Hubble constant with the redshift, according to Eq. (4). To
this end, we expand the solution for 𝜙(𝑧) and �̃� [𝜙(𝑧)] in the limit of
low redshifts for 𝑧 � 1.
More specifically, starting from Eq. (14) for 𝑧 � 1, we get up to

the second order:

𝜙(𝑧) ≈ 𝐾
[
1 + 2𝛼𝑧 − 𝛼 (1 − 2𝛼) 𝑧2

]
+𝑂

(
𝑧3
)
. (20)

Note that the low-redshift limit 𝑧 � 1 is equivalent to an expansion
for 𝜙 around 𝐾 . Then, we expand �̃� [𝜙(𝑧)] given by Eq. (17) for
𝜙 ≈ 𝐾:

�̃� (𝜙) ≈ �̃� (𝐾) + 𝐴1 (𝜙 − 𝐾) + 𝐴2 (𝜙 − 𝐾)2 +𝑂
[
(𝜙 − 𝐾)3

]
, (21)

where the dimensionless constants 𝐴1 and 𝐴2 are defined as

𝐴1 =
6

𝐾 (1 − 𝛼)

[
1 + 2𝛼
2

+ (𝛼 + 2) 1 −Ω𝑚0
Ω𝑚0

]
, (22)

𝐴2 =
3

𝐾2 (1 − 𝛼)

[
1 + 2𝛼
2

(
3
2𝛼

− 1
)
− (𝛼 + 2) 1 −Ω𝑚0

Ω𝑚0

]
. (23)

Once we have the expression for �̃� (𝜙), we use the equation 𝑅 =

𝑑𝑉/𝑑𝜙 for solving in 𝜙 = 𝜙 (𝑅). Then, using the relation 𝑓 (𝑅) =

𝑅 𝜙 (𝑅) −𝑉 [𝜙 (𝑅)], we obtain

𝑓 (𝑅) ≈ 𝑚2𝐵0 + 𝐵1 𝑅 + 𝐵2
𝑅2

𝑚2
, (24)

where we have defined the constants

𝐵0 =
𝐴21
4𝐴2

− �̃� (𝐾) , 𝐵1 = 𝐾 − 𝐴1
2𝐴2

, 𝐵2 =
1
4𝐴2

. (25)
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Figure 2. Profile of the scalar field potential in terms of the redshift 𝑧 (top
panel) and the scalar field 𝜙 (bottom panel) in the Jordan frame, inferred
from the assumption of a running Hubble constant 𝐻 eff0 (𝑧) , according to
Eq. (15). Note that �̃� = 𝑉 (𝜙)/𝑚2 is a dimensionless potential. The blue and
red lines are referred to the approximated solution (Sect. 3) and numerical
results (Sect. 4), respectively. The grey vertical lines denote 𝑧 = 𝑧∗ in the top
panel and 𝜙 = 𝜙 (𝑧∗) in the bottom one.
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Figure 3. Ratio between the square root of the second derivative of the
potential 𝑉 = 𝑚2�̃� and the Hubble function in terms of the redshift. We
have used Eqs. (5), (14), (15), and (17).

It should be stressed that Eq. (24) provides an approximated solution
of the 𝑓 (𝑅) function for 𝑧 � 1, which contains constant, linear, and
quadratic terms in 𝑅, with the ΛCDM model recovered for 𝐾 → 1
and 𝛼 → 0. Clearly, the function 𝑓 (𝑅) has been constructed on
a cosmological setting and its parameters are not directly suitable
for a comparison in the Solar system framework. None the less, the
absence of a tachyonic mode, as ensured by the positive coefficient
in front of the 𝑅2 term, is a reliable consistency check for the theory.

6 CONCLUSIONS

We started our analysis from the results obtained by Dainotti et al.
(2021, 2022), which outlined a dependence of the value of 𝐻0 with
the redshift via a binned data analysis of the SNe Ia Pantheon sample
within 2 𝜎. The specific form of the decaying 𝐻fit0 (𝑧) given in Eq. (4)
was the phenomenological input of our theoretical study.
The idea proposed above consists in setting up a dark energymodel

that is able to account for a variation with 𝑧 of the 𝐻0 value. More
specifically, we adopted the theoretical paradigm of 𝑓 (𝑅) gravity,
as viewed in the Jordan frame (Sect. 2), where we used the non-
minimally coupled scalar field for describing the variation of the
effective Einstein constant.
Starting from the equations of motion for an isotropic Universe,

we assumed the scalar field as a function of the redshift, and we de-
termined the behaviour of Eq. (14) by imposing the desired decaying
of 𝐻eff0 (𝑧). Then, by means of the scalar field dynamics, we were
able to recover the corresponding potential term, which fixed in turn
the 𝑓 (𝑅) model.
The investigation was performed both analytically and numeri-

cally: in the former case, in Sect. 3 we assumed the existence of a
flat region of the scalar field potential, approximated by a constant
value, and then we explicitly determined the potential derivative in
Eq. (12); in the latter case, the scheme was implemented directly on
the two basic equations (2a) and (2c), without any assumption on the
potential form. It was rather remarkable that, in both analyses, the
potential term singled out a nearly flat region for 𝑧 . 0.3 (Fig. 2),
which is exactly when the dark energy contribution of the Universe
dominates on the matter content.
The low-redshift limit of our model in Sect. 5 allowed an analytical

determination of the potential term, and hence of the underlying 𝑓 (𝑅)
model. The resulting expression (24) for the modified Lagrangian
contains a cosmological constant, as well as linear and quadratic
contributions in the Ricci scalar. In particular, this result is consistent
with other 𝑓 (𝑅) gravitymodels proposed to describe deviations from
GR in the ΛCDM cosmological scenario, without introducing dark
energy (Starobinsky 1980; Sotiriou & Faraoni 2010; Cosmai et al.
2016; Fanizza et al. 2020).
It is very remarkable for the robustness of our model that this

modified scheme approaches the ΛCDM scenario only when 𝛼 → 0
and 𝑑𝑓 /𝑑𝑅 → 1. In other words, even if we reduce the function
𝐻eff0 (𝑧) to a fixed constant value, our model can still contain a small
deviation from the Λ𝐶𝐷𝑀 Universe.
Thus, we can claim that our study is able to simultaneously address

two key points: on one hand, we get a modified gravity model as a
suitable dark energy candidate; on the other hand, we provided a
natural interpretation for the profile of 𝐻fit0 (𝑧) obtained in Dainotti
et al. (2021, 2022).
The present study calls attention to further investigations as the

redshift increases towards the CMB observations, in order to under-
stand if it can satisfactorily solve the Hubble tension.
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