
Received 26 October 2022, accepted 8 November 2022, date of publication 10 November 2022, date of current version 16 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3221520

Compressing and Querying Integer Dictionaries
Under Linearities and Repetitions
PAOLO FERRAGINA , GIOVANNI MANZINI , AND GIORGIO VINCIGUERRA
Department of Computer Science, University of Pisa, 56127 Pisa, Italy

Corresponding author: Giorgio Vinciguerra (giorgio.vinciguerra@di.unipi.it)

This work was supported in part by the Italian Ministry of University and Research ‘‘Progetti di Rilevante Interesse Nazionale (PRIN)’’,
Grant no. 2017WR7SHH ‘‘Multicriteria Data Structures and Algorithms’’.

ABSTRACT We revisit the fundamental problem of compressing an integer dictionary that supports efficient
rank and select operations by exploiting simultaneously two kinds of regularities arising in real data:
repetitiveness and approximate linearity. We attack this problem by proposing two novel compressed
indexing approaches that extend the classic Lempel-Ziv compression scheme and the more recent block
tree data structure with new algorithms and data structures that allow them to also capture regularities in
terms of the approximate linearity in the data. Finally, we corroborate these theoretical results with a wide
set of experiments on real and synthetic datasets, which allow us to show that our approaches achieve new
interesting space-time trade-offs that characterise them as more robust in most practical scenarios compared
to the known data structures that exploit only one of the two regularities.

INDEX TERMS Compressed data structures, data compression, entropy.

I. INTRODUCTION
We focus on the fundamental problem of representing an
ordered dictionary A of n distinct elements drawn from the
integer universe [u] = {0, . . . , u − 1} while supporting the
operation rank(x), which returns the number of elements
in A that are smaller than or equal to x; and select(i), which
returns the ith smallest element in A. Another way of looking
at these operations is via the characteristic bitvector of A, i.e.
a bitvector bv(A) of length u such that bv(A)[i] = 1 if and
only if i ∈ A. Here, rank(x) counts the number of 1s up
to position x, and select(i) finds the position of the ith 1,
as depicted in Figure 1.1

Rank/select dictionaries are at the heart of virtually
any compact data structure [1], such as text indexes [2],
[3], [4], [5], [6], [7], succinct trees and graphs [8], [9],
hash tables [10], permutations [11], etc. Unsurprisingly, the

The associate editor coordinating the review of this manuscript and

approving it for publication was Gustavo Olague .
1For a sequence T [1, n] of characters, one can define instead: ranka(i),

which returns the number of occurrences of the character a in T [1, i];
selecta(j), which returns the position of the jth occurrence of a in T ;
and access(k), which returns the character T [k]. These new operations
can be implemented by using rank and select on bitvectors as building
blocks [1, §6].

FIGURE 1. The rank and select operations on a dictionary A of
10 elements over the universe [16], and on the corresponding
characteristic bitvector bv(A).

literature is abundant in solutions that offer compressed space
and efficient support for rank/select operations, e.g. [9], [12],
[13], [14], [15], [16], [17], [18]. Yet, the problem of design-
ing theoretically and practically efficient rank/select data
structures is anything but closed. The reason is threefold.
First, there is an ever-growing list of applications of com-
pact data structures (in bioinformatics [19], [20], information
retrieval [21], and databases [22], just to mention a few)
each having different characteristics and requirements on the
use of computational resources, such as time, space, and
energy consumption. Second, the hardware is evolving [23],

VOLUME 10, 2022
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 118831

https://orcid.org/0000-0003-1353-360X
https://orcid.org/0000-0002-5047-0196
https://orcid.org/0000-0003-0328-7791
https://orcid.org/0000-0001-5773-9517

P. Ferragina et al.: Compressing and Querying Integer Dictionaries Under Linearities and Repetitions

sometimes requiring new data structuring techniques to fully
exploit larger CPU registers, new instructions, parallelism,
and next-generation memories, such as persistent memory.
Third, data may present different kinds of regularities, which
require different techniques to exploit them in novel and
better performing rank/select data structures.

Among the latest and very promising regularities to be
exploited, there is a geometric concept of approximate linear-
ity [24], [25]. Let us regard A as a sorted array A = A[1, n]
and let A[i, j] denote the subarray A[i],A[i+1], . . . ,A[j]. The
key idea is to first map each element A[i] to the point (i,A[i])
in the Cartesian plane, for i = 1, 2, . . . , n. This way, any
function f : [1, n] → [u] that passes through all the points
in this plane can be thought of as an encoding of A because
we can answer select(i) = A[i] by means of f (i). From
the ordering of A and the simple retrieval of A[i], the rank
operation could be easily solved via a binary search. Now,
the challenge is to find a representation of f that is both fast
to be computed and compressed in space and, also, suitable
to support efficient rank, hence not passing through a binary
search. To this end, the authors of [25] proposed to implement
f via a piecewise linear model whose error, measured as the
vertical distance between the prediction and the actual value
of A, is bounded by a given integer parameter ε.

Definition 1: A piecewise linear ε-approximation for the
integer array A[1, n] is a partition of A into subarrays of
variable length, such that each subarray A[i, j] of the par-
tition is covered by a segment, represented by a pair 〈α, β〉 of
numbers, such that |(αk + β)− A[k]| ≤ ε for each k ∈ [i, j].

Among all possible piecewise linear ε-approximations, the
authors of [25] aimed for the most succinct one, namely
the one with the least number of segments. This is a
classical computational geometry problem that admits an
O(n)-time solution [26]. The structure introduced by [25],
named LA-vector, uses this succinct piecewise linear
ε-approximation as a lossy representation of A, and it mends
the information loss by storing the vertical errors into an
array C of dlog(2ε + 1)e-bit integers, called corrections (all
logarithms are to the base two). To answer select(i), the
LA-vector uses a constant-time rank data structure built on
a bit-vector of size n to find the 〈α, β〉 corresponding to the
segment covering i, and it returns the value bαi+ βc + C[i].
The rank(x) operation is implemented via an empowered
binary search that exploits the information encoded in the
piecewise linear ε-approximation to be faster [25].

In practical implementations, the LA-vector allocates
c ≥ 0 bits for each correction and sets ε = max(0, 2c−1 − 1).
Its space usage in bits consists roughly of a term O(nc)
accounting for the corrections array C , and a term
O(m(log u+ log n)) that grows with the number of seg-
ments m in the piecewise linear ε-approximation.2 Despite
the apparent simplicity of the piecewise linear representation,

2In Section III, we show that theO(log u+ log n) term can be reduced to
O(log u

m + log n
m) bits.

FIGURE 2. The points in the top-right circle follows the same ‘‘pattern’’
(i.e. the same distance between consecutive points) of the ones in the
bottom-left circle. A piecewise linear ε-approximation for the top-right
set can be obtained by shifting the segments for the bottom-left set.

the experiments in [25] have shown that the LA-vector offers
the fastest select and competitive rank performance with
respect to several state-of-the-art data structures implemented
in the sdsl library [27]. Notably, the value m has been
proposed as a compressibility measure that accounts for the
approximate linearity of A’s elements, and it has been shown
that m = O(n/ε2) when the gaps between the elements are
random variables from a given distribution [28].

Despite their succinctness and power in capturing linear
trends, piecewise linear ε-approximations still lack the capac-
ity to find and exploit one fundamental and classical source
of compressibility arising in real data: repetitiveness [29].
Although the input consists of an arrayA of strictly increasing
integers, there can be significant repetitiveness in the differ-
ences between consecutive elements. Consider the gap-string
S[1, n] defined as S[i] = A[i]− A[i− 1], with A[0] = 0, and
suppose that the substring S[i, j] has been encountered earlier
at S[i′, i′ + j − i] (we write S[i, j] ≡ S[i′, i′ + j − i]). Then,
instead of finding a new set of segments ε-approximating the
subarray A[i, j], we could use the segments ε-approximating
the subarray A[i′, j′] properly shifted. Note that, even if
A[i′, j′] is covered by many segments, the same shift will
transform all of them into an approximation for A[i, j] (see
example in Figure 2). Therefore, in this case, we could store
only the shift and the reference to the segments of A[i′, j′].

Unfortunately, the LA-vector is unable to take advantage of
such regularities. And, in the extreme case where A consists
of the concatenation of a small subarray A′ shifted by some
amounts 1is for k times, that is A = A′,A′ + 11,A′ +
12, . . . ,A′+1k−1, the overall cost of representing Awith the
LA-vector will be roughly k times the cost of representing A′.
On the other hand, take an order-hDe Bruijn binary sequence
B[1, 2h] and define A[i] = 2i+B[i]. Then, the line with slope
2 and intercept 0 is a linear approximation of the entire arrayA
with ε = 1. Conversely, for the gap-string S[i] = A[i]−A[i−
1] = 2+B[i]−B[i− 1] we would not find repetitions longer
than h−1.More pathological cases for the gap-string S, which

118832 VOLUME 10, 2022

P. Ferragina et al.: Compressing and Querying Integer Dictionaries Under Linearities and Repetitions

are nonetheless well compressible by LA-vector because of
the approximate linearity of A, can be built by considering
integers in A whose mapping into the Cartesian plane gives
points that distribute randomly around a line with a positive
slope. As an example, fix an integer slope α and generate
values A[i] = iα+ηi, where i = 1, . . . , n and ηi is an integer
chosen uniformly at random in a range [−ε, ε] for every i.
It is clear that the segment 〈α, 0〉 is a linear ε-approximation
for A which, however, will not show much long repeated
substrings in the corresponding gap-string S because of the
random ηis.
Other than the gap string S, another common approach in

the literature to design a succinct dictionary (see e.g. [30])
is to compress the characteristic bitvector bv(A) (see again
Figure 1). To compare these two approaches, we consider the
kth order empirical entropy Hk (see the Appendix and [1,
§2.4] for the definition and significance of this measure), and
we prove that for any dictionaryA it is nHk (S) ≤ uHk (bv(A)).
This result provides a firm theoretical ground for the choice
of representing A using the gap-string S rather than the char-
acteristic bitvector bv(A). Since this result is of independent
interest, and to not interrupt the ‘‘algorithmic flow’’ of the
paper, its statement and proof are given in the Appendix.

The goal of this paper is therefore to design compressed
indexing techniques that are able to exploit both the presence
of repetitions in the gap-string S and the presence of subarrays
in A which can be linearly ε-approximated well, while still
supporting efficient rank/select primitives on A.

Our orchestration of repetitions and approximate linear-
ities goes through the proper modification of two known
compression methods so that they can take advantage of
approximate linearity too. The first method is the Lempel-Ziv
(LZ) parsing [31], [32], [33], [34], which is one of the
best-known approaches to exploit repetitiveness [29]. The
second method is the block tree [35], which is a recently pro-
posed query-efficient alternative to LZ-parsing and grammar-
based representations [36] suitable for highly repetitive
inputs.

Technically speaking, our first contribution is a novel
parsing scheme, the LZρε parsing, whose phrases are a combi-
nation of a backward copy and a linear ε-approximation, i.e.,
a segment and the corresponding correction values. We show
that this solution supports rank and select in polylogarith-
mic time and has space bounds that show the sensitivity to
both repetitiveness and approximate linearity. In particular,
we bound the former in terms of the kth order empirical
entropy (as it occurs for the known LZ-parsingmethods, cited
above) and the latter in terms of the efficient encoding of
linear ε-approximations of A’s subarrays (as it occurs for the
LA-vector), thus obtaining asymptotically the best of both
worlds in the space bounds.

Our second contribution is the block-ε tree, an orchestra-
tion of block trees [35], [37] and linear ε-approximations.
Our main idea is to build the block tree over the gap-
string S and to prune the subtrees whose corresponding
subarrays can be covered more succinctly by means of

a linear ε-approximation in place of a block (sub)tree.
Let us define the δ repetitiveness measure on S as δ =
max{dk (S)/k | 1 ≤ k ≤ n}, where dk (S) is the number of
distinct length-k substrings of S [29], [37]. We show that
this solution supports rank in O(log log u

δ
+ log n

δ
+ log ε)

time and select in O(log n
δ
) time using O(δ log n

δ
log n) bits

of space in the worst case. For comparison, a block tree built
on bv(A) supports rank and select in O(log u

δ′
) time using

O(δ′ log u
δ′
log u) bits of space, where δ′ is the repetitive-

ness measure computed on bv(A). Unfortunately, the time
and space bounds achieved by the block tree and by our
block-ε tree are not directly comparable due to the use of δ′

instead of δ.
Our last contribution is an experimental evaluation of ours

and known approaches. On standard datasets (containing no
evident repetitive or linearity trends), we show that there is no
clear winner in space between the two known representative
approaches [25], [35], namely block tree and LA-vector.
In this scenario, our block-ε tree achieves the best space
or the second-best space in the majority of cases due to its
effectiveness in exploiting both regularities. As far as the
query time is concerned, the LA-vector obtains the fastest
performance, followed by our block-ε tree which generally
achieves better performance than the block tree. Our LZε
parsing (a space-efficient configuration of LZρε) on these stan-
dard datasets was, unfortunately, dominated by some other
data structure in time and in space.Motivated by these results,
to shed light on scenarios in which repetitions and linearities
are more evident, we also consider synthetic datasets for
which we show that the space of the LA-vector does not
improve with repetitions, that the space of the block tree does
not improve with approximate linearities, and that both our
block-ε tree and LZε achieve an improved space occupancy,
being able to successfully capture both forms of compress-
ibility studied in this article.

In the Conclusions, we comment on several research direc-
tions that naturally arise from the novel approaches described
in this paper. In particular, we highlight here that, althoughwe
consider in this paper only linear approximations, our tech-
niques can be extended to other data approximation functions,
such as polynomials and rational functions. Furthermore,
they can be adapted to the simpler problem of compressing
non-monotonic sequences while supporting random-access
queries to their values (i.e. only select), which is frequent
e.g. in time-series scenarios.

As a final remark, we note that a preliminary version of
this work appeared in [38]. In addition to minor improve-
ments in the presentation, the present contribution con-
tains the following new material: the already mentioned
gap vs binary entropy inequality given in the Appendix,
an improved presentation of the LZρε parsing, new improved
space bounds for the LZρε parsing, the description of rank
and select queries in the block-ε tree, a discussion of the
algorithm-engineering tricks used in our implementations,
the implementation and experimentation of the LZε pars-
ing, and a greatly improved experimental section with new

VOLUME 10, 2022 118833

P. Ferragina et al.: Compressing and Querying Integer Dictionaries Under Linearities and Repetitions

FIGURE 3. LZ-End parse of T = BABABCCBBACCABCCBBACCABCCCCB into
ten phrases. An arrow from a phrase fq to fr indicates that fr is the last
phrase in the source of fq, and the appended character is underlined.

datasets providing new insights on the efficacy of the pro-
posed approaches.

II. TOOLS
We use the Elias-Fano [39], [40] representation for
compressing and randomly-accessing monotone integer
sequences [1, §4.4].

Lemma 1 (Elias-Fano encoding): We can store a sequence
of n increasing positive integers over a universe of size u in
ndlog u

ne + 2n + o(n) = n log u
n + O(n) bits and access any

integer of the sequence in O(1) time.

Henceforth, we always assume that a piecewise linear
ε-approximation for an input array A is the most succinct one
in terms of the number of segments, or equivalently, that we
always maximise the length ` of the subarray A[i, i+ `− 1]
covered by a segment starting at i. This is possible thanks to
the algorithm of O’Rourke [26], which computes in optimal
O(n) time the piecewise linear ε-approximation with the
smallest number of segments for the set of points {(i,A[i]) |
i = 1, . . . , n}.
Another key tool that we use is LZ-End of Kreft and

Navarro [34]. Formally, the LZ-End parsing of a text T [1, n]
is a sequence f1, f2, . . . , fz of phrases, such that T = f1f2 · · · fz,
built as follows. If T [1, i] has been parsed as f1f2 · · · fq−1,
the next phrase fq is obtained by finding the longest prefix
of T [i + 1, n] that appears also in T [1, i] ending at a phrase
boundary, i.e. the longest prefix of T [i+1, n] which is a suffix
of f1 · · · fr for some r ≤ q− 1. If T [i+ 1, j] is the prefix with
the above property, the next phrase is fq = T [i + 1, j + 1]
(notice the character T [j+1] is appended to the longest copied
prefix). The occurrence in T [1, i] of the prefix T [i + 1, j] is
called the source of the phrase fq. Figure 3 shows an example
of LZ-End parsing.

Although LZ-End is less powerful than the classic LZ77
parsing, because this latter allows the end of a source to be
anywhere in T [1, i], it compresses any text T up to its kth
order entropy, and it allows extracting any length-` substring
of T in O(`+M) time, where M is the length of the longest
phrase. Kreft and Navarro also conjectured that the ratio
ze/z between the number of LZ-End phrases and the ones
of LZ77 is upper bounded by 2, and examples of strings
where this ratio is arbitrarily close to 2 were given both for a
large alphabet [34] and for a binary alphabet [41]. Significant
progress on this conjecture was recently made by [42], where
it is shown that ze = O(z log2 n

z).
With the advent of large datasets containing many

repetitions, researchers have observed that the entropy
does not always provide a meaningful lower bound to

FIGURE 4. A block tree on T = BABABCCBBACCABCCBBACCABCCCCB.

the information content of such datasets [34]. Recently,
Navarro [29] has given a complete picture of several alter-
native measures of information content and has shown that
they are all lower bounded by the measure δ, defined as
max{dk (T)/k | 1 ≤ k ≤ n}, where dk (T) is the number of
distinct length-k substrings of T .
In [35] and [37], it is shown how to represent a text T [1, n]

in space bounded in terms of δ while supporting ranka,
selecta, and access operations (recall their definitions in
Footnote 1) via a data structure called the block tree. Assume
that n = δ2h for some integer h. Level zero of the block
tree logically divides T into δ blocks of size n/δ. Blocks at
level ` have size n/(δ2`) because they are recursively halved
according to the following strategy. At any level, if two blocks
Tq and Tq+1 are consecutive in T and they form the leftmost
occurrence in T of their content, then both Tq and Tq+1 are
said to be marked. A marked block is split into two equal-
size sub-blocks. An unmarked block Tr is not split further
and is encoded by storing a leftward pointer to the marked
blocks Tq,Tq+1 at the same level containing the leftmost
occurrence of Tr . The last level is formed when the cost of
explicitly storing Tr becomes less than that of storing the left-
ward pointers, and this happens when h = O(log n/δ

logσ n
) =

O(log n
δ
). By storing further data at each block, the block

tree supports ranka, selecta, and access inO(h) time, while
takingO(σδ log n

δ
log n) bits of space, where σ is the alphabet

size. Figure 4 shows a block tree (where we assume δ = 7 for
the sake of example) on the same text of Figure 3.

Note that δ is also related to the number ze of LZ-End
phrases as ze = O(δ log2 n

δ
) [42]. Thus, the block tree and the

LZ-end parsing, which are the techniques we use as starting
points for the design of our data structures, are both suitable
to compress datasets with many repetitions, since their space
occupancy is bounded in terms of δ.

III. TWO NOVEL LZ-PARSINGS: LZε AND LZρε
Assume that A contains distinct positive integers and consider
the gap-string S[1, n] defined as S[i] = A[i]−A[i−1], where
A[0] = 0. To make the LA-vector repetition aware, we parse
S via a strategy that combines linear ε-approximations with
the LZ-End parsing. We generalise the phrases of the LZ-End
parsing in a way that they are a ‘‘combination’’ of a backward
copy ending at a phrase boundary (as in the classic LZ-End),
computed over the gap-string S, plus a segment covering

118834 VOLUME 10, 2022

P. Ferragina et al.: Compressing and Querying Integer Dictionaries Under Linearities and Repetitions

FIGURE 5. Computation of the next phrase Z [q] in the parsing of the gap-string S of the array A, where S[1, i] has already been parsed
into Z [1], . . . ,Z [q− 1].

a subarray of A with an error of at most ε (unlike clas-
sic LZ-End, which instead adds a single trailing character).
We call this parsing the LZε parsing of S.

Suppose that LZε has partitioned S[1, i] into Z [1],Z [2],
. . . ,Z [q− 1]. We determine the next phrase Z [q] as follows
(see Figure 5):

1) We compute the longest prefix S[i+ 1, j] of S[i+ 1, n]
that is a suffix of the concatenation Z [1] · · · Z [r] for
some r ≤ q− 1 (i.e. the source must end at a previous
phrase boundary).

2) We find the longest subarray A[j, h] that may be
ε-approximated linearly, as well as the slope and inter-
cept of such approximation. Note that using the algo-
rithm of [26] the time complexity of this step isO(h−j),
i.e. linear in the length of the processed array.

The new phrase Z [q] is then the substring S[i + 1, j] ·
S[j + 1, h]. If h = n, the parsing is complete. Otherwise,
we continue the parsing with i ← h + 1. As depicted in
Figure 5, we call S[i + 1, j] the head of Z [q] and S[j + 1, h]
the tail of Z [q]. Note that the segment associated with the
tail covers also the value A[j] corresponding to the head’s
last position S[j]. When S[i + 1, j] is the empty string (e.g.
at the beginning of the parsing), the head is empty thus no
backward copy is executed, and the segment associated with
the tail covers only the tail’s positions. In the worst case, the
longest subarray we can ε-approximate has length 2, which
nonetheless guarantees that Z [q] is nonempty. Experiments
in [25] show that the average segment length ranges from
76 when ε = 31 to 1480 when ε = 511.

If the complete parsing consists of z phrases, we store it
via:

• An integer vector PE[1, z] (Phrase Ending position)
such that h = PE[q] is the ending position of phrase
Z [q], that is, Z [q] = S[i+ 1, h], where i = PE[q− 1].

• An integer vector HE[1, z] (Head Ending position) such
that j = HE[q] is the last position of Z [q]’s head. Hence,
Z [q]’s head is S[PE[q− 1]+ 1,HE[q]], and Z [q]’s tail
is S[HE[q]+ 1,PE[q]].

• An integer vector HS[1, z] (Head Source) such that r =
HS[q] is the index of the last phrase in Z [q]’s source.
Hence, Z [q]’s head is a suffix of Z [1] · · · Z [r]. If Z [q]’s
head is empty then HS[q] = 0.

• A vector of pairs TL[1, z] (Tail Line) such that TL[q] =
〈αq, βq〉 are the parameters of the segment associated
with Z [q]’s tail.

• A vector of arrays TC[1, z] (Tail Corrections) such that
TC[q] is an array storing one correction value for each
element in the subarray A[HE[q],PE[q]] covered by
the segment associated with Z [q]’s tail (the subarray is
A[HE[q]+ 1,PE[q]] in the case Z [q]’s head is empty).
By construction, such corrections are smaller than ε in
modulus.

Using the values in TL and TC we can recover the subar-
rays A[j, h] corresponding to the phrases’ tails. We show that
using all the above vectors we can recover the whole array A.

Lemma 2: Let S[i + 1, j] denote the head of phrase Z [q],
and let r = HS[q] and e = PE[r]. Then, for t = i+ 1, . . . j,
it holds

A[t] = A[t − (j− e)]+ (A[j]− A[e]), (1)

where A[j] (resp. A[e]) can be retrieved in constant time from
TL[q] and TC[q] (resp. TL[r] and TC[r]).

Proof: By construction, S[i + 1, j] is identical to a
suffix of Z [1] · · · Z [r]. Since such a suffix ends at position
e = PE[r], it holds S[i+ 1, j] ≡ S[e− j+ i+ 1, e] and

A[t] = A[j]− (S[j]+ S[j− 1]+ · · · + S[t + 1])

= (A[j]− A[e])+ A[e]− (S[e]+ S[e− 1]+ · · ·

+ S[t + 1− (j− e)])

= (A[j]− A[e])+ A[t − (j− e)].

For the second part of the lemma, we notice that A[j] is the
first value covered by the segment associated with Z [q]’s tail,
while A[e] is the last value covered by the segment associated
with Z [r]’s tail. �

A. SUPPORTING SELECT QUERIES
Using Lemma 2 above, we can also show that given a position
t ∈ [1, n] we can retrieve A[t] and thus implement select(t).
The main idea is to use a binary search on PE to retrieve the
phrase Z [q] containing t . Then, if t ≥ HE[q], we get A[t]
from TL[q] and TC[q]; otherwise, we use Lemma 2 and get
A[t] by retrieving A[t−(j−e)] using recursion, as formalised
in Algorithm 1.

VOLUME 10, 2022 118835

P. Ferragina et al.: Compressing and Querying Integer Dictionaries Under Linearities and Repetitions

FIGURE 6. The LZε parsing with the definition of meta-characters. Cells represent meta-characters, and the coloured cells
are also tails. Z [7]’s head consists of a copy of a substring that starts inside Z [2] and ends at the end of Z [5] (we show this
using diagonal patterns in Z [7]’s head with the same colours of the tails in Z [2] · · ·Z [5]). Meta-characters in Z [7]’s head are
defined from the meta-characters in the copy. Note that Z [7]’s first meta-character is a suffix of Z [2]’s first meta-character.

Algorithm 1 Recursive select Procedure
1: procedure Select(t)
2: q← smallest i such that PE[i] ≥ t , found via a binary search on PE
3: return Select-Aux(t , q)

4: procedure Select-Aux(t , q) F Invariant: PE[q− 1] < t ≤ PE[q]
5: if t > HE[q] then F If position t belongs to Z [q]’s tail
6: return A[t] F A[t] is computed from TL[q], TC[q]
7: r ← q′ ← HS[q] F Z [q]’s head is a suffix of Z [1] · · · Z [r]
8: j← HE[q] F j is the last position of Z [q]’s head
9: e← PE[r] F e is the last position of Z [r]
10: 1← A[j]− A[e] F Computed inO(1) time by Lemma 2
11: t ′ ← t − (j− e); F A[t] = A[t ′]+1 by Lemma 2
12: while q′ > 1 and t ′ ≤ PE[q′ − 1] do F Find phrase Z [q′] for t ′

13: q′ ← q′ − 1
14: return Select-Aux(t ′, q′) + 1 F Equals A[t] by Lemma 2

To analyse Algorithm 1, we now introduce the notion of
meta-characters of the LZε parsing of S. The first phrase
Z [1] = S[1,PE[1]] in the parsing is our first meta-character
(note Z [1] has an empty head, so HE[1] = 0 and the
pair 〈TL[1],TC[1]〉 encodes the subarray A[0,PE[1]]). Now,
assuming we have already parsed Z [1] · · · Z [q−1] and parti-
tioned S[1,PE[q− 1]] into meta-characters, we partition the
next phrase Z [q] into meta-characters as follows: Z [q]’s tail
will form ameta-character by itself, while Z [q]’s head ‘‘inher-
its’’ the partition into meta-characters from its source. Indeed,
recall that Z [q]’s head is a copy of a suffix of Z [1] · · · Z [r],
with r = HS[q]. Such a suffix, say S[a, b], belongs to the
portion of S already partitioned into meta-characters. Since
by construction Z [r]’s tail is a meta-character Xr , we know
that Xr is a suffix of S[a, b]. Working backwards from Xr
we obtain the sequence X0 · · ·Xr of meta-characters covering
S[a, b]. Note that it is possible that X0, the meta-character
containing S[a], starts before S[a]. We thus define X ′0 as the
suffix of X0 starting at S[a] and define the meta-character par-
tition of Z [q]’s head as X ′0X1 · · ·Xr . This process is depicted
in Figure 6. Note that each meta-character is either the tail of
some phrase or it is the suffix of a tail.

Armed with the definition of meta-characters, we can now
prove the following result.

Lemma 3: Algorithm 1 computes select(t) = A[t] in
O(log z + Mmax) time, where z is the number of phrases in
the LZε parsing and Mmax is the maximum number of meta-
characters in a single phrase.

Proof: The correctness of the algorithm follows
by Lemma 2. To prove the time bound, observe that Line 2

Algorithm 2 Recursive rank Procedure
1: procedure Rank(v)
2: q← smallest i such that A[PE[i]] ≥ v, found via a binary search

on PE, using TL and TC
3: return Rank-Aux(v, q)
4: procedure Rank-Aux(v, q) F Invariant: A[PE[q−1]]<v≤A[PE[q]]
5: j← HE[q] F j is the last position of Z [q]’s head
6: if v ≥ A[j] then F If v falls into Z [q]’s tail
7: return j+ rank of v in A[j,PE[q]] F Compute rank from TL[q]

and TC[q] in O(log ε) time
8: r ← q′ ← HS[q] F Z [q]’s head is a suffix of Z [1] · · · Z [r]
9: e← PE[r] F e is the last position of Z [r]
10: 1← A[j]− A[e] F Computed inO(1) time by Lemma 4
11: v′ ← v−1; F rank(v) = rank(v′)+ (j− e) by Lemma 4
12: while q′ > 1 and v′ ≤ A[PE[q′−1]] do F Find phrase Z [q′] for v′
13: q′ ← q′ − 1
14: return Rank-Aux(v′, q′) + j− e F Equals rank(v) by Lemma 4

clearly takesO(log z) time. Let ` denote the number of meta-
characters between the one containing position t up to the
end of Z [q]. We show by induction on ` that Select-Aux(t, q)
takesO(`) time. If ` = 1, then t belongs to Z [q]’s tail, and the
value A[t] is retrieved in O(1) time from TL[q] and TC[q].
If ` > 1, the algorithm retrieves the value A[t ′] from a

previous phrase Z [q′], with q′ = r−k , where k is the number
of times Line 13 is executed. Since Z [q] meta-characters are
induced by those in its source, we get that the number of
meta-characters between the one containing t ′ and the end of
Z [r] is `−1, and the number of meta-characters between the
one containing t ′ and the end of Z [q′] is `′ ≤ ` − 1 − k .
By the inductive hypothesis, the call to Select-Aux(t ′, q′)
takesO(`′), and the overall cost of Select-Aux(t, q) isO(k)+
O(`′) = O(`), as claimed. �

B. SUPPORTING RANK QUERIES
We now show how to support rank queries, starting with
the following lemma whose proof is analogous to the one
of Lemma 2.

Lemma 4: Let S[i + 1, j] denote the head of phrase Z [q],
and let r = HS[q] and e = PE[r]. Then, for any v such that
A[i] < v ≤ A[j], it holds rank(v) = rank(v− (A[j]−A[e]))+
(j − e), where A[j] (resp. A[e]) can be retrieved in constant
time from TL[q] and TC[q] (resp. TL[r] and TC[r]).

Lemma 5: Algorithm 2 computes rank(v) in O(log z +
Mmax+log ε) time, where z is the number of phrases in the LZε

118836 VOLUME 10, 2022

P. Ferragina et al.: Compressing and Querying Integer Dictionaries Under Linearities and Repetitions

FIGURE 7. The LZε parsing of the same string of Figure 6 with M = 5. The phrase Z [7] from Figure 6 is invalid since it has 13
meta-characters. Z [7] head can have at most 4 meta-characters, so we define Z [7] by setting HS[7] = 3 (Step 2b). Next,
we define Z [8] by setting HS[8] = 4 (Step 2c).

parsing andMmax is themaximum number of meta-characters
in a single phrase.

Proof: Algorithm 2 follows closely the scheme of
Algorithm 1. First, we compute the index q of the phrase
Z [q] such that A[PE[q − 1]] < v ≤ A[PE[q]] with a binary
search on the values A[PE[i]]. This takesO(log z) time, since
we can retrieve A[PE[i]] in constant time using PE[i], TL[i]
and TC[i].
Next, we set j = HE[q] and check in Line 6 if v falls into

Z [q]’s tail, i.e., v ≥ A[j] (observe we can retrieve A[j] in
constant time since it is the first value covered by the segment
associated with Z [q]’s tail or, if Z [q]’s head is empty, it is the
last value covered by the segment associated with Z [q− 1]’s
tail). If so, we return j plus the rank of v in A[j,PE[q]], which
we can compute inO(log ε) time from TL[q] and TC[q] using
the algorithm in [25, §3].

Otherwise, if v < A[j], we use Lemma 4 and compute
rank(v) recursively from a previous phrase Z [q′]. Reasoning
as in the proof of Lemma 3, we get that the overall time
complexity is O(log z+Mmax + log ε). �
It is easy to see that, in general, Algorithms 1 and 2 take

2(Mmax) time. Unfortunately in the worst case it is Mmax =

2(n): to see this, consider a parsing where each phrase Z [q]
is such that the head is a copy of Z [1] · · · Z [q−1] and the tail
has length 2; then Z [q] contains 2q−1 meta-characters, and the
last phrase contains Mmax ≈ n/4 meta-characters. To reduce
this time complexity, we now show how to modify the LZε
parsing so that Mmax is upper bounded by a user-defined
parameter M > 1. The resulting parsing could contain some
repeated phrases, but note that Lemmas 3 and 5 do not require
the phrases to be different: repeated phrases will only affect
the space usage.

To build an LZε parsing in which each phrase contains at
most M meta-characters, we proceed as follows. Assuming
S[1, i] has already been parsed as Z [1], . . . ,Z [q−1], we first
compute the longest prefix S[i + 1, j] which is a suffix of
Z [1] · · · Z [r] for some r < q. Let m denote the number of
meta-characters in S[i+ 1, j]. Then (see Figure 7):

1) If m < M , then Z [q] is defined as usual with HS[q] =
r . Since Z [q]’s tail constitutes an additional meta-
character, Z [q] has m + 1 ≤ M meta-characters,
as required.

2) Otherwise, if m ≥ M , we do the following.

a) We scan S[i + 1, j] backward dropping copies
of Z [r],Z [r − 1], . . . until we are left with a
prefix S[i + 1, ks] which contains less than M

meta-characters. By construction, S[i + 1, ks] is
either empty or is a suffix of Z [1] · · · Z [s] for
some s < r .

b) We define Z [q] by setting S[i+ 1, ks] as its head
and by defining Z [q]’s tail as usual.

c) Next, we consider Z [s+ 1] ≡ S[ks, ks+1]. If Z [q]
ends before position ks+1 (i.e. PE[q] < ks+1),
we define an additional phrase Z [q + 1] using
Z [s + 1] as a source, i.e. HS[q + 1] = s + 1,
setting its head to S[PE[q] + 1, ks+1] and with
a tail defined as usual. To see that Z [q + 1]
has at most M meta-characters, we observe that
Z [s+ 1] contains at mostM meta-characters and
the first one is covered by Z [q]’s tail since, as we
already observed, each meta-character is a tail or
the suffix of a tail and therefore can be covered by
a linear ε-approximation.

Lemma 6: The LZε parsing with limit M contains at most
2n/M repeated phrases.

Proof: In the algorithm described above, repeated
phrases are created only at Steps 2b and 2c. Indeed, both Z [q]
defined in Step 2b and Z [q + 1] defined in Step 2c could
be identical to a previous phrase. However, the concatenation
Z [q]Z [q+ 1] covers at least S[i+ 1, ks+1] so by construction
contains at least M meta-characters. Hence, Steps 2b and 2c
can be executed at most n/M times. �

C. DESIGNING THE FINAL PARSING LZρε
We denote by LZρε the parsing computed with the above

algorithmwithM = dlog1+ρ ne, where ρ > 0, and we denote
by z the number of phrases in the parsing.

The vectors PE and HE contain z increasing values in the
range [1, n]. We combine them in a single increasing integer
sequence that we store in 2z log n

2z+O(z) bits using Lemma 1
(as a minor detail, this requires incrementing the elementsHE
by one so to avoid the case in which the head of a phrase Z [q]
is empty, and thus HE[q] = PE[q − 1] and the combined
sequence is not increasing).

We encode HS using z cells of size dlog ze = log z +
O(1) bits, for a total of z log z+O(z) bits.

For what concerns TL, we observe that each pair of param-
eters TL[q] = 〈αq, βq〉 is actually derived from the line
passing through the points (a,A[a]) and (b,A[b]), where a
and b are found by [26] and are such that HE[q] ≤ a < b ≤
PE[q]. Then, we create two increasing integer sequences by
concatenating the first and the second coordinate of all these

VOLUME 10, 2022 118837

P. Ferragina et al.: Compressing and Querying Integer Dictionaries Under Linearities and Repetitions

2z points, and we compress them in 2z log n
2z + 2z log u

2z +

O(z) bits using Lemma 1.
Finally, let t = |TC| denote the total number of corrections

in the parsing, which is the sum of the tails’ length (plus one
for each nonempty head). Clearly t ≤ n, and if the gap array
S contains many repetitions we expect that t � n. We store
the corrections in an array with dlog(2ε+1)e-bit cells, and we
store the z indexes marking the beginning of each segment’s
corrections in z log t

z +O(z) bits using Lemma 1.
The above compressed encoding of PE, HE, HS and TL

supports constant-time access to their elements, hence we
can combine it with Lemma 3 and 5 and notice that in the
time bounds it holds O(log z) = O(log n) = O(log1+ρ n).
By adding the contribution of the array of corrections TC,
we obtain the following result.

Theorem 1: The LZρε parsing supports select in
O(log1+ρ n) time and rank inO(log1+ρ n+ log ε) time using
z log z+2z log u

2z+4z log
n
2z+O(z) bits plus tdlog(2ε+1)e+

z log t
z +O(z) bits for the corrections, where z is the number

of phrases, and t = |TC| is the total number of corrections
in the parsing.

The space bound in the theorem above, divided into a part
that accounts for the parsing plus a part that accounts for the
corrections, shows the sensitivity of LZρε to both repetitive-
ness and approximate linearity. On the one hand, the more
repetitive S is, the longer are the phrase heads, and thus the
smaller is z and the contribution of the first part. On the other
hand, the more A exhibits approximate linearity, the smaller
ε can be chosen and thus the smaller is the contribution of the
second part; also, as the segments associated with the tails get
longer, the value of z decreases too.
Finally, in the same vein to [33] for LZ77 and [34] for

LZ-End, we now establish an alternative space bound for
the LZρε parsing’s heads in terms of the kth order empirical
entropy of S.

Lemma 7: The number of phrases z in the LZρε parsing
of the gap array S derived from a dictionary A[1, n] over
{0, . . . , u− 1} is such that

z = O
(

n
log n

(
log u

n + log log n
))
. (2)

Proof: We write z = zr + zd , where zr is the number of
repeated phrases, and zd is the number of distinct phrases.
By Lemma 6 it is zr ≤ 2n/(log1+ρ n) so zr satisfies (2).
To bound the number of distinct phrases zd , recall that by
construction it is

∑n
i=1 S[i] = A[n] < u. Hence there can

be at most n log u
n/ log n distinct phrases containing a symbol

S[i] ≥ 3u,n = (u/n)(log n/ log u
n). The remaining distinct

phrases are taken from an alphabet of size at most3u,n; since
their overall length is at most n, by [34, Lemma 3.9] they are
at most

O
(
n log3u,n

log n

)
= O

(
n

log n

(
log u

n + log log n
))
.

�

Theorem 2: Let σ denote the number of distinct gaps in S.
If σ = o(n), the arrays PE, HE, and HS produced by the
LZρε parsing take nHk (S) + o(n log u

n) bits for any positive
k = o(logσ n/ log log n).

Proof: We preliminary show that z = o(n). As in the
previous proof let z = zr + zd . By Lemma 6 it is zr ≤
2n/(log1+ρ n) = o(n), while for the number zd of distinct
phrases by [34, Lemmas 3.9] implies

zd = O
(
n/logσ n

)
= o(n).

Since f (x) = x log(n/x) is increasing for x < n/e and z =
o(n), using (2) we get

z log n
z = O

(
n

log n

(
log u

n + log log n
)
log log n

)
= o(n log u

n). (3)

As we already observed, the encoding of PE and HE takes
2z log n

2z +O(z) bits which by (3) is o(n log u
n).

By [34, Lemma 3.10] the number of distinct phrases zd is
related to Hk (S) for any k ≥ 0 by the inequality

zd log zd ≤ nHk (S)+ zd log n
zd
+O(zd (1+ k log σ)). (4)

The encoding of HS using z cells of size log z + O(1) bits
takes a total of

zr log z + zd log z + O(z) bits.

Since zr = O(n/ log1+ρ n) and z = o(n), the first term is o(n).
The second term can be bounded by noticing that, if zd ≤ zr ,
the second term is smaller than the first. Otherwise, from (4)
we have

zd log z ≤ zd log(2zd)

≤ nHk (S)+ zd log n
zd
+O(zd (1+ k log σ)).

Reasoning as in (4), we have zd log n
zd
= o(n log u

n). Finally,
we have

zd (1+ k log σ) = o(n log u
n)

by Lemma 7 and the fact that k = o(logσ n/ log log n) implies
k log σ = o(log n/ log log n). �
The significance of Theorem 2 is the following: the contri-

bution of the arrays PE, HE, and HS used by LZρε to encode
the repetitions gets smaller as S’s repetitiveness increases; if
nHk (S) becomes o(n log u

n), the theorem shows that such con-
tribution becomes smaller than the size of a classical compact
O(n log u

n)-bit representation of an integer dictionary.
Theorem 2 does not account for the cost of TL and TC,

which are analysed in Theorem 1, since their cost is not
related to the repetitiveness of S, which is measured by the
entropy Hk , but rather to the approximate linearity of A.

IV. THE BLOCK-ε TREE
In this section, we design a repetition-aware version of the
LA-vector by building a variant of the block tree [35], [37]
on a combination of the gap-string S and the piecewise lin-
ear ε-approximation. We name this variant block-ε tree, and
show that it achieves time-space bounds which are compet-
itive with the ones achieved by block trees and LA-vectors

118838 VOLUME 10, 2022

P. Ferragina et al.: Compressing and Querying Integer Dictionaries Under Linearities and Repetitions

because it combines successfully both forms of compress-
ibility discussed in this paper: repetitiveness and approximate
linearity. We will first support this statement from a theoret-
ical point of view and, in the next section, we will execute
a wide set of experiments on real and synthetic datasets that
will corroborate our analysis, showing that our block-ε tree
achieves the best or the second-best space occupancy in the
majority of cases, being able to capture in a robust way both
forms of compressibility studied in this article.

The main idea of the block-ε tree consists in first building
a traditional block tree structure over the gap-string S[1, n] of
A. Recall that every node of the block tree represents a sub-
string of S, and thus it implicitly represents the corresponding
subarray of A. Then, we prune the tree by dropping the sub-
trees whose corresponding subarray ofA can be coveredmore
succinctly by segments and corrections (i.e. whose LA-vector
representation wins over the block-tree representation). Note
that, compared to LA-vector, we do not encode segments and
corrections corresponding to substrings of S that have been
encountered earlier, that is, we exploit the repetitiveness of S
to compress the piecewise linear ε-approximation at the core
of the LA-vector. On the other hand, compared to block trees,
we drop subtrees whose substrings can be encoded more
efficiently by segments and corrections, that is, we exploit
the approximate linearity of subarrays of A. Below we detail
how to orchestrate this interplay to achieve efficient queries
and compressed space occupancy in the block-ε tree.
Let us define the δ repetitiveness measure on S as δ =

max{dk (S)/k | 1 ≤ k ≤ n}, where dk (S) is the number of
distinct length-k substrings of S [29], [37]. For simplicity of
exposition, assume that n = δ2h for some integer h. The
block-ε tree is organised into h′ ≤ h levels. The first level
(level zero) logically divides the string S into δ blocks of size
s0 = n/δ. In general, blocks at level ` have size s` = n/(δ2`),
because they are recursively halved until possibly reaching
the last level h = log n

δ
, where blocks have size sh = 1.

At any level, if two blocks Sq and Sq+1 are consecutive in
S and they form the leftmost occurrence in S of their content,
thenwe say that both Sq and Sq+1 aremarked. Amarked block
Sq that is not in the last level becomes an internal node of the
tree. Such an internal node has two children corresponding to
the two equal-size sub-blocks into which Sq is split. On the
other hand, an unmarked block Sr becomes a leaf of the tree
because, by construction, its content occurs earlier in S and
thus we can encode it by storing (i) a leftward pointer q to
the marked blocks Sq, Sq+1 at the same level ` containing its
leftmost occurrence, taking log n

s`
bits; (ii) the offset o of Sr

into the substring Sq · Sq+1, taking log s` bits.3 Furthermore,
to recover the values of A corresponding to Sr , we store
(iii) the difference 1 between the value of A corresponding
to the beginning of Sr and the value of A at the pointed
occurrence of Sr , taking log u bits. Overall, each unmarked
block needs log n+ log u bits of space.

3In this section, we omit ceilings from the bit-sizes for simplicity.

To describe the pruning process, we first define a cost
function c on the nodes of the block-ε tree. For an unmarked
block Sr , we define the cost c(Sr) = log n + log u, which
accounts for the space in bits taken by q, o and 1. For
a marked block Sq at the last level h, we define the cost
c(Sq) = log u, which accounts for the space in bits taken
by its single corresponding element of A. Instead, consider
a marked block Sq at level ` < h for which there exists a
segment approximating with error εq ≤ ε the corresponding
elements of A. Suppose εq is minimal, that is, there is no
ε′ < εq such that there exists a segment ε′-approximating
those same elements of A. Let y = log(2εq + 1) be the
space in bits needed to store a correction, and let κ be the
space in bits taken by the parameters 〈α, β〉 of the segment,
e.g. κ = 2 log u + log n if we encode β in log u bits and
α as a rational number with a log u-bit numerator and a
log n-bit denominator [25, §2]. We assign to such Sq a cost
c(Sq) defined recursively as

c(Sq) = min

{
κ + s` y+ log log u
2 log n+

∑
Sx∈child(Sq) c(Sx)

(5)

The first branch of Equation 5 accounts for an encoding of
the subarray of A corresponding to Sq via an εq-approximate
segment, the corrections of y bits each for the s` elements
in Sq, and the value of y, respectively. The second branch of
Equation 5 accounts for an encoding that recursively splits Sq
into two children, i.e. an encoding via two log n-bit pointers
plus the optimal cost of the children. Finally, if there is no
linear ε-approximation (and thus no εq-approximation with
εq ≤ ε) for Sq, we assign to such Sq the cost indicated in the
second branch of Equation 5.

A postorder traversal of the block-ε tree is sufficient to
assign a cost to its nodes and possibly prune some of its
subtrees. Specifically, after recursing on the two children of
a marked block Sq at level `, we check if the first branch
of Equation 5 gives the minimum. In that case, we prune
the subtree rooted at Sq and store instead the encoding
of the block via the parameters 〈α, β〉 and the s` correc-
tions in an array Cq. As a technical remark, this pruning
requires fixing the destination of any leftward pointer that
starts from an unmarked block Sr and ends to a (pruned)
descendant of Sq. For this purpose, we first make Sr point-
ing to Sq. Then, since any leftward pointer points to a pair
of marked blocks (unless the offset is zero), both or just
one of them belongs to the pruned subtree. In the second
case, we require an additional pointer from Sr to the block
that does not belong to the pruned subtree. This additional
pointer does not change the asymptotic complexity of the
structure.

Overall, the pruning process yields a tree with h′ ≤ h
levels. An example of a block-ε tree is depicted in Figure 8.
Observe in the figure that the leftward pointer from the block
[1 1 1 3] bifurcates so as to indicate the additional pointer
to the block [3 3 2 1] in the non-pruned subtree, as per the
technical remark above.

VOLUME 10, 2022 118839

P. Ferragina et al.: Compressing and Querying Integer Dictionaries Under Linearities and Repetitions

FIGURE 8. An example of a block-ε tree built on an input array A with corresponding gap-string S. The grey blocks are conceptual and not stored. The
dashed blocks represent blocks encoded with a segment whose ε value is shown below the block. A leftward pointer from a block Sr to a block Sq is
annotated with the offset o of the occurrence of Sr into the substring Sq · Sq+1 and with the difference 1 between the value of A corresponding to the
beginning of Sr and the one at the pointed occurrence.

A. SUPPORTING SELECT QUERIES
To answer select(i) in the block-ε tree, we follow the path
that starts from the first-level block into which position i
falls and proceeds towards a marked leaf block. We have the
following cases for a visited block at level `:
• The block is an unmarked block Sr pointing to q with
offset o and difference value 1 = A[b] − A[a], where
b is the position corresponding to the beginning of Sr ,
and a is the position corresponding to the beginning of
the copy within Sq. First, we jump to either Sq or Sq+1
depending on whether o+ i−b < s`, where s` is the size
of the blocks at level `. Then, we turn the select(i) =
A[i] query to1+ select(a+ i− b) = 1+A[a+ i− b].
In fact, it holds

1+ A[a+ i− b]

= 1+ A[a]+ S[a+ 1]+ · · · + S[a+ i− b]

= A[b]+ S[a+ 1]+ · · · + S[a+ i− b]

= A[b]+ S[b+ 1]+ · · · + S[b+ i− b]

= A[b+ i− b] = A[i].

• The block is a marked internal block. We jump to its left
or right child depending on whether i mod s` < s`/2,
and we continue computing select(i).

• The block is a marked leaf block Sq storing the seg-
ment parameters 〈α, β〉 and the local corrections Cq.
We return bαi+ βc + Cq[i mod s`].

• The block is a marked leaf block Sq at the last level h,
thus we return its single element.

Let us now compute the time complexity of this traversal.
First observe that, if we encounter a pruned block, the traver-
sal stops. If we encounter an unmarked block, we follow its
pointer to a pruned block or to an internal node. In this latter
case, the traversal proceeds top-down with a constant amount
of work per level. Therefore, the time complexity of select
is O(h′).

B. SUPPORTING RANK QUERIES
For rank queries, we create a predecessor structure on the
δ integers of A corresponding to the last elements of the
first-level blocks, i.e. the integers A[in/δ] for i = 1, . . . , δ.
We use the structure of [30, Appendix A] giving a query
time ofO(log logw

u
δ
), where w is the word size, but there are

many other possible trade-offs [43] that we skip for simplicity
of exposition. Furthermore, in each marked block Sq at any
level ` except the first and the last ones, we store a sample of
A corresponding to the last element of Sq to be able to descend
to the correct child. The extra information does not change the
asymptotic space complexity of our structure.

To answer rank(x), we start with a query to the predecessor
structure, which indicates the first-level block into which
x falls, and then we proceed towards a marked leaf block.
We have the following cases for a visited block at level `:

• The block is an unmarked block Sr pointing to q with
offset o and difference value 1 = A[b] − A[a]. First,
we jump to either Sq or Sq+1 depending on whether
x − 1 ≤ v, where v is the sample stored in Sq. Then,
we recursively issue a rank query with argument x−1,
and we return b−a+ rank(x−1). The shift b− a takes
into account the leftward jump induced by the fact that
we solve the rank query not on Sr but on Sq or Sq+1.

• The block is a marked internal block. We jump to its
left or right child depending on whether x ≤ v, where
v is the sample stored in its left child, and we continue
computing rank(x).

• The block is a marked leaf block Sq storing the segment
parameters 〈α, β〉 and the local corrections Cq. We per-
form a binary search for x on these s` corrections. Using
the algorithm of [25, §3], this search costsO(log εq) time
and returns the result of rank(x), which is the position in
A of (the predecessor of) the value x.

• The block is a marked leaf block Sq at the last level h,
thus we return the rank of its single element.

118840 VOLUME 10, 2022

P. Ferragina et al.: Compressing and Querying Integer Dictionaries Under Linearities and Repetitions

Overall, the time complexity of rank is given by the sum of
the costs of the initial predecessor search, the traversal of the
block-ε tree, and the final binary search, thus it is equal to
O(log logw

u
δ
+ h′ + log ε).

We observe that the block-ε tree achieves space-time com-
plexities no worse than a standard block tree constructed
on S. This is due to the pruning of subtrees guided by
the space-conscious cost function c(·) and by the resulting
reduction in the number of levels, which positively impact
the query time. Compared to LA-vector, the block-ε tree
can take advantage of repetitions and avoid the encoding
of subarrays of A corresponding to repeated substrings of
S. Furthermore, since the block-ε tree allocates the most
succinct encoding for a subarray of A by considering the
smallest εq ≤ ε giving a linear εq-approximation, it could
be regarded as the repetition-aware analogous of the space-
optimised LA-vector [25, §5], in which different values
of ε are chosen for different chunks of A so to min-
imise the overall space. Unlike LA-vector, the block-ε tree
has the advantage of potentially storing fewer corrections
at the cost of storing the tree topology. Using the straight-
forward pointer-based encoding we discussed above, the tree
topology takes O(δ log n

δ
log n) bits in the worst case, but in

the next section we propose an implementation that exhibits a
more succinct pointer-less encoding (details in Section V-A).
We notice, nonetheless, that the more repetitive the string S
is, the smaller is δ, thus the overhead of the tree topology gets
negligible.

Summing up, we proved the following result.

Theorem 3: The block-ε tree supports rank in
O(log log u

δ
+ log n

δ
+ log ε) time and select inO(log n

δ
) time

using O(δ log n
δ
log n) bits of space.

Finally, we mention that the block-ε tree could employ
other compressed rank/select dictionaries in its nodes, yield-
ing a hybrid compression approach that can benefit from the
orchestration of bicriteria optimisation and proper pruning
of its topology to achieve the best space occupancy, given a
bound on the query time, or vice versa (à la [44], [45], [46]).

V. EXPERIMENTS
We experimented with an implementation of the LZε parsing
and the block-ε tree on a machine with 202 GB of RAM,
an Intel XeonGold 5118CPU, and theGCC10.2.1 compiler.4

We compare our proposals with the block tree of [35] built
on the characteristic bitvector bv(A) of a sorted input array A,
with the LA-vector of [25] in both its fixed-ε version and its
space-optimised version (that vary ε on different segments),
and with Elias-Fano. All these implementations are written
in C++ and build on the sdsl library [27]. A comparison
with other rank/select dictionaries was already investigated
in the literature for the individual LA-vector and the block
tree [25], [35].

4The source code is available at https://github.com/gvinciguerra/
BlockEpsilonTree and https://github.com/gvinciguerra/LZEpsilon.

A. IMPLEMENTATION NOTES
For both LZε and block-ε tree, we consider segments using
corrections of bit-size c = 0, 2, 3, . . . , 14 and thus ε =
max(0, 2c−1− 1). In our implementation we avoid the use of
floating point values by representing the slope as a rational
number and considering the floor of the intercept. An ele-
mentary calculation shows that in this setting each correction
is an integer in [−ε, ε+1] and therefore can be encoded with
c bits.

1) IMPLEMENTING LZε
We compute the LZε parsing via a simple adaptation of the
LZ-End parsing algorithm of [34] (although more asymptot-
ically efficient algorithms exist [47], [48]). We slightly alter
the definition of our LZε phrases, given in Section III, so that
whenever Z [q]’s head is computed and its source does not
overlap Z [q − 1], we try to extend Z [q]’s head leftward so
as to shorten Z [q − 1]’s tail and thus store fewer correction
values in TC[q− 1]. Once the phrases are computed:

• we represent TC[1, z] via a contiguous array of c-bit
cells and store the z indexes marking the beginning of
each segment’s corrections via Lemma 1;

• we store TL as an array of structures, each storing the
slope α and the intercept β of the segment associated
with a tail;

• we represent both arrays PE[1, z] and HE[1, z] with a
sequence X of 2z integers marking the left and the right
boundaries of the segments, and then compress X via
Lemma 1.

Using additional o(n) bits on top of the compressed X ,
we can replace the binary search in Line 2 of Algorithm 1with
anO(min{log z, log n

z })-time predecessor query on X (see [1,
§4.4.2]).

2) IMPLEMENTING BLOCK-ε TREE
Instead of starting from a pre-determined number of blocks,
we follow [35] and construct a full block tree, and then
remove the top levels that do not contain any unmarked
blocks.5 We use a pointerless representation of the tree topol-
ogy via a plain bitvector for each level indicating with a
0 which block in the level is unmarked (hence, it has a
leftward copy) or pruned by a segment, and with a 1 which
block is marked but not pruned by a segment (hence, it is an
internal node). We use rank1 on these bitvectors to traverse
the tree downwards. If we reach an unmarked or pruned node,
we use rank0 on the bitvector to access two separate packed
arrays6 storing the pointers and the 1-values, respectively,
associated with each unmarked or pruned block, respectively.
We store the segment blocks as an array of structures, with
each structure storing the slope α, the intercept β, a pointer

5We experimented with the theoretical proposal of starting with δ blocks.
Although this makes the query time faster, it worsens the compression (up to
2.7 times) as it misses the copies longer than n/δ.

6By packed array, we mean an array with fixed-length entries sized to
contain the largest array element.

VOLUME 10, 2022 118841

P. Ferragina et al.: Compressing and Querying Integer Dictionaries Under Linearities and Repetitions

TABLE 1. Time performance (in nanoseconds) and space occupancy (in Bits Per Integer, BPI) of the LZε parsing and the LA-vector with fixed ε on standard
datasets.

TABLE 2. Time performance (in nanoseconds) and space occupancy (in Bits Per Integer, BPI) of Elias-Fano, the space-optimised LA-vector, the block tree
over the characteristic bitvector bv(A) and the block-ε tree.

to the correction packed array Cq, and the bit-size c of a cor-
rection. Marked leaf blocks containing less than a number b
of elements are not split further, and they are concatenated left
to right and encoded with Lemma 1. Intuitively, since these
blocks cannot be replaced by leftward pointers or pruned
by segments, they lack both repetitiveness and approximate
linearity, hence a compression via Lemma 1 (or any other
method) is likely to be more appropriate. The samples at each
level needed to support rank on A are stored in a packed array.
For the predecessor query on the first-level samples, we use
a binary search.

B. RESULTS ON STANDARD DATASETS
Our first set of experiments evaluates our two proposals on
standard and well-known datasets, which are not expected
to exhibit any noticeable repetitive or linearity trends, so to
evaluate the robustness of our approaches under somewhat
unfavourable conditions. These datasets are: (i) three postings
lists with different densities n/u from the GOV2 inverted
index [46]; (ii) six integer lists obtained by enumerating the
positions of the first, second and third most frequent character
in each of the Burrows-Wheeler transform of two text files:

URL and 5GRAM [25]; (iii) three integers lists obtained by
enumerating, respectively, the positions of both Ts and Gs or
either of them in the Burrows-Wheeler transform of the first
gigabyte of the human reference genome GRCh38.p13.

We start by comparing LZε with the LA-vector of [25]
in which the bit-size c of a correction (and thus ε) is fixed.
In both approaches, we vary c as indicated in Section V-A and
report the most space-efficient configuration. We show the
space occupancy in Bits Per Integer (BPI), and we measure
the average query time in nanoseconds using two batches of
105 random rank and select queries. We show the results in
Table 1, where we highlight in bold the most space-efficient
solution on each dataset. Results show that LZε improves
or matches (there are 2 ties) the space of the LA-vector on
10 datasets out of 12, at the cost of being 10.76× slower in
select and 15.80× slower in rank. The slower performance is
not surprising since unrolling a source phrase may cause sev-
eral cache misses, especially for rank (Algorithm 2) whose
Lines 2 and 12 perform several random accesses to theTL and
TC vectors. The improvement in space and the reduction in
the number of linear models (compare the Segments and the
Phrases columns when c is equal) show that that exploiting

118842 VOLUME 10, 2022

P. Ferragina et al.: Compressing and Querying Integer Dictionaries Under Linearities and Repetitions

repetitiveness is still beneficial even for these datasets do
not contain long repetitions (as it can be inferred from the
column on the Average head length in Table 1); we will see
much greater improvements on repetitive and linear datasets
(in Section V-C).

In Table 2, we show the results for Elias-Fano, the
space-optimised LA-vector, the standard block tree, and our
block-ε tree. For these last two, we use a branching factor
of two, vary the length b of the last-level blocks as b ∈
{23, 24, . . . , 29} and show the most space-efficient configu-
ration. First and foremost, we note that LA-vector is 10.51×
faster in select and 4.69× faster in rank than the block tree
on average, while for space there is no clear winner over all
the datasets. This result is evidence of the interestingness of
the combination of approximate linearity and repetitiveness.
Instead, an information-theoretic approach like the one used
by Elias-Fano does not achieve a good compression here,
since it has the worst or the second-worst space in all the
datasets except DNA.

Let us now compare the performance of our block-ε tree
with the other solutions. The block-ε tree is 2.19× faster in
select than the block tree, and it is either faster (in 7 cases,
by 1.32×) or slower (in 5 cases, by 1.27×) in rank. With
respect to Elias-Fano and the LA-vector, the block-ε tree is
always slower but, for what concerns the space, it achieves
the best result in the sparsest GOV2, the second-best result
in the majority (6) of the remaining (11) datasets. This shows
that space-wise, the block-ε tree can be a robust data structure
in that it often achieves a good compromise by exploiting
both kinds of regularities: repetitiveness (block trees) and
approximate linearity (LA-vectors).

For what concerns a comparison between our LZε and
block-ε tree, we can conclude from the data in Tables 1 and 2
that the latter achieves better compression than the former
in all datasets except the densest one, i.e. GOV2 76.6%.
This is because the block-ε tree optimises the choice of ε for
each block, while LZε uses the same ε value over the whole
dataset, thus it possibly uses too many bits for the corrections
in data chunks that show strict linearity (this has also been
observed in [25] for the LA-vector). Optimising the extent
and ε-value of the phrase tails in LZε, which also impacts on
the extent of the phrase heads, appears to be a hard problem
to tackle, and for which further research is needed.

C. RESULTS ON REPETITIVE AND LINEAR DATASETS
We now evaluate the experimented data structures on datasets
where repetitions or linearities (or both) are explicitly forced
in a synthetic way.

First, we examine the case of repetitive datasets generated
from the GOV2 (4.1%) postings list of the previous section
by applying the following two steps: (i) we concatenate the
corresponding gap-string S for 3, 6 or 9 times; then, (ii) each
single repeated gap, corresponding to a document identifier
(docID), is deleted with a probability of 10%, 1% or 0.1%.
The results, depicted in Figure 9, show the effectiveness
of the repetition-aware approaches (block trees, LZε and

block-ε tree) over the LA-vector and Elias-Fano. Among
these, the block tree and block-ε tree generally achieve the
best compression, especially when the deletion probability is
low and thus there are longer uninterrupted copies. On the
other hand, LZε approaches their space performance as the
number of repetitions of S increases. Again, the same con-
sideration of the previous section about the disadvantage of
using a fixed ε value applies also here. For what concerns the
query time, we report that, in line with the experiments of
the previous section, the LA-vector7 and Elias-Fano obtained
the fastest performance (the former in select and the latter
in rank), followed by the block-ε tree (8.06× and 14.16×
slower than LA-vector in select and than Elias-Fano in rank,
respectively), the block tree (17.75× and 11.87× slower),
and LZε (67.33× and 146.79× slower).

Second, we examine the case of three datasets that
show approximate linearity, generated by adding a ‘‘random
noise’’ of amplitude a = 3, 15 and 63 around linearly increas-
ing integer sequences, as follows. Given a, we create array A
by choosing an integer length ` ∈ [10, 1000] and an integer
slope α ∈ [2a + 1, 3a] uniformly at random, and generating
values iα + η, where i = 1, . . . , `, and η is an integer
chosen uniformly at random in [−a, a]. Once ` integers have
been generated, we repeat the process by sampling another
random segment length and slope. We stop as soon as A
contains 5million increasing integers. The results, depicted in
Figure 10, show (not surprisingly) that LZε behaves similarly
to the LA-vector approaches, followed by the block-ε tree
and Elias-Fano. Clearly, these linearity-aware approaches use
a larger correction bit-size and thus more space whenever
the noise-amplitude a grows. Furthermore, we notice (again,
not surprisingly) that the standard block tree requires much
more space than the other approaches as it does not capture
approximate linearities. For what concerns the query time,
again LA-vector and Elias-Fano obtained the fastest perfor-
mance (the former in select and the latter in rank), followed
by the block-ε tree (2.15× and 1.43× slower than LA-vector
in select and than Elias-Fano in rank, respectively), the block
tree (17.53× and 6.99× slower), and LZε (4.69× and 28.11×
slower).

The final experiment is devoted to examining the case of
datasets with both repetitions and approximate linearities.
They are constructed by modifying the process above so that
(i) the amplitude a is chosen randomly in {3, 15, 63}, and
(ii) with probability p, we do not generate a new segment of
random length ` but append a copy S[i, i+ `− 1] of the gap-
string S[1, n] generated so far, where i is an integer chosen
uniformly at random in [1, n − `]. We obtain three datasets
by varying p as 25%, 50% and 75%, respectively. The results,
depicted in Figure 11, show that the space of Elias-Fano and
the LA-vector approaches is unaffected by repetitions, that
the block tree obtains a good space performance only in the
case of high repetitions (p = 75%), and that our block-ε tree

7For simplicity, we consider just the query time of the space-optimised
LA-vector here.

VOLUME 10, 2022 118843

P. Ferragina et al.: Compressing and Querying Integer Dictionaries Under Linearities and Repetitions

FIGURE 9. Space performance of several rank/select dictionaries on a postings list whose gap-string is repeated 3, 6 and 9 times, each time randomly
deleting a docID with a given probability.

FIGURE 10. Space performance of several rank/select dictionaries on datasets with explicit linearities with a noise of amplitude 3, 15 and 63.

FIGURE 11. Space performance of several rank/select dictionaries on mixed datasets containing linearities and repetitions.

(followed closely by LZε) achieves the best or the second-best
space occupancy in all the cases, being able to capture both

forms of compressibility studied in this article. For what
concerns the query time, again LA-vector and Elias-Fano

118844 VOLUME 10, 2022

P. Ferragina et al.: Compressing and Querying Integer Dictionaries Under Linearities and Repetitions

obtained the fastest performance (the former in select and
the latter in rank), followed by the block-ε tree (4.46× and
7.55× slower than LA-vector in select and than Elias-Fano
in rank, respectively), the block tree (18.82× and 10.18×
slower), and LZε (7.74× and 32.46× slower).

D. DISCUSSION
The experiments show that, also in a practical setting, it is
indeed possible to exploit the presence of both approximate
linearity and repetitions in the input to obtain signifi-
cant space savings over state-of-the-art data structures for
rank/select operations.

Indeed, on standard datasets (containing no evident repet-
itive or linearity trends), we found that there is no clear
winner in space between the LA-vector and the block tree.
In this scenario, our block-ε tree achieved the best space or
the second-best space in the majority of cases due to its effec-
tiveness in exploiting both regularities. As far as the query
time is concerned, the LA-vector and Elias-Fano obtained
the fastest performance, followed by our block-ε tree which
generally achieved better performance than the block tree.
Our LZε parsing on these standard datasets was, unfortu-
nately, dominated by some other data structure in time and in
space, mainly because it does not optimise the value of ε for
different chunks of the datasets (as instead the block-ε tree
and the LA-vector do), which appears to be a challenging
open problem.

Motivated by these results, to shed light on scenarios in
which repetitions and linearities are more evident, we con-
sidered synthetic datasets for which we proved that the space
of the LA-vector does not improve with repetitions, that the
space of the block tree does not improve with approximate
linearities, and that both our block-ε tree and LZε achieved
improved space occupancy, being able to successfully capture
both forms of compressibility studied in this article.

VI. CONCLUSION
We introduced novel compressed rank/select dictionaries by
exploiting two sources of regularity arising in real data: repet-
itiveness and approximate linearity. Our first contribution, the
LZρε parsing, supports queries in polylogarithmic time and
has space bounds that show the sensitivity to both repetitive-
ness and approximate linearity, the former expressed in terms
of the kth order empirical entropy. Our second contribution,
the block-ε tree, combines both sources of regularity in a tree
data structure whose space and time bounds are expressed
in terms of the repetitiveness measure δ. We experimented
with an implementation of these approaches showing that
they effectively exploit both repetitiveness and approximate
linearity.

Our study opens up a plethora of opportunities for future
research. Firstly, we notice that the PGM-index [44] is also
based on a variant of the piecewise linear ε-approximation,
and thus it can still benefit from the ideas presented in
this paper to make its space occupancy repetition aware.
Secondly, the compression of segments and corrections in

both LZρε and the block-ε tree is an orthogonal problem for
which one can devise further compression mechanisms (see
e.g. [44, Theorem 3]). Thirdly, co-optimising the choice of
ε and the tail length in the LZρε phrases, which impact on
the computation of the phrases’ heads and the overall space,
appears to be a non-trivial problem for which further research
is needed. Fourthly, the construction of the LZρε phrases
and the block-ε tree could be investigated inside a bicriteria
framework, which seeks to optimise the query time and space
usage under some given constraints [49]. Fifthly, inspired
by the results achieved in this paper, we foresee a more
query-efficient implementation of the block-ε tree that com-
putes an optimal node pruning using a family of compressed
data structures in addition to ε-approximate segments. Read-
ers interested in contributing to this algorithmic-engineering
research line can look at the open-source code (see Foot-
note 4). Finally, we believe that repetitiveness and approxi-
mate linearity could be a perfect fit for arbitrary time series
(hence, not necessarily the monotonic integer ones investi-
gated in this paper), therefore we suggest an in-depth study
and extension of our results to this scenario.

APPENDIX A
GAP VS BINARY ENTROPY INEQUALITY
Let A[0, n] denote a sequence of strictly increasing integers,
with A[0] = 0 and let S[1, n] denote the gap-string S[i] =
A[i] − A[i − 1]. Finally, let Z [1, u] = bv(A), with u = A[n]
denote the characteristic bitvector of A[1, n]. In this appendix
we prove the following result:

Theorem 4: For every k > 0 it is |S|Hk (S) ≤ |Z |Hk (Z).

Proof: Let6 denote the alphabet of S[1, n], the alphabet
of Z is obviously {0, 1}. For any string x over 6, let N (x)
denote the number of occurrences of x in S, and we write xS
to denote the string of symbols immediately following each
occurrence of x in S. Notice that |xS | = N (x). We use a
similar notation for Z : for any binary string w,M (w) denotes
the number of occurrences of w in Z , and wZ denotes the
string of bits immediately following each occurrence of w
in Z .

Fix a value k > 0. By definition the kth order empirical
entropy is the optimal compression we can achieve using for
each symbol a codeword that depends only on the k symbols
immediately preceding it. Hence, it can be expressed as [33]

|S|Hk (S) =
∑
x∈6k

|xS |H0(xS), (6)

where we assume |xS |H0(xS) = 0 if xS is empty. Now
consider a particular x ∈ 6k such that xS is not empty, and
let m denote the largest value in xS . We have8

|xS |H0(xS) = −
m∑
i=1

N (xi) log
N (xi)
N (x)

. (7)

8In (7) the denominator should be |xS |, which is equal toN (x) except when
x = S[n−k+1, n] for which |xS | = N (x)−1. For simplicity in the following
we ignore this discrepancy, which however can be dealt with formally with
some additional algebraic machinery.

VOLUME 10, 2022 118845

P. Ferragina et al.: Compressing and Querying Integer Dictionaries Under Linearities and Repetitions

Since the entropy is a lower bound to the average length
of any prefix-free code, we know that for any set of values
`1, . . . , `m that satisfy Kraft’s inequality

∑
i 2
−`i ≤ 1, it is

|xS |H0(xS) ≤
m∑
i=1

N (xi) `i. (8)

Let x = g1g2 · · · gk . Every occurrence of x in S corresponds
to an occurrence of the string zx = 0g1−110g2−11 · · ·0gk−11
in Z . For i = 1, . . . ,m, we define

`i = − log
M (zx 0i−1 1)

M (zx)
.

It is
m∑
i=1

2−`i =
M (zx1)
M (zx)

+
M (zx01)
M (zx)

+ · · · +
M (zx0m−11)

M (zx)
.

The above summation is equal to one since each occurrence
of zx in Z is followed by up to m−1 0’s and followed by a 1,
being m the largest element in xS . Since the values `i satisfy
Kraft’s inequality, setting

B(x, S) = −
m∑
i=1

N (xi) log
M (zx0i−11)
M (zx)

.

Now, by (8) we have |xS |H0(xS) ≤ B(x, S) and by (6),
summing over all substrings x ∈ 6k we get:

|S|Hk (S) ≤
∑
x∈6k

B(x, S).

To prove our claim, we will show that∑
x∈6k

B(x, S) ≤ |Z |Hk (Z). (9)

For our analysis, it is convenient to see B(x, S) as a ‘‘cost’’
of encoding xS . We split such cost among all symbols in xS
by charging to each occurrence of the symbol i in xS the cost
− logM (zx 0i−11)/M (zx). Since i ∈ S is encoded with 0i−11
in Z , we can further split the cost assigned to i among the
binary symbols in 0i−11. Since

M (zx 0i−11)
M (zx)

=
M (zx 0)
M (zx)

M (zx 00)
M (zx 0)

· · ·
M (zx 0i−11)

M (zx 0i−1)
,

we can split the cost − log(M (zx 0i−11)/M (zx)) by assign-
ing, for ` = 1, . . . , i − 1, to the `th 0 in 0i−11 the cost
− log(M (zx 0`)/M (zx 0`−1)), and to the final 1 in 0i−11 the
cost − log(M (zx 0i−11)/M (zx 0i−1)).
In the above procedure, we have split the cost B(x, S)

among a set of symbols in Z . Given that each bit in Z belongs
to an encoding 0g−11 of a value g in S, it is easy to see
that each bit in Z gets charged exactly once with the only
exception of bits in the prefix Z [1, ak], corresponding to
the encoding of S[1, k], which are not charged because the
symbols in S[1, k] do not belong to any xS . We call the cost
charged to each bit of Z [ak + 1, u] its S-cost.

Let Z ′ = Z [ak + 1 − k, u] be the charged portion of Z
prefixed by a context of size k . To prove (9), we show that

the sum of the S-cost of all bits in Z ′ is bounded by |Z ′|Hk (Z ′)
which in turn is less than |Z |Hk (Z), just because Z ′ is a suffix
of Z . Intuitively, the former inequality is true since |Z ′|Hk (Z ′)
is the optimal cost of any encoding based on contexts of size
k , while the total S-cost is the optimal cost of any encoding
of Z ′ based on variable-length contexts all of them of length
k or more (in fact, every context has the form zx 0i). This
intuitive notion can be formalised using Jensen’s inequality as
follows. For any binary stringw, letM ′(w) denote the number
of occurrences of w in Z ′, and let wZ ′ the string consisting of
the symbols immediately following each occurrence of w in
Z ′. By definition we have

|Z ′|Hk (Z ′) =
∑

w∈{0,1}k

|wZ ′ |H0(wZ ′). (10)

We establish our result showing that any w ∈ {0,1}k such
that wZ ′ is not empty, the value wZ ′H0(wZ ′) is never smaller
than the sum of the S-costs of the symbols in wZ ′ .
For any e, with ak ≤ e < u, let ve denote the longest suffix

of Z [1, e] containing exactly k 1s (recall that each 1 is the last
bit of the encoding of a gap value). For any w ∈ {0,1}k , let
E0
w (resp. E1

w) denote the set of positions e such that ve ends
with w and Z [e+ 1] = 0 (resp. Z [e+ 1] = 1). By definition,
the S-cost of Z [e+ 1] for e ∈ E0

w is equal to

− log
M (ve0)
M (ve)

.

Let V = {ve|e ∈ E0
w ∪ E

1
w}. The total S-cost for all entries

Z [e+ 1] for e ∈ E0
w is by definition

S(E0
w) = −

∑
v∈V

M (v0) log
M (v0)
M (v)

,

where we assume as usual 0 log 0 = 0. Note that by
construction ∑

v∈V

M (v0) = M ′(w0),

since every occurrence of w0 in Z ′ corresponds to an occur-
rence of some v0 in Z and vice versa, and similarly∑

v∈V

M (v1) = M ′(w1),
∑
v∈V

M (v) = M ′(w).

Applying Jensen’s inequality to the concave function log(t)
we have

S(E0
w) = M ′(w0)

∑
v∈V

M (v0)
M ′(w0)

log
M (v)
M (v0)

≤ M ′(w0) log
(∑
v∈V

M (v0)
M ′(w0)

M (v)
M (v0)

)
≤ M ′(w0) log

∑
v∈V M (v)
M ′(w0)

≤ −M ′(w0) log
M ′(w0)
M ′(w)

.

118846 VOLUME 10, 2022

P. Ferragina et al.: Compressing and Querying Integer Dictionaries Under Linearities and Repetitions

Repeating the same argument for S(E1
w) we get

S(E1
w) ≤ −M

′(w1) log
M ′(w1)
M ′(w)

.

So the total S-cost S(E0
w) + S(E1

w) for encoding the entries
Z [e + 1] for e ∈ E0

w ∪ E
1
w, which are the symbols in wZ ′ ,

is bounded by |wZ ′ |H0(wZ ′). Summing over all w ∈ {0,1}k

and using (10) we get the thesis. �

REFERENCES
[1] G. Navarro, Compact Data Structures: A Practical Approach. Cambridge,

U.K.: Cambridge Univ. Press, 2016.
[2] P. Ferragina and G.Manzini, ‘‘Indexing compressed text,’’ J. ACM, vol. 52,

no. 4, pp. 552–581, Jul. 2005.
[3] R. Grossi and J. S. Vitter, ‘‘Compressed suffix arrays and suffix trees

with applications to text indexing and string matching,’’ SIAM J. Comput.,
vol. 35, no. 2, pp. 378–407, Jan. 2005.

[4] G. Navarro and V. Mäkinen, ‘‘Compressed full-text indexes,’’ ACM Com-
put. Surveys, vol. 39, no. 1, p. 2, Apr. 2007.

[5] V. Mäkinen and G. Navarro, ‘‘Rank and select revisited and extended,’’
Theor. Comput. Sci., vol. 387, no. 3, pp. 332–347, Nov. 2007.

[6] S. Gog, J. Kärkkäinen, D. Kempa, M. Petri, and S. J. Puglisi, ‘‘Fixed block
compression boosting in FM-indexes: Theory and practice,’’ Algorithmica,
vol. 81, no. 4, pp. 1370–1391, Apr. 2019.

[7] T. Gagie, G. Navarro, and N. Prezza, ‘‘Fully functional suffix trees and
optimal text searching in BWT-runs bounded space,’’ J. ACM, vol. 67,
no. 1, pp. 1–54, Apr. 2020.

[8] J. I. Munro and V. Raman, ‘‘Succinct representation of balanced paren-
theses, static trees and planar graphs,’’ in Proc. 38th Annu. Symp. Found.
Comput. Sci., 1997, pp. 118–126.

[9] R. Raman, V. Raman, and S. R. Satti, ‘‘Succinct indexable dictionaries
with applications to encoding k-ary trees, prefix sums andmultisets,’’ACM
Trans. Algorithms, vol. 3, no. 4, p. 43, Nov. 2007.

[10] D. Belazzougui, P. Boldi, R. Pagh, and S. Vigna, ‘‘Theory and practice
of monotone minimal perfect hashing,’’ ACM J. Experim. Algorithmics,
vol. 16, pp. 1–3, May 2011.

[11] J. Barbay and G. Navarro, ‘‘Compressed representations of permutations,
and applications,’’ in Proc. 26th Int. Symp. Theoretical Aspects Comput.
Sci. (STACS), 2009, pp. 111–122.

[12] D. Clark, ‘‘Compact pat trees,’’ Ph.D. dissertation, Univ. Waterloo,
Waterloo, ON, Canada, 1996.

[13] J. Ian Munro, ‘‘Tables,’’ in Proc. 16th Conf. Found. Softw. Technol. Theor.
Comput. Sci. (FSTTCS), 1996, pp. 37–42.

[14] M. Patrascu, ‘‘Succincter,’’ in Proc. 49th Annu. IEEE Symp. Found. Com-
put. Sci., Oct. 2008, pp. 305–313.

[15] D. Okanohara and K. Sadakane, ‘‘Practical entropy-compressed
rank/select dictionary,’’ in Proc. 9th Workshop Algorithm Eng. Exp.
(ALENEX), 2007, pp. 60–70.

[16] A. Golynski, A. Orlandi, R. Raman, and S. S. Rao, ‘‘Optimal indexes for
sparse bit vectors,’’ Algorithmica, vol. 69, no. 4, pp. 906–924, Aug. 2014.

[17] J. Karkkainen, D. Kempa, and S. J. Puglisi, ‘‘Hybrid compression of
bitvectors for the FM-index,’’ in Proc. Data Compress. Conf., Mar. 2014,
pp. 302–311.

[18] D. Arroyuelo and R. Raman, ‘‘Adaptive succinctness,’’ in Proc. 26th Int.
Symp. String Process. Inf. Retr. (SPIRE), 2019, pp. 467–481.

[19] P. Ferragina, S. Kurtz, S. Lonardi, and G. Manzini, ‘‘Computational
biology,’’ in Handbook of Data Structures and Applications, 2nd ed.,
D. P. Mehta and S. Sahni, Eds. Boca Raton, FL, USA: CRC Press, 2018,
ch. 59.

[20] V. Mäkinen, D. Belazzougui, F. Cunial, and I. A. Tomescu, Genome-Scale
Algorithm Design. Cambridge, U.K.: Cambridge Univ. Press, 2015.

[21] G. Navarro, ‘‘Spaces, trees, and colors: The algorithmic landscape of
document retrieval on sequences,’’ ACM Comput. Surveys, vol. 46, no. 4,
pp. 1–47, Apr. 2014.

[22] R. Agarwal, A. Khandelwal, and I. Stoica, ‘‘Succinct: Enabling queries
on compressed data,’’ in Proc. 12th USENIX Symp. Netw. Syst. Design
Implement. (NSDI), 2015, pp. 337–350.

[23] J. L. Hennessy and D. A. Patterson, ‘‘A new golden age for computer
architecture,’’ Commun. ACM, vol. 62, no. 2, pp. 48–60, Jan. 2019.

[24] A. Boffa, P. Ferragina, and G. Vinciguerra, ‘‘A ‘learned’ approach to
quicken and compress rank/select dictionaries,’’ in Proc. 23rd SIAM Symp.
Algorithm Eng. Exp. (ALENEX), 2021, pp. 46–59.

[25] A. Boffa, P. Ferragina, and G. Vinciguerra, ‘‘A learned approach to design
compressed rank/select data structures,’’ ACM Trans. Algorithms, vol. 18,
no. 3, pp. 1–28, Jul. 2022.

[26] J. O’Rourke, ‘‘An on-line algorithm for fitting straight lines
between data ranges,’’ Commun. ACM, vol. 24, no. 9, pp. 574–578,
Sep. 1981.

[27] S. Gog, T. Beller, A. Moffat, and M. Petri, ‘‘From theory to practice:
Plug and play with succinct data structures,’’ in Proc. 13th Int. Symp. Exp.
Algorithms (SEA), 2014, pp. 326–337.

[28] P. Ferragina, F. Lillo, and G. Vinciguerra, ‘‘On the performance of
learned data structures,’’ Theor. Comput. Sci., vol. 871, pp. 107–120,
Jun. 2021.

[29] G. Navarro, ‘‘Indexing highly repetitive string collections, Part I: Repeti-
tiveness measures,’’ ACM Comput. Surveys, vol. 54, no. 2, pp. 29:1–29:31,
2021.

[30] D. Belazzougui and G. Navarro, ‘‘Optimal lower and upper bounds for
representing sequences,’’ ACM Trans. Algorithms, vol. 11, no. 4, pp. 1–21,
Jun. 2015.

[31] A. Lempel and J. Ziv, ‘‘On the complexity of finite sequences,’’ IEEE
Trans. Inf. Theory, vol. IT-22, no. 1, pp. 75–81, Jan. 1976.

[32] J. Ziv and A. Lempel, ‘‘A universal algorithm for sequential data com-
pression,’’ IEEE Trans. Inf. Theory, vol. IT-23, no. 3, pp. 337–343,
May 1977.

[33] S. R. Kosaraju and G. Manzini, ‘‘Compression of low entropy strings with
Lempel-Ziv algorithms,’’ SIAM J. Comput., vol. 29, no. 3, pp. 893–911,
1999.

[34] S. Kreft and G. Navarro, ‘‘On compressing and indexing
repetitive sequences,’’ Theor. Comput. Sci., vol. 483, pp. 115–133,
Apr. 2013.

[35] D. Belazzougui, M. Cáceres, T. Gagie, P. Gawrychowski, J. Kärkkäinen,
G. Navarro, A. Onez, J. Simon Puglisi, and Y. Tabei, ‘‘Block trees,’’
J. Comput. Syst. Sci., vol. 117, pp. 1–22, May 2021.

[36] D. Belazzougui, P. H. Cording, J. Simon Puglisi, and Y. Tabei, ‘‘Access,
rank, and select in grammar-compressed strings,’’ in Proc. 23rd Annu. Eur.
Symp. Algorithms (ESA), 2015, pp. 142–154.

[37] T. Kociumaka, G. Navarro, and N. Prezza, ‘‘Towards a definitive mea-
sure of repetitiveness,’’ in Proc. 14th Latin Amer. Symp. Theor. Informat.
(LATIN), 2020, pp. 207–219.

[38] P. Ferragina, G. Manzini, and G. Vinciguerra, ‘‘Repetition- and linearity-
aware rank/select dictionaries,’’ in Proc. 32nd Int. Symp. Algorithms Com-
put. (ISAAC), 2021, pp. 64:1–64:16.

[39] P. Elias, ‘‘Efficient storage and retrieval by content and address of static
files,’’ J. ACM, vol. 21, no. 2, pp. 246–260, Apr. 1974.

[40] R. M. Fano, ‘‘On number bits required to implement associative mem-
ory. Memo 61,’’ Massachusetts Inst. Technol., Cambridge, MA, USA,
Tech. Rep. Memo 61, 1971.

[41] T. Ideue, T. Mieno, M. Funakoshi, Y. Nakashima, S. Inenaga, and
M. Takeda, ‘‘On the approximation ratio of LZ-End to LZ77,’’ in
Proc. 28th Int. Symp. String Process. Inf. Retr. (SPIRE), 2021,
pp. 114–126.

[42] D. Kempa and B. Saha, ‘‘An upper bound and linear-space queries on
the LZ-End parsing,’’ in Proc. 33rd Annu. ACM-SIAM Symp. Discrete
Algorithms (SODA), 2022, pp. 2847–2866.

[43] G. Navarro and J. Rojas-Ledesma, ‘‘Predecessor search,’’ ACM Comput.
Surveys, vol. 53, no. 5, pp. 1–35, Oct. 2020.

[44] P. Ferragina and G. Vinciguerra, ‘‘The PGM-index: A fully-
dynamic compressed learned index with provable worst-case
bounds,’’ Proc. VLDB Endowment, vol. 13, no. 8, pp. 1162–1175,
Apr. 2020.

[45] P. Ferragina, R. Giancarlo, and G.Manzini, ‘‘Themyriad virtues of wavelet
trees,’’ Inf. Comput., vol. 207, no. 8, pp. 849–866, Aug. 2009.

[46] G. Ottaviano, N. Tonellotto, and R. Venturini, ‘‘Optimal space-time trade-
offs for inverted indexes,’’ in Proc. 8th ACM Int. Conf. Web Search Data
Mining, Feb. 2015, pp. 47–56.

[47] D. Kempa and D. Kosolobov, ‘‘LZ-End parsing in linear time,’’ in Proc.
25th Annu. Eur. Symp. Algorithms (ESA), 2017, pp. 53:1–53:14.

[48] D. Kempa and D. Kosolobov, ‘‘LZ-End parsing in compressed space,’’ in
Proc. Data Compress. Conf. (DCC), Apr. 2017, pp. 350–359.

[49] A. Farruggia, P. Ferragina, A. Frangioni, and R. Venturini, ‘‘Bicriteria
data compression,’’ SIAM J. Comput., vol. 48, no. 5, pp. 1603–1642,
Jan. 2019.

VOLUME 10, 2022 118847

P. Ferragina et al.: Compressing and Querying Integer Dictionaries Under Linearities and Repetitions

PAOLO FERRAGINA received the Ph.D. degree in computer science from
the University of Pisa, in 1996. He is currently a Professor of algorithms
at the University of Pisa, where he also serves as the Vice-Rector for ICT.
He founded and leads the Acube Laboratory, where researchers design
algorithms for big data, mainly in the form of texts and graphs, in collab-
oration with companies worldwide, such as Google, Bloomberg, European
Broadcasting Union (EBU), Tiscali, Yahoo!, and ST Microelectronics.
He has (co)authored more than 170 (refereed) publications, some books and
chapters, achieving anH-index of 34 on Scopus, andmore than 9500 citations
on Google Scholar. His research results got four U.S. patents and some
international awards, such as ‘‘the 1995 Best Land Transportation Paper
Award’’ from IEEE Vehicular Technology Society, ‘‘the 1997 EATCS Ph.D.
Thesis Award,’’ ‘‘the 1997 PhilipMorris Award on Science and Technology,’’
and three Google research awards. He was on the Steering Committee
of the European Symposium on Algorithms (ESA), and one of the area
editors of two encyclopedias, such as algorithms and big data technologies.
He is serving on the Editor Board for the Journal of Graph Algorithms and
Applications (JGAA).

GIOVANNI MANZINI received the Ph.D. degree in mathematics from the
Scuola Normale Superiore of Pisa, in 1995. He is currently a Professor
of computer science at the University of Pisa and a Research Associate
at the Institute of Informatics and Telematics, National Research Council.
Previously, he was a Professor of computer science at the University of
Eastern Piedmont. He has been a Visiting Scientist at the Massachusetts
Institute of Technology and a Visiting Professor at Johns Hopkins University
and the University of Melbourne. His current research interests include the
design of algorithms and data structures for solving theoretical and applied
problems in the fields of data compression and indexing data structures for
massive data sets.

GIORGIO VINCIGUERRA received the Ph.D. degree in computer sci-
ence from the University of Pisa, in 2022. He is currently a Postdoctoral
Researcher at the University of Pisa. His research interests include com-
pressed data structures, data compression, and algorithm engineering. His
thesis was awarded the ‘‘2022 Best Ph.D. Thesis in Theoretical Computer
Science’’ by the Italian Chapter of the EATCS.

118848 VOLUME 10, 2022

