
ar
X

iv
:1

90
8.

06
05

9v
1

 [
m

at
h.

N
A

]
 1

6
A

ug
 2

01
9

Low-rank approximation in the Frobenius norm

by column and row subset selection

Alice Cortinovis∗ Daniel Kressner†

August 19, 2019

Abstract

A CUR approximation of a matrix A is a particular type of low-rank
approximation A ≈ CUR, where C and R consist of columns and rows
of A, respectively. One way to obtain such an approximation is to apply
column subset selection to A and AT . In this work, we describe a nu-
merically robust and much faster variant of the column subset selection
algorithm proposed by Deshpande and Rademacher, which guarantees an
error close to the best approximation error in the Frobenius norm. For
cross approximation, in which U is required to be the inverse of a sub-
matrix of A described by the intersection of C and R, we obtain a new
algorithm with an error bound that stays within a factor k+1 of the best
rank-k approximation error in the Frobenius norm. To the best of our
knowledge, this is the first deterministic polynomial-time algorithm for
which this factor is bounded by a polynomial in k. Our derivation and
analysis of the algorithm is based on derandomizing a recent existence
result by Zamarashkin and Osinsky. To illustrate the versatility of our
new column subset selection algorithm, an extension to low multilinear
rank approximations of tensors is provided as well.

1 Introduction

Given an m × n matrix A and an integer k, typically much smaller than m
and n, the column subset selection problem aims at determining an index set
I ⊂ {1, . . . , n} of cardinality k such that the corresponding k columns A(:, I)
represent a good approximation of the range of A. This problem has broad
applications in a diversity of disciplines, including scientific computing, model
reduction, and statistical data analysis. While column subset selection is a clas-
sical problem in numerical linear algebra, closely connected to rank-revealing
QR factorizations [9, 10, 23], new significant theoretical and algorithmic de-
velopments have been achieved during the last two decades within the model
reduction and theory of algorithms communities. In particular, this concerns the
interplay between column subset selection and interpolation [3, 11, 18] as well

∗Institute of Mathematics, EPF Lausanne, 1015 Lausanne, Switzerland. E-mail: al-

ice.cortinovis@epfl.ch. The work of Alice Cortinovis has been supported by the SNSF research

project Fast algorithms from low-rank updates, grant number: 200020 178806.
†Institute of Mathematics, EPF Lausanne, 1015 Lausanne, Switzerland. E-mail:

daniel.kressner@epfl.ch.

1

http://arxiv.org/abs/1908.06059v1

as the development and analysis of randomized algorithms, see [6, 17, 19, 36]
for a few references representing this research direction.

This paper is concerned with algorithmic improvements and extensions of
the seminal work by Deshpande, Rademacher and co-authors [14, 15] on column
subset selection. In [15] the existence of an index set I such that

‖A−A(:, I)A(:, I)+A‖2F ≤ (k + 1)
(

σk+1(A)
2 + . . .+ σmin{m,n}(A)

2
)

(1)

has been established. Here, ‖ · ‖F and (·)+ denote the Frobenius norm and the
Moore–Penrose inverse of a matrix, respectively. We let σ1(A) ≥ σ2(A) ≥ · · ·
denote the singular values of A. Note that A(:, I)A(:, I)+ is an orthogonal
projector and the bound (1) measures how well all the columns of A are ap-
proximated by the subset of column contained in I. The bound (1) is remarkable
because the singular value decomposition (SVD) of A implies that the best ap-
proximation error ‖A − QQ+A‖2F attained by an arbitrary m × k matrix Q is
given by σk+1(A)

2 + . . . + σmin{m,n}(A)
2. The bound (1) is larger by a factor

that is only linear in k. More generally, we will call any quasi-optimal bound
with a factor that is at most polynomial in k (and independent of m,n or A)
a polynomial bound. The proof of (1) proceeds by defining a suitable discrete
probability distribution on index tuples such that the expected value of the er-
ror with respect to this distribution satisfies the bound. This then implies the
existence of at least one index set satisfying the bound as well. We remark
that the factor k + 1 in (1) cannot be improved [15, Proposition 3.3]. In [14],
a deterministic algorithm has been developed by derandomizing this approach
using the method of conditional expectations. These conditional expectations
are given in terms of coefficients of certain characteristic polynomials and the
algorithm from [14] attains efficiency by cheaply updating these coefficients.
However, it is well known that working with characteristic polynomials in finite
precision arithmetic is prone to massive numerical cancellation [29] and, as we
will see, the algorithm from [14] is also affected by numerical instability. Our
first contribution, presented in Section 2, consists of deriving a formulation of
the algorithm that updates singular values instead of coefficients of character-
istic polynomials. While our new variant enjoys the same favorable complexity,
numerical experiments with matrices of different singular value decay indicate
that it is numerically robust, achieving (1) up to the level of roundoff error.
Based on a minor extension of the theory from [14, 15], we will also present a
modification of the column selection strategy that results in significant speed
ups of the algorithm.

In Section 3, we extend the developments from [14] to the problem of deter-
mining a rank-k approximation of the form

A ≈ CUR,

where C = A(:, J) and R = A(I, :) contain k selected columns and rows of A,
respectively. There is a simple and well established strategy to derive such an
approximation, see, e.g., [17, 31]: One first applies column subset selection to
A and AT in order to determine C and R, respectively. Given C and R, the
choice

U = C+AR+ (2)

then minimizes the Frobenius norm error. We will show that this strategy
combined with (1) results in an error that is at most a factor

√
2k + 2 larger

2

than the best rank-k approximation error. While this is clearly a favorable
bound, the choice (2) comes with a disadvantage. It involves the full matrix A,
but sometimes only partial information on A is available and has been used to
determine I, J . One example for such a situation is the Chebfun2 construction
for approximating bivariate functions [34], which uses a coarse discretization
to cheaply determine I, J and then evaluates the full matrix A only along the
cross containing the rows and columns determined by I and J , respectively. The
choice U = A(I, J)−1 then leads to a rank-k approximation of the form

A ≈ A(:, J)A(I, J)−1A(I, :),

which is often called cross approximation. Choosing I, J via column subset se-
lection is not advisable in this setting; it may lead to (nearly) singular A(I, J)
and result in an unfavorable approximation error. On the other hand, Goreinov
and Tyrtyshnikov [21] have established a polynomial bound for cross approxima-
tion in the maximum norm when choosing I, J such that the volume of A(I, J) is
maximal. Recently, Zamarashkin and Osinsky [38] derived a polynomial bound
in the Frobenius norm by extending the techniques from [15]. However, as far as
we know, there is no polynomial time deterministic algorithm that guarantees a
polynomial bound (in any norm); popular greedy algorithms lead to exponential
bounds [12, 24] at best. One major contribution of this work is to derive such an
algorithm via an extension of [14]; our algorithm guarantees a Frobenius norm
error that is at most a factor k + 1 larger than the best approximation error.

Section 4 contains an extension to tensors. In particular, we derive a de-
terministic algorithm that obtains a multilinear low-rank approximation that is
constructed from the fibers of the tensor and satisfies a polynomial bound. Al-
though our approach is a relatively straightforward extension of (2) and related
approaches have been proposed in the literature [16, 22, 30], we are not aware
that such an algorithm has been explicitly spelled out and analyzed.

2 Column subset selection

We start by providing more details on the approach from [14, 15] for the col-
umn subset selection problem. In the following we consider a matrix A ∈ R

m×n

with m ≤ n and rank at least k. We let ai denote the ith column of A
and πi1,...,ikA the orthogonal projection of A on the subspace spanned by the
columns ai1 , . . . , aik , that is,

πi1,...,ikA := A(:, I) · A(:, I)+ ·A = QQTA,

where I = (i1, . . . , ik) ∈ {1, . . . , n}k and Q denotes an orthonormal basis of
A(:, I). Let us emphasize that I is now a tuple. Although order is not important
and we are ultimately interested in an index set, working with tuples simplifies
the subsequent definition and manipulation of probability distributions. The
volume of a rectangular matrix B ∈ R

m×k with k ≤ m is defined as Vol(B) :=
∏k

i=1 σi(B)2. Note that Vol(B)2 = det(BTB).
We now define a discrete probability distribution on integer tuples of the

form I ∈ {1, . . . , n}k corresponding to a selection of k columns from A. For this
purpose, let X = (X1, . . . , Xk) be a k-tuple of random variables with values in

3

{1, . . . , n} such that

P(X = I) :=
Vol(A(:, I))2

∑

J∈{1,...,n}k Vol(A(:, J))2
. (3)

By convention, Vol (A(:, I)) = 0 whenever i1, . . . , ik contain repeated indices.
Then [15, Theorem 1.3] shows that

E[‖A− πX1,...,Xk
A‖2F] ≤ (k + 1)

(

σ2
k+1 + . . .+ σ2

m

)

. (4)

In particular, this implies the existence of I satisfying this bound.
In view of (3) and the prominent role played by maximum volume submatri-

ces in low-rank approximation [21], it is tempting to expect that the k columns
of maximum volume satisfy (1). However, not only that it is NP hard to choose
such columns [8], but they also fail to have this property. For instance, for k = 1
consider the 2× n matrix

A =

[

a(1 + ε) b b . . . b
−b(1 + ε) a a . . . a

]

with a2 + b2 = 1 and ε > 0. The column of maximum volume (that is, of
maximum Euclidean norm) is the first one. The approximation error obtained
by this choice is given by ‖A − π1A‖2F = n − 1, which is much larger than
2σ2

2 = 2(1 + ε)2 for ε sufficiently small. Note that choosing any of the other
columns yields the best approximation error (1 + ε)2 = σ2

2 .

2.1 Algorithm by Deshpande and Rademacher

Deshpande and Rademacher [14] derived a deterministic algorithm for column
subset selection by derandomizing (4) using the method of conditional expecta-
tions.

More specifically, the first step of the algorithm chooses an index i1 such
that

E
[

‖A− πX1,...,Xk
A‖2F | X1 = i1

]

is minimized. By construction, this quantity still satisfies the bound (4). More
generally, having t − 1 indices i1, . . . , it−1 selected, step t chooses an index it
such that

E
[

‖A− πX1,...,Xk
A‖2F | X1 = i1, . . . , Xt−1 = it−1, Xt = it

]

(5)

is minimized. After k steps we arrive at an index set I of cardinality k such
that the desired bound (1) holds.

For the algorithm to be practical, it is crucial to compute the conditional
expectations (5) efficiently. Lemma 21 in [14] shows that

E
[

‖A− πX1,...,Xk
A‖2F | X1 = i1, . . . , Xt = it

]

= (k − t+ 1)
cm−k+t−1(BBT)

cm−k+t(BBT)
,

where the right-hand side involves the matrix B = A−πi1,...,itA and coefficients
cj ≡ cj(BBT) of the characteristic polynomial

(−λ)m + cm−1(−λ)m−1 + . . .+ c1(−λ) + c0 := det(BBT − λI). (6)

4

It is therefore required to compute in every step for all values of i, the ratios

cm−k+t−1(BiB
T
i)

cm−k+t(BiBT
i)

(7)

where Bi = A− πi1,...,it−1,iA.
In the following, we discuss the computation of (7) and show how the mini-

mization problem (5) can be relaxed in order to accelerate the search for suitable
indices.

2.2 Computation of characteristic polynomial coefficients

Assuming that the first t − 1 indices have been selected, we set B := A −
πi1,...,it−1

A. Then

Bi = B − πiB =

(

I − bib
T
i

‖bi‖22

)

B

is a rank-1 modification of B. Deshpande and Rademacher [14] propose two
methods to compute (7) for i = 1, . . . , n. In the following, we summarize them
briefly.

1. Algorithm 2 in [14] computes BBT explicitly and then computes BiB
T
i as

a rank-2 update of BBT for every i = 1, . . . , n. The characteristic poly-
nomial of BiB

T
i is computed by establishing a similarity transformation

to a matrix in Frobenius normal form [7, Section 16.6]. Fast matrix-
matrix multiplication and inversion can be exploited so that the cost of
this approach is O(nmω logm), where ω ≤ 2.373 is the best exponent of
matrix-matrix multiplication complexity.

2. Algorithm 3 in [14] computes the thin SVD of B = UΣV T , the character-
istic polynomial of BBT from the squared singular values of B, and the
auxiliary polynomials gj(x) =

∏

ℓ 6=j

(

x− σℓ(B)2
)

for j = 1, . . . ,m. For

h = m− k + t and h = m− k + t − 1, the coefficient ch(BiB
T
i) can then

be computed as the coefficient of xh in

det(λI −BBT) +
1

‖bi‖22

n
∑

j=1

σ2
j (B)v2ijgj(x). (8)

The cost of this second approach is O(m2n).

The problem of computing the Frobenius normal form of a matrix is “nu-
merically not viable” [28]. Also, updating directly the characteristic polynomial
as in (8) is prone to numerical cancellation, leading to inaccurate results. For
instance, consider the 2× 2 matrix

A =

[

6.583644 · 10−7 8.113362 · 10−3

8.113362 · 10−3 100

]

,

and the column selection problem for k = 1. Algorithm 4 in [14] using (8)
selects the first column, giving an error ‖A−A(:, 1)A(:, 1)+A‖F ≈ 1.2 · 10−6 ≫√
2σ2(A) = 1.4 · 10−10.

5

Therefore, from now on we will avoid updating coefficients of characteristic
polynomials and work with singular values instead. More specifically, we will
compute the singular values of Bi by updating the SVD of B and then apply
the Summation Algorithm [29, Algorithm 1] to compute the coefficients of the
characteristic polynomial of BiB

T
i from its eigenvalues (that is, the squared

singular values) with O(m2) operations in a numerically forward stable manner.
To describe the updating procedure, consider the (thin) SVD

B = UΣV T , U ∈ R
m×m, Σ ∈ R

m×m, V ∈ R
n×m.

The (nonzero) singular values of Bi and

UTBiV = (I − UTπiU)UTBV =

(

I − UT bib
T
i U

‖bi‖22

)

Σ =
(

I − qqT
)

Σ,

with q = UT bi/‖bi‖2, are identical. Using standard bulge chasing algorithms
(see, e.g., [37, Algorithm 3.4] and [2]) it is possible to find orthogonal matrices
Q,W ∈ R

m×m such that QT q = e1, where e1 denotes the first unit vector, and
QTΣW is upper bidiagonal. In turn, the singular values can be computed from
the bidiagonal matrix

QT (I − qqT)ΣW = (I − e1e
T
1)(Q

TΣW).

The matrices Q and W are composed of O(m2) Givens rotations [20, Section
5.1] and the computation of QTΣW requires to apply each of these rotations
to at most 3 vectors. In turn, the cost of computing this bidiagonal matrix is
O(m2), which is identical with the cost of computing its singular values [20,
Section 8.6].

2.3 Overall algorithm

The described variation of the column subset selection algorithm by Deshpande
and Rademacher is summarized in Algorithm 1. One execution of line 3 is
O(nm2), lines 6–9 are O(m2), and lines 14–15 are O(knm). In summary, the
overall complexity of Algorithm 1 is O(knm2). This is identical with the com-
plexity of [14, Algorithm 4] combined with [14, Algorithm 3], and it is better
than [14, Algorithm 4] combined with [14, Algorithm 2].

Note that instead of lines 14–15 we could have updated B ← B−πitB. How-
ever, we noticed that recomputing B in lines 18–19 tends to improve accuracy
and it does not change the overall complexity.

2.4 Early stopping of column search

For each column index, Algorithm 1 needs to traverse O(n) columns in order
to find the one that minimizes the coefficient ratio or, equivalently, the condi-
tional expectation. This column search can be shortened. To describe the idea,
suppose that i1, . . . , it−1 have already been selected such that

E
[

‖A− πX1,...,Xk
A‖2F | X1 = i1, . . . , Xt−1 = it−1

]

≤ (k + 1)(σ2
k+1 + . . .+ σ2

m)
(9)

holds. Now, we can choose any it such that

E
[

‖A− πX1,...,Xk
A‖2F | X1 = i1, . . . , Xt = it

]

≤ (k + 1)(σ2
k+1 + . . .+ σ2

m) (10)

6

Algorithm 1 Column Subset Selection

Input: A ∈ R
m×n, rank 1 ≤ k < m

Output: Column indices S ∈ {1, . . . , n}k

1: Initialize S = ∅ and B = A
2: for t = 1, . . . , k do

3: [U,Σ,∼] = svd(B)
4: minRatio = +∞
5: for i = 1, . . . , n do

6: q = UT bi/‖bi‖2
7: D = QTΣW bidiagonal matrix obtained by bulge chasing [37, Algorithm 3.4]

8: Compute singular values σ1, . . . , σm of (I − e1e
T
1)D

9: Apply Summation Algorithm [29, Algorithm 1] to compute cm−k+t−1(BiB
T
i)

and cm−k+t(BiB
T
i) from eigenvalues σ2

1 , . . . , σ
2
m

10: Set ratio = cm−k+t−1(BiB
T
i)/cm−k+t(BiB

T
i)

11: if ratio < minRatio then Set minRatio = ratio and it = i end if

12: end for

13: Append index S ← (S, it)
14: [Q,∼] = qr(A(:, S))
15: B = A−QQTA
16: end for

holds. The existence of it is guaranteed by (9) but we do not need to find the
one that minimizes the conditional expectation. It suffices to always choose in
every step an index such that (10) is verified. By induction, the error bound (1)
still holds.

The discussion above suggests to modify Algorithm 1 such that it com-
putes

bound = (k + 1) ·
(

σ2
k+1 + . . .+ σ2

m

)

in the beginning and substitute line 11 with

11: if (k − t+ 1) · ratio ≤ bound then Set it = i and break end if

To be able to stop the search early, it is important to test the columns in a
suitable order. We found it beneficial to test the columns of B in descending
norm. For each step t, computing the norms of all columns ofB and sorting them
has complexity O(mn + n logn). Although this choice is clearly heuristic, the
following lemma provides some justification for it by showing that the column
of largest norm is the right choice for k = 1 provided that all other columns are
sufficiently small.

Lemma 1. Let A =
[

a1 A2

]

. If ‖A2‖F ≤ ‖a1‖2 then choosing the first column
solves the column selection problem for k = 1, that is,

‖A− a1a
+
1 A‖2F ≤ 2(σ2

2 + . . .+ σ2
m).

Note that the condition of the lemma is satisfied if the column norms of A
decay sufficiently fast, for instance if ‖ai‖2 ≤ ‖a1‖2

i for i = 2, . . . , n.

Proof. Without loss of generality we may assume that ‖a1‖2 = 1. By setting
B = A2 − a1a

+
1 A2 = A2 − a1a

T
1 A2 and b = AT

2 a1, we have

ATA =

[

1 bT

b AT
2 A2

]

=

[

1 bT

b BTB + bbT

]

7

and obtain

‖ATA‖2 ≤
∥

∥

∥

∥

[

1 ‖b‖2
‖b‖2 ‖BTB + bbT‖2

]∥

∥

∥

∥

2

≤
∥

∥

∥

∥

[

1 ‖b‖2
‖b‖2 ‖B‖2F + ‖b‖22

]∥

∥

∥

∥

2

. (11)

Here, the first inequality is a norm-compression inequality [5, Section 9.10] and
the second inequality follows from the fact that the involved matrices are posi-
tive.

We aim at proving

‖A− a1a
+
1 A‖2F = ‖B‖2F ≤ 2(‖A‖2F − ‖A‖22),

which is equivalent to

‖A‖22 ≤ 1 + ‖b‖22 +
‖B‖2F
2

=: γ.

Thus, it remains to show that the larger eigenvalue of the symmetric positive
definite 2 × 2 matrix on the right-hand side of (11) is bounded by γ. For this
purpose, we note that its characteristic polynomial is given by

p(λ) = (λ− 1)
(

λ− ‖b‖22 − ‖B‖2F
)

− ‖b‖22.

Setting γ = 1 + ‖b‖22 + ‖B‖2F/2, we obtain

p(γ) = ‖B‖2F /2 ·
(

1− ‖b‖22 − ‖B‖2F/2
)

≥ 0,

where we used that ‖b‖22 + ‖B‖2F = ‖A2‖2F ≤ ‖a1‖22 = 1. Because p is a
parabola with vertex (1+ ‖b‖22+ ‖B‖2F)/2 ≤ γ, it follows that the larger root of
p is bounded by γ, which completes the proof.

It is important to not draw too many conclusions from Lemma 1. Consider,
for example, the matrix

A =





1 0 10−b

0 1 10−b

0 0 10−2b





for some integer b, say b = 16. For k = 1, the optimal choice is the third column,
which is the one of smallest norm. This matrix also nicely illustrates that the
obvious greedy approach (in order to get k columns of A, one first chooses the
best column, then the best column in the orthogonal complement, and so on)
comes with no guarantees and may, in fact, utterly fail. For k = 2 the optimal
choice consists of the first two columns. On the other hand, the greedy approach
for k = 2 first selects the third column and then the first column, resulting in
the arbitrarily bad error ratio error greedy

error best ≈ 10b.

2.5 Numerical experiments

Both variants of Algorithm 1, without and with early stopping, have been im-
plemented in Matlab version R2019a. As the bulge chasing algorithm in line 7
would perform poorly in Matlab, this part has been implemented in C++ and
is called via a MEX interface. All numerical experiments in this work have been
run on an eight-core Intel Core i7-8650U 1.90 GHz CPU, 256 KB of level 2
Cache and 16 GB of RAM. Multithreading has been turned off in order to not
distort the findings.

We have applied the algorithm to the following three matrices:

8

1. the Hilbert matrix A1 ∈ R
200×200 given by A1(i, j) =

1
i+j−1 ;

2. A2 ∈ R
100×200 given by A2(i, j) = exp(−0.3 · |i− j|/200);

3. A3 ∈ R
100×200 given by A3(i, j) =

(

(

i
200

)20
+
(

j
200

)20
)1/20

.

The obtained results are shown in Figures 1, 2, and 3 respectively. Each left plot
contains, for different values of k, the approximation error ‖Ai − Ai(:, S)Ai(:
, S)+‖F returned by Algorithm 1, without and with early stopping. We com-

pare with the best rank-k approximation error
√

σ2
k+1 + . . .+ σ2

m and the upper

bound (1), that is,
√

(k + 1)(σ2
k+1 + . . .+ σ2

m). It can be seen that both vari-

ants of our algorithm stay below the upper bound, until it reaches the level
of roundoff error. Interestingly, for the matrix A2, which features the slowest
singular value decay, the observed approximation error is much closer to the
best approximation error than to the upper bound. The right plots of the fig-
ures show, for different values of k, the ratio between the execution times of
Algorithm 1 without early stopping and with early stopping. For the variant
with early stopping, we also plot the number of columns that were examined. In
the most optimistic scenario, only k columns need to be examined, which means
that in every step of the algorithm already the first verifies the desired criterion.
The plots reveal that our algorithm actually stays pretty close to this ideal situ-
ation, at least for the matrices considered. Note that for values of k larger than
the numerical rank of the matrix, Algorithm 1 starts computing ratios (6) from
singular values of the order of machine precision. In turn, the computations are
severely affected by roundoff error and it may, in fact, happen that the early
stopping criterion is never satisfied. This leads to meaningless results and we
therefore truncate the plots before this happens. A proper implementation of
Algorithm 1 needs to detect such a situation and reduce k accordingly.

0 5 10 15 20 25 30

k

10 -15

10 -10

10 -5

10 0

lo
g

of
 a

pp
ro

x.
 e

rr
or

Approximation error

Algorithm 1
Alg.1, early stop
upper bound
best rank-k approx. error

0 5 10 15 20 25
k

16

18

20

22

24
Speed-up by stopping early

ratio time(Algorithm 1)/time(Alg.1, early stop)

0 5 10 15 20 25
k

0

5

10

15

20
Number of columns considered

Figure 1: Results for matrix A1

3 Matrix approximation

In this section, we extend the developments from Section 2 on column subset
selection to compute certain low-rank matrix approximations of a matrix A ∈

9

0 20 40 60 80 100

k

10 -4

10 -3

10 -2

10 -1

10 0

10 1
lo

g
of

 a
pp

ro
x.

 e
rr

or
Approximation error

Algorithm 1
Alg.1, early stop
upper bound
best rank-k approx. error

0 20 40 60 80 100
k

20

30

40

50

60
Speed-up by stopping early

ratio time(Algorithm 1)/time(Alg.1, early stop)

0 20 40 60 80 100
k

0

50

100
Number of columns considered

Figure 2: Results for matrix A2

0 20 40 60 80 100

k

10 -15

10 -10

10 -5

10 0

10 5

lo
g

of
 a

pp
ro

x.
 e

rr
or

Approximation error

Algorithm 1
Alg.1, early stop
upper bound
best rank-k approx. error

0 20 40 60 80 100
k

20

30

40

50
Speed-up by stopping early

ratio time(Algorithm 1)/time(Alg.1, early stop)

0 20 40 60 80 100
k

0

50

100
Number of columns considered

Figure 3: Results for matrix A3

R
m×n with m ≤ n. As already discussed in the introduction, we will pursue two

ways. First, in Section 3.1, we discuss a general CUR approximation obtained
from applying column subset selection to the columns and rows of the matrix.
Second, in Section 3.2, we present a novel approach to cross approximation, a
specific type of CUR approximation, with guaranteed error bounds.

3.1 CUR approximation induced by column subset selec-

tion

Suppose that C ∈ R
m×k and R ∈ R

k×n have been chosen. Then the matrix
U ∈ R

k×k that minimizes ‖A−CUR‖F is given by the projection U = C+AR+,
see [33, p. 320]. The following corollary provides an error bound for the case
when C and R are determined by the techniques from Section 2, leading to
Algorithm 2. Closely related results can be found in the literature; see, for
example, [17, Theorem 4], [30, Corollary 3.5], and [32, Theorem 4.1].

Corollary 2. Let A ∈ R
m×n, with 1 ≤ k ≤ m ≤ n. Then the CUR approxima-

tion returned by Algorithm 2 satisfies

‖A− CUR‖F ≤
√
2k + 2

√

σk+1(A)2 + · · ·+ σm(A)2.

Proof. Using the inequality (1) twice and the fact that CC+ is an orthogonal

10

Algorithm 2 Matrix approximation by column subset selection

Input: A ∈ R
m×n, rank k

Output: Rank-k CUR approximation, with C,R containing columns and rows of A
1: Compute C by applying Algorithm 1 to select k columns of A
2: Compute R by applying Algorithm 1 to select k columns of AT

3: Compute U = C+AR+

projection, we obtain

‖A− CUR‖2F = ‖A− CC+AR+R‖2F
= ‖A− CC+A‖2F + ‖CC+(A−AR+R)‖2F
≤ ‖(I − CC+)A‖2F + ‖A(I −R+R)‖2F
≤ 2(k + 1)

(

σk+1(A)
2 + · · ·+ σm(A)2

)

.

3.1.1 Numerical experiments

We have tested a Matlab implementation of Algorithm 2 in the setting and for
the matrices A1, A2, A3 described in Section 2.5. Figure 4 displays the obtained
approximation errors ‖Ai − CUR‖F for different values of k. Again, we have
tested both variants of Algorithm 1, without and with early stopping, within
Algorithm 2. The speedups obtained from early stopping are very similar to the
ones reported Section 2.5 and, therefore, we refrain from providing details.

We also consider, for 0 < α < 1, the n× n matrix

A = Q · diag(1, α, α2, . . . , αn−1) ·QT ,

where Q ∈ R
n×n is determined as the orthogonal factor from the QR decompo-

sition of














1
−1 1
−1 −1 1
...

...
. . .

−1 −1 −1 · · · 1















.

This is known to be a challenging example for the CUR approximation induced
by DEIM (discrete interpolation method); see [32, Section 4.2], which deter-
mines the row and column indices by greedily choosing a maximum volume
submatrix of Uk and Vk containing the first k left and right singular vectors of
A, respectively. For the example above, the DEIM induced CUR approximation
always chooses 1, . . . , k for the column and row indices. For α = 0.1, n = 6,
k = 5, the error resulting from this choice is given by

‖A−A(:, 1 : 5)A(:, 1 : 5)+AA(1 : 5, :)+A(1 : 5, :)‖F ≈ 2.6 · 10−9,

which is a magnitude larger than the upper bound
√

2(k + 1)σ6 ≈ 3.5 · 10−10

guaranteed by Algorithm 2. Note that the latter algorithm selects the last 5
rows and columns for this example, leading to an error of ≈ 1.3 · 10−10.

11

0 5 10 15 20 25 30

k

10 -15

10 -10

10 -5

10 0
lo

g
of

 a
pp

ro
x.

 e
rr

or
 fo

r
A

1
Algorithm 1
Alg.1, early stop
upper bound
best rank-k approx. error

0 20 40 60 80 100

k

10 -15

10 -10

10 -5

10 0

10 5

lo
g

of
 a

pp
ro

x.
 e

rr
or

 fo
r

A
3

Algorithm 1
Alg.1, early stop
upper bound
best rank-k approx. error

0 20 40 60 80 100

k

10 -4

10 -3

10 -2

10 -1

10 0

10 1

lo
g

of
 a

pp
ro

x.
 e

rr
or

 fo
r

A
2

Algorithm 1
Alg.1, early stop
upper bound
best rank-k approx. error

Figure 4: Approximation errors for matrices A1 (top left), A2 (top right), and
A3 (bottom).

3.2 Cross approximation

We now consider cross approximations, which take the form

A ≈ A(:, J)A(I, J)−1A(I, :) (12)

for row/column index tuples

(I, J) ∈ Ω := {1, . . . ,m}k × {1, . . . , n}k.

The different choice of the middle matrix makes a fundamental difference. In
particular, as the following example shows, choosing the indices I, J as in Al-
gorithm 2 may lead to poor approximation error.

Example 3. Consider A =

[

2ε 1
1 ε

]

for ε > 0 and k = 1. Clearly, the first

column and row satisfy the bound (1) for k = 1 with respect to A and AT ,
respectively. However, the error of the corresponding cross approximation, ‖A−
A(:, 1)A(1, 1)−1A(1, :)‖F = 1

2ε − ε, becomes arbitrarily large as ε→ 0.

Zamarashkin and Osinsky [38] have shown the existence of a cross approx-
imation that satisfies a polynomial error bound in the Frobenius norm. To
summarize their result, let

(X,Y) = (X1, . . . , Xk, Y1, . . . , Yk)

12

be a (2k)-tuple of random variables with values in Ω such that

P (X = I, Y = J) :=
Vol (A(I, J))

2

∑

(I′,J′)∈Ω Vol(A(I ′, J ′))2
. (13)

Note that Vol (A(I, J)) = 0 whenever i1, . . . , ik or j1, . . . , jk contain repeated
indices. Then [38, Theorem 1] shows that

E[‖A−A(:, Y)A(X,Y)−1A(X, :)‖2F] ≤ (k + 1)2
(

σ2
k+1 + . . .+ σ2

m

)

. (14)

In particular, this implies that there exists (I, J) ∈ Ω such that

‖A−A(:, J)A(I, J)−1A(I, :)‖2F ≤ (k + 1)2
(

σ2
k+1 + . . .+ σ2

m

)

. (15)

In analogy to Section 2.1 and [14], we will now derandomize this result
producing a polynomial-time deterministic algorithm that returns a cross ap-
proximation satisfying (15). The key for doing so is to find an expression for
the conditional expectations that is easy to work with.

3.2.1 Conditional expectations

Lemma 4. Let 1 ≤ t ≤ k and (i1, . . . , it, j1, . . . , jt) be such that

P
(

X1=i1,...,Xt=it
Y1=j1,...,Yt=jt

)

> 0

for a random (2k)-tuple (X,Y) with the probability distribution defined by (13).
Consider

B = A−A(:, [j1 · · · jt])A([i1 · · · it] , [j1 · · · jt])−1A([i1 · · · it] , :),

the remainder of cross approximation after choosing row indices i1, . . . , it and
column indices j1, . . . , jt. Then

E
[

‖A−A(:, Y)A(X,Y)−1A(X, :)‖2F
∣

∣
X1=i1,...,Xt=it
Y1=j1,...,Yt=jt

]

= (k − t+ 1)2 · cm−k+t−1(BBT)

cm−k+t(BBT)
,

with the coefficients cm−k+t, cm−k+t−1 defined as in (6).

Proof. To simplify notation, we let I1 = (i1, . . . , it), I2 = (it+1, . . . , ik), I =
(I1, I2) = (i1, . . . , ik) and define J1, J2, J analogously. In the following, we
always use the convention that row and column summation indices range from
1 to m and from 1 to n, respectively. We have that

E
[

‖A−A(:, Y)A(X,Y)−1A(X, :)‖2F
∣

∣
X1=i1,...,Xt=it
Y1=j1,...,Yt=jt

]

=
∑

it+1,...,ik
jt+1,...,jk

‖A−A(:, J)A(I, J)−1A(I, :)‖2F · P
(

X = I, Y = J
∣

∣
X1=i1,...,Xt=it
Y1=j1,...,Yt=jt

)

=
1

γ
·

∑

it+1,...,ik,ik+1
jt+1,...,jk,jk+1

Vol
(

A((I, ik+1), (J, jk+1))
)2
, (16)

13

with
γ =

∑

it+1,...,ik
jt+1,...,jk

Vol(A(I, J))2.

For establishing the equality in (16) we used from [38, Lemma 1] that

‖A−A(:, J)A(I, J)−1A(I, :)‖2F =

∑

ik+1,jk+1
Vol

(

A((I, ik+1), (J, jk+1))
)2

Vol(A(I, J))2
,

and, from (13), that

P
(

X = I, Y = J
∣

∣
X1=i1,...,Xt=it
Y1=j1,...,Yt=jt

)

=
P(X = I, Y = J)

P
(

X1=i1,...,Xt=it
Y1=j1,...,Yt=jt

) =
1

γ
· Vol(A(I, J))2.

We now aim at simplifying the expression (16). For this purpose, we assume
without loss of generality that i1 = 1, . . . , it = t and j1 = 1, . . . , jt = t. This
allows us to partition

A(I, J) =

[

A(I1, J1) A(I1, J2)
A(I2, J1) A(I2, J2)

]

, B(I, J) =

[

0 0
0 B(I2, J2)

]

,

where B(I2, J2) = A(I2, J2)−A(I2, J1)A(I1, J1)
−1A(I1, J2) by the definition of

B. By the relation between determinants and Schur complements [25, Equation
(0.8.5.1)], Vol(A(I, J)) = Vol(A(I1, J1)) · Vol(B(I2, J2)). Therefore,

γ =
∑

it+1,...,ik
jt+1,...,jk

Vol(A(I, J))2 =
∑

it+1,...,ik
jt+1,...,jk

Vol(B(I2, J2))
2 · Vol(A(I1, J1))2.

Analogously, one shows

∑

it+1,...,ik+1
jt+1,...,jk+1

Vol
(

A((I, ik+1), (J, jk+1))
)2

=
∑

it+1,...,ik+1
jt+1,...,jk+1

Vol
(

B((I2, ik+1), (J2, jk+1))
)2

Vol(A(I1, J1))
2.

Inserting these expressions into (16) yields

∑

it+1,...,ik+1
jt+1,...,jk+1

Vol
(

B((I2, ik+1), (J2, jk+1))
)2

∑

it+1,...,ik
jt+1,...,jk

Vol(B(I2, J2))2
.

By [26, Theorem 7] this ratio is equal to

cm−k+t−1(BBT) · ((k − t+ 1)!)
2

cm−k+t(BBT) · ((k − t)!)
2 = (k − t+ 1)2 · cm−k+t−1(BBT)

cm−k+t(BBT)
.

14

3.2.2 Derandomized cross approximation algorithm

With Lemma 4 at hand, we can proceed analogously to Section 2.1 and sequen-
tially find k pairs of row/column indices such that (15) is satisfied. Suppose
that t − 1 index pairs (i1, j1), . . . , (it−1, jt−1) have been determined. Then the
tth step of the algorithm proceeds by choosing (it, jt) such that

E
[

‖A−A(:, Y)A(X,Y)−1A(X, :)‖2F
∣

∣
X1=i1,...,Xt=it
Y1=j1,...,Yt=jt

]

(17)

is minimized. We will show in Theorem 5 below that this choice of index pairs
leads to a cross approximation satisfying the desired error bound (15). In view
of Lemma 4, the minimization of (17) means that in each step of the algorithm
we need to compute the ratios

cm−k+t−1(CijC
T
ij)

cm−k+t(CijCT
ij)

, i = 1, . . . ,m, j = 1, . . . , n, (18)

where

Cij = A−A(:, [j1, · · · , jt−1, j])A([i1, · · · , it−1, i], [j1, · · · , jt−1, j])
−1A([i1, · · · , it−1, i], :).

Parallelizing the developments in Section 2.2, we now show how the coeffi-
cients in (18) can be computed via updating the singular values of Cij . Let us
denote the remainder from the previous step by

B = A−A(:, [j1, · · · , jt−1])A([i1, · · · , it−1], [j1, · · · , jt−1])
−1A([i1, · · · , it−1], :).

Then it follows that

Cij = B − 1

B(i, j)
B(:, j)B(i, :), (19)

see, e.g., [4]. We compute a thin SVD B = UΣV T such that U ∈ R
m×m,

V ∈ R
m×n have orthonormal columns and Σ ∈ R

m×m is diagonal. Note that

B(:, j) = UΣV (j, :)T , B(i, :) = U(i, :)ΣV T .

Inserted into (19), this shows that the nonzero singular values of Cij match the
singular values of

UTCijV = Σ− ΣV (j, :)T · U(i, :)Σ

B(i, j)
= Σ− xyT ,

where x = ΣV (j, :)T and y = 1
B(i,j)ΣU(i, :)T are vectors of length m and can

be computed with O(m2) operations.
Similarly as in Section 2.2, we transform Σ − xyT into bidiagonal form,

after which its singular values can be computed with O(m2) operations. This
transformation proceeds in three steps:

1. We compute orthogonal matrices Q and W such that QTΣW is upper
bidiagonal and QTx = ±‖x‖2 · e1 using, for example, [37, Algorithm 3.4].
In turn, the matrix

D1 := QT (Σ− xyT)W (20)

is bidiagonal with an additional nonzero first row; see the first plot in
Figure 5 for an illustration.

15

2. By a bulge chasing algorithm, we transformD1 to an upper banded matrix
D2 with two superdiagonals using O(m2) Givens rotations. We refrain
from giving a detailed description of the algorithm and refer to Figure 5
for an illustration.

3. The banded matrix D2 is reduced to a bidiagonal matrix D3 using the
LAPACK [1] routine dgbbrd.

The overall procedure described above can be implemended by means of O(m2)
Givens rotations, each of which is applied to a small matrix of size independent
of m,n. Hence, it has complexity O(m2).

Figure 5: Illustration of bulge chasing algorithm to transform a bidiagonal ma-
trix with an additional nonzero first row to an upper banded matrix. In each
plot, except for the first and last ones, a Givens rotation is applied to a pair of
row or columns to zero out the entry denoted by ⊗.

×××××××××××××××××××××

××××××××××××××××××××

⊗ ××××××××××××××××××××
×
⊗

×××××××××××××××××××
×

⊗ ×××××××××××××××××××
××⊗

××××××××××××××××××
××

⊗ ××××××××××××××××××
××

×
⊗

××××××××××××××××××
××

× ⊗

××××××××××××××××××
××

×

⊗

×××××××××××××××××
××

×

⊗

×××××××××××××××××
××

××⊗

×××××××××××××××××
××

×× ⊗

×××××××××××××××××
××

××

⊗

××××××××××××××××
××

××
⊗ ××××××××××××××××

××
××

×
⊗

××××××××××××××××
××

××
× ⊗

××××××××××××××××
××

××
×

⊗

××××××××××××××××
××

××
×

⊗

××××××××××××××××
××

××
×

⊗

××××××××××××××××
××

××
×

Algorithm 3 summarizes our newly proposed method for cross approxima-
tion. The SVD needed at the beginning of each outer loop is of complexity
O(m2n) and each of the mn inner loops costs O(m2) operation; the total com-
plexity of Algorithm 3 is therefore O(km3n).

Theorem 5. For a matrix A of rank at least k, Algorithm 3 returns index sets
I and J such that (15) is satisfied.

16

Algorithm 3 Derandomized cross approximation

Input: A ∈ R
m×n with m ≤ n, integer k ≤ m

Output: Index sets I, J of cardinality k defining the cross approximation (12)
1: Initialize I ← ∅, J ← ∅, and B ← A
2: for t = 1, . . . , k do

3: [U,Σ, V] = thin SVD of B
4: minRatio = +∞
5: for i = 1, . . . , m do

6: for j = 1, . . . , n do

7: x← ΣV (j, :)T , y ← 1
B(i,j)

ΣU(i, :)T

8: Compute matrix D1 defined in (20) using [37, Algorithm 3.4]
9: Transform D1 into upper banded form D2 using bulge chasing algorithm

10: Transform D2 into bidiagonal matrix D3 using LAPACK’s dgbbrd
11: Compute singular values σ1, . . . , σm of D3

12: Apply Summation Algorithm [29, Algorithm 1] to obtain cm−k+t−1(CijC
T
ij)

and cm−k+t(CijC
T
ij) from eigenvalues σ2

1 , . . . , σ
2
m

13: Set r =
cm−k+t−1(CijC

T
ij)

cm−k+t(CijC
T
ij

)

14: if r < minRatio then it ← i, jt ← j, minRatio = r end if

15: end for

16: end for

17: I ← I ∪ {it}, J ← J ∪ {jt}

18: B ← B − B(:,jt)·B(it,:)
B(it,jt)

19: end for

Proof. Let B{X,Y } = A − A(:, Y)A(X,Y)−1A(X, :). For t = 1, . . . , k we have
that

E

[

‖B{X,Y }‖2F
∣

∣

X1=i1,...,Xt−1=it−1

Y1=j1,...,Yt−1=jt−1

]

=
∑

i,j

E

[

‖B{X,Y }‖2F
∣

∣

X1=i1,...,Xt−1=it−1,Xt=i

Y1=j1,...,Yt−1=jt−1,Yt=j

]

P

(

Xt = i, Yt = jt
∣

∣

X1=i1,...,Xt−1=it−1

Y1=j1,...,Yt−1=jt−1

)

.

Therefore, as (14) holds, the choice (17) inductively ensures that

E
[

‖B{X,Y }‖2F
∣

∣
X1=i1,...,Xt=it
Y1=j1,...,Yt=jt

]

≤ E

[

‖B{X,Y }‖2F
∣

∣

X1=i1,...,Xt−1=it−1

Y1=j1,...,Yt−1=jt−1

]

≤ (k + 1)2(σ2
k+1 + . . .+ σ2

m).

Therefore, the index sets I and J computed by Algorithm 3 satisfy the bound (15).

In analogy to the discussion in Section 2.4, let us emphasize that it is not
necessary to select the pair (it, jt) that minimizes the ratio r. Any pair (i, j)
for which the inequality

(k − t+ 1)2
cm−k+t−1(CijC

T
ij)

cm−k+t(CijCT
ij)
≤ (k + 1)2(σk+1(A)

2 + . . .+ σm(A)2) (21)

holds will lead to index sets I and J such that (15) is satisfied. Inspired by
adaptive cross approximation with full pivoting [4], we traverse the entries of
B from the largest to the smallest (in magnitude) and stop the search once we
have found an index pair (it, jt) satisfying (21).

17

3.2.3 Numerical experiments

We have implemented both variants of Algorithm 3, without and with early
stopping, in Matlab. Again, the two inner loops have been implemented in a
C++ function that is called via a MEX interface. The computational envi-
ronment is the one described in Section 2.5 but the test matrices are smaller
because Algorithm 3 without early stopping is significantly slower. We choose
A1 to be 100 × 100, A2 to be 50 × 100, and the matrix A3 ∈ R

50×100 is given

by A3(i, j) =
(

(

i
100

)10
+
(

j
100

)10
)1/10

.

The left plots of Figures 6, 7, 8 display the approximation error ‖A − A(:
, J)A(I, J)−1A(I, :)‖F for the index sets returned by both variants of Algo-
rithm 3. It can be seen that the approximation errors often stay close to the

best rank-k approximation error
√

σ2
k+1 + . . .+ σ2

m and do not exceed the upper

bound (15), modulo roundoff error. However, for larger values of k, Algorithm 3
without early stopping appears to encounter stability issues; the approximation
error is distorted well above the level of roundoff error. This appears to be due
to the fact that A(I, J) becomes almost singular. For instance, Algorithm 3
without early stopping applied to A2 with k = 48 yields a matrix A(I, J) with
condition number ≈ 1.3 · 1018. The variant with early stopping appears to lead
to lower condition numbers and does not exhibit numerical instability for the
matrices considered. The right plots of the figures display the ratios between
the execution time of Algorithm 3 without and with early stopping, as well as
the total number of index pairs that needed to be tested in Algorithm 3 with
early stopping. It can be observed that early stopping dramatically accelerates
the computation and is thus the preferred variant.

0 5 10 15 20 25 30

k

10 -15

10 -10

10 -5

10 0

lo
g

of
 a

pp
ro

x.
 e

rr
or

Matrix approximation error

Algorithm 3
Alg 3, early stop
upper bound
best rank-k approx. error

0 5 10 15 20 25 30
k

800

1000

1200

1400

1600

Speed-up by stopping early

ratio time(Alg. 3)/time(Alg. 3, early stop)

0 5 10 15 20 25 30
k

0

10

20

30
Number of considered indices

Figure 6: Results for matrix A1

We also consider the n× n matrix A = LDLT , where

L =















1
−c 1
−c −c 1
...

...
. . .

−c −c −c · · · 1















, D =















1
s2

s4

. . .

s2(n−1)















with s = sin(θ), c = cos(θ) for some 0 < θ < π. This is known to be a challenging
example for greedy cross approximation [24]: When k = n − 1 the greedy

18

0 10 20 30 40 50

k

10 -3

10 -2

10 -1

10 0

10 1
lo

g
of

 a
pp

ro
x.

 e
rr

or
Matrix approximation error

Algorithm 3
Alg 3, early stop
upper bound
best rank-k approx. error

0 10 20 30 40 50
k

100

200

300

400

500
Speed-up by stopping early

ratio time(Alg. 3)/time(Alg. 3, early stop)

0 10 20 30 40 50
k

0

20

40

60
Number of considered indices

Figure 7: Results for matrix A2

0 10 20 30 40 50

k

10 -15

10 -10

10 -5

10 0

10 5

lo
g

of
 a

pp
ro

x.
 e

rr
or

Matrix approximation error

Algorithm 3
Alg 3, early stop
upper bound
best rank-k approx. error

0 10 20 30 40 50
k

0

200

400

600
Speed-up by stopping early

ratio time(Alg. 3)/time(Alg. 3, early stop)

0 10 20 30 40 50
k

0

2000

4000

6000
Number of considered indices

Figure 8: Results for matrix A3

algorithm selects the leading k × k submatrix and returns an approximation
error that is exponentially larger than the best approximation error. In contrast,
Algorithm 3, with and without early stopping, makes the correct choice by
selecting the last n− 1 rows and columns. For instance, for n = 6 and θ = 0.1,
we obtain the error

‖A−A(:, 2 : 6)A(2 : 6, 2 : 6)−1A(2 : 6, :)‖F ≈ 3.9 · 10−13 < 1.8 · 10−12 ≈
√
6σn.

Selecting the first 5 rows and columns results in an error of 9.8 · 10−11.
Finally, we would like to point out an interesting observation concerning

the preservation of structure. In joint work with Massei [12], we have shown
that for a symmetric positive definite matrix A there is always a symmetric
choice of indices, J = I, leading to a symmetric cross approximation such that
the favorable error bound of Goreinov and Tyrtyshnikov [21] is attained. For
cross approximation in the Frobenius norm, the situation appears to be more
complicated; it is generally not true that a symmetric choice of indices achieves
the error bound (15) even when A is symmetric positive definite. For instance,
for n = 3 and k = 1 consider

A =





1.87 −1.82 −2.11
−1.82 1.87 2.11
−2.11 2.11 2.54



 .

19

The best symmetric choice is I = J = {3} but this leads to an error ≈ 0.1911 >
2
√

σ2
2 + σ2

3 ≈ 0.1821.

4 Tensor approximation

As shown, e.g., in [16, 22, 30], column subset selection can be used to approxi-
mate tensors as well. In the following, we demonstrate the use of the algorithm
from Section 2 for to obtain approximations of low multilinear rank constructed
from the fibers of a third-order tensor A ∈ R

n1×n2×n3 .
First, we briefly recall some basic definitions for tensors and refer to [27]

for more details. Generalizing the notion of rows and columns of a matrix,
the vectors obtained from A by fixing all indices but the µth one are called
µ-mode fibers. The matrix A(µ) ∈ R

nµ×(n1n2n3)/nµ containing all µ-mode fibers
as columns is called the µ-mode matricization of A. The µ-mode product of a
matrix B ∈ R

m×nµ with A is denoted by B ×µA and it is the tensor such that
its µ-mode matricization is given by B · A(µ). We use the Frobenius norm of a
tensor defined by

‖A‖2F :=

n1
∑

i1=1

n2
∑

i2=1

n3
∑

i3=1

A(i1, i2, i3)2

and recall that ‖A‖F = ‖A(µ)‖F for µ = 1, 2, 3. The tuple (k1, k2, k3) defined
by kµ = rank(A(µ)) is called the multilinear rank of A and we can decompose
A as

A = B1 ×1 B2 ×2 B3 ×3 C,
for coefficient matrices Bµ ∈ R

nµ×kµ for µ = 1, 2, 3 and a so called core tensor
C ∈ R

k1×k2×k3 . This so called Tucker decomposition is particularly beneficial
when the multilinear rank is much smaller than the size of a tensor.

Algorithm 4 produces an approximate Tucker decomposition for a given ten-
sor such each coefficient matrix Bµ is composed of µ-mode fibers. The following
result shows that the obtained approximation error remains close to the best
approximation error.

Algorithm 4 Approximation of tensors by column selection

Input: Tensor A ∈ R
n1×n2×n3 , integers k1, k2, k3

Output: Approximate Tucker decomposition of multilinear rank (k1, k2, k3) in terms
of coefficient matrices B1, B2, B3 and core tensor C

1: for µ = 1, 2, 3 do

2: Compute Bµ = A(µ)(:, Sµ) by applying Algorithm 1 to select kµ columns from
A(µ)

3: end for

4: Compute C = B+
1 ×1 B

+
2 ×2 B

+
3 ×3 A

Corollary 6. Consider A ∈ R
n1×n2×n3 and integers k1, k2, k3 such that 1 ≤

kµ ≤ nµ for µ = 1, 2, 3. Then the output of Algorithm 4 satisfies

‖A−B1 ×1 B2 ×2 B3 ×3 C‖F ≤
√

k1 + k2 + k3 + 3 · ‖A − Abest‖F ,

where Abest is the best Tucker approximation of A of multilinear rank at most
(k1, k2, k3).

20

Proof. The proof is similar to existing proofs on the quasi-optimality of the
Higher-Order SVD [13] and related results in [16, 22, 30].

Using (1) and setting πµ = BµB
+
µ , the result of Algorithm 1 applied to A(µ)

satisfies

‖A(µ) − πµ(A
(µ))‖2F ≤ (kµ + 1)

(

σkµ+1(A
(µ))2 + · · ·+ σnµ

(A(µ))2
)

≤ (kµ + 1)‖A(µ) −A
(µ)
best‖2F = (kµ + 1)‖A−Abest‖2F ,

where the second inequality follows from the fact that A
(µ)
best, the µ-mode matri-

cization ofAbest, has rank at most kµ. Using the orthogonality of the projections
πµ, we obtain

‖A−B1 ×B2 ×B3 × C‖2F = ‖A − π1 × π2 × π3 ×A‖2F
= ‖A− π1 ×A‖2F + ‖π1 × (A− π2 ×A)‖2F + ‖π1 × π2 × (A− π3 ×A)‖2F

≤
3

∑

µ=1

‖A− πµ ×A‖2F =

3
∑

µ=1

‖A(µ) − πµ(A
(µ))‖2F ≤

3
∑

µ=1

(kµ + 1)‖A−Abest‖2F

= (k1 + k2 + k3 + 3)‖A−Abest‖2F ,

where the second equality follows from [35, Theorem 5.1].

Remark 7. Algorithm 4 easily generalizes to tensors of arbitrary order. Given
a tensor A ∈ R

n1×...×nd and integers k1, . . . , kd, this generalization constructs
subsets of fibers B1, . . . , Bd and a core tensor C such that

‖A −B1 ×1 . . .×d−1 Bd ×d C‖F ≤
√

k1 + . . .+ kd + d · ‖A − Abest‖F .

4.1 Numerical experiments

We have implemented Algorithm 4 in Matlab and tested it on two 50× 50× 50

tensors, given byA1(i, j, h) =
1

i+j+h−1 andA2(i, j, h) =
(

i10 + j10 + h10
)1/10

/50.
We choose k1 = k2 = k3 = k and report in Figure 9 the obtained approximation
errors ‖Ai − B1 × B2 × B3 × C‖F for different values of k, where B1, B2, B3,
C are returned by Algorithm 4, with and without early stopping in the column
selection part. We compare with the quantity

(

3
∑

µ=1

σkµ+1(A
(µ))2 + · · ·+ σnµ

(A(µ))2
)1/2

,

which provides a (tight) upper bound on the best approximation error. It can be
seen that the errors obtained from Algorithm 4 remain close to this quasi-best
approximation error.

5 Conclusions

In this work, we have proposed several improvements to the column selection
algorithm by Deshpande and Rademacher [14]. The numerical experiments indi-
cate that updating singular values (instead of characteristic polynomials) leads
to numerical robustness, in the sense that the approximation error obtained in

21

0 5 10 15 20

k

10 -15

10 -10

10 -5

10 0
lo

g
of

 a
pp

ro
x.

 e
rr

or

Algorithm 1
Alg.1, early stop
quasi-best approx. error

0 10 20 30 40 50

k

10 -15

10 -10

10 -5

10 0

10 5

lo
g

of
 a

pp
ro

x.
 e

rr
or

Algorithm 1
Alg.1, early stop
quasi-best approx. error

Figure 9: Results for tensors A1 (left) and A2 (right).

finite precision arithmetic is not affected unduly by roundoff error. We have also
developed an extension of [14] to produce cross approximations of matrices and,
to the best of our knowledge, this extension constitutes the first deterministic
polynomial time algorithm that yields a cross approximation with a guaranteed
polynomial error bound. We have introduced a mechanism for stopping early
the search for indices in column subset selection or cross approximation. Al-
though relatively simple, this mechanism tremendously reduces the execution
time for all examples tested.

A number of issues remain for future study, such as the numerical stability
analysis of our algorithms. In particular, it would be desirable to study the
numerical robustness of the cross approximation returned by Algorithm 3 with
early stopping. Also, by combining early stopping with a more aggressive reuse
of the SVD might lead to further complexity reduction, but a rigorous complex-
ity analysis would require deeper understanding of early stopping, well beyond
the limited scope of Lemma 1. Finally, we would like to stress that the algo-
rithms presented in this work are intented for small to medium sized matrices
and tensors. For large-scale data, the algorithms presented in this paper need to
be combined with other, possibly heuristic dimensionality reduction techniques.

Acknowledgements. The authors thank Sergey Dolgov for helpful discus-
sions on topics related to the work presented in this paper.

References

[1] E. Anderson, Z. Bai, C. H. Bischof, S. Blackford, J. W. Demmel, J. J.
Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. C. Sorensen. LAPACK Users’ Guide. SIAM, Philadelphia, PA, third
edition, 1999.

[2] J. L. Aurentz, T. Mach, L. Robol, R. Vandebril, and D. S. Watkins. Core-
chasing algorithms for the eigenvalue problem, volume 13 of Fundamentals
of Algorithms. SIAM, Philadelphia, PA, 2018.

[3] M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera. An ‘empirical
interpolation’ method: application to efficient reduced-basis discretization

22

of partial differential equations. C. R. Math. Acad. Sci. Paris, 339(9):667–
672, 2004.

[4] M. Bebendorf. Approximation of boundary element matrices. Numer.
Math., 86(4):565–589, 2000.

[5] D. S. Bernstein. Matrix Mathematics. Princeton University Press, Prince-
ton, NJ, second edition, 2009.

[6] C. Boutsidis, M. W. Mahoney, and P. Drineas. An improved approximation
algorithm for the column subset selection problem. In Proceedings of the
Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
968–977. SIAM, Philadelphia, PA, 2009.

[7] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic complexity
theory, volume 315 of Grundlehren der Mathematischen Wissenschaften.
Springer-Verlag, Berlin, 1997.

[8] A. Çivril and M. Magdon-Ismail. On selecting a maximum volume sub-
matrix of a matrix and related problems. Theoret. Comput. Sci., 410(47-
49):4801–4811, 2009.

[9] T. F. Chan. Rank revealing QR factorizations. Linear Algebra Appl.,
88/89:67–82, 1987.

[10] S. Chandrasekaran and I. C. F. Ipsen. On rank-revealing factorisations.
SIAM J. Matrix Anal. Appl., 15(2):592–622, 1994.

[11] S. Chaturantabut and D. C. Sorensen. Nonlinear model reduction via
discrete empirical interpolation. SIAM J. Sci. Comput., 32(5):2737–2764,
2010.

[12] A. Cortinovis, D. Kressner, and S. Massei. On maximum volume subma-
trices and cross approximation for symmetric semidefinite and diagonally
dominant matrices. arXiv preprint arXiv:1902.02283, 2019.

[13] L. De Lathauwer, B. De Moor, and J. Vandewalle. A multilinear singular
value decomposition. SIAM J. Matrix Anal. Appl., 21(4):1253–1278, 2000.

[14] A. Deshpande and L. Rademacher. Efficient volume sampling for
row/column subset selection. In 2010 IEEE 51st Annual Symposium
on Foundations of Computer Science—FOCS 2010, pages 329–338. IEEE
Computer Soc., Los Alamitos, CA, 2010.

[15] A. Deshpande, L. Rademacher, S. Vempala, and G. Wang. Matrix approx-
imation and projective clustering via volume sampling. Theory Comput.,
2:225–247, 2006.

[16] P. Drineas and M. W. Mahoney. A randomized algorithm for a tensor-based
generalization of the singular value decomposition. Linear Algebra Appl.,
420(2-3):553–571, 2007.

[17] P. Drineas, M. W. Mahoney, and S. Muthukrishnan. Relative-error CUR
matrix decompositions. SIAM J. Matrix Anal. Appl., 30(2):844–881, 2008.

23

[18] Z. Drmač and S. Gugercin. A new selection operator for the discrete empir-
ical interpolation method—improved a priori error bound and extensions.
SIAM J. Sci. Comput., 38(2):A631–A648, 2016.

[19] A. Frieze, R. Kannan, and S. Vempala. Fast Monte-Carlo algorithms for
finding low-rank approximations. J. ACM, 51(6):1025–1041, 2004.

[20] G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins
Studies in the Mathematical Sciences. Johns Hopkins University Press, Bal-
timore, MD, fourth edition, 2013.

[21] S. A. Goreinov and E. E. Tyrtyshnikov. The maximal-volume concept in
approximation by low-rank matrices. In Structured matrices in mathemat-
ics, computer science, and engineering, I (Boulder, CO, 1999), volume 280
of Contemp. Math., pages 47–51. Amer. Math. Soc., Providence, RI, 2001.

[22] S. A. Gorĕınov. Cross approximation of a multi-index array. Dokl. Akad.
Nauk, 420(4):439–441, 2008.

[23] M. Gu and S. C. Eisenstat. Efficient algorithms for computing a strong
rank-revealing QR factorization. SIAM J. Sci. Comput., 17(4):848–869,
1996.

[24] H. Harbrecht, M. Peters, and R. Schneider. On the low-rank approximation
by the pivoted Cholesky decomposition. Appl. Numer. Math., 62(4):428–
440, 2012.

[25] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University
Press, Cambridge, second edition, 2013.

[26] O. Knill. Cauchy-Binet for pseudo-determinants. Linear Algebra Appl.,
459:522–547, 2014.

[27] T. G. Kolda and B. W. Bader. Tensor decompositions and applications.
SIAM Rev., 51(3):455–500, 2009.

[28] R. Rehman and I. C. Ipsen. La budde’s method for computing characteristic
polynomials. arXiv preprint arXiv:1104.3769, 2011.

[29] R. Rehman and I. C. F. Ipsen. Computing characteristic polynomials from
eigenvalues. SIAM J. Matrix Anal. Appl., 32(1):90–114, 2011.

[30] A. K. Saibaba. HOID: higher order interpolatory decomposition for tensors
based on Tucker representation. SIAM J. Matrix Anal. Appl., 37(3):1223–
1249, 2016.

[31] D. C. Sorensen and M. Embree. A DEIM induced CUR factorization. SIAM
J. Sci. Comput., 38(3):A1454–A1482, 2016.

[32] D. C. Sorensen and M. Embree. A DEIM induced CUR factorization. SIAM
J. Sci. Comput., 38(3):A1454–A1482, 2016.

[33] G. W. Stewart. Four algorithms for the efficient computation of truncated
pivoted QR approximations to a sparse matrix. Numer. Math., 83(2):313–
323, 1999.

24

[34] A. Townsend and L. N. Trefethen. An extension of Chebfun to two dimen-
sions. SIAM J. Sci. Comput., 35(6):C495–C518, 2013.

[35] N. Vannieuwenhoven, R. Vandebril, and K. Meerbergen. A new truncation
strategy for the higher-order singular value decomposition. SIAM J. Sci.
Comput., 34(2):A1027–A1052, 2012.

[36] D. P. Woodruff. Sketching as a tool for numerical linear algebra. Found.
Trends Theor. Comput. Sci., 10(1-2):iv+157, 2014.

[37] P. A.-C. Yoon. Modifying two-sided orthogonal decompositions: Algorithms,
implementation, and applications. ProQuest LLC, Ann Arbor, MI, 1996.
Thesis (Ph.D.)–The Pennsylvania State University.

[38] N. L. Zamarashkin and A. I. Osinsky. On the existence of a nearly optimal
skeleton approximation of a matrix in the Frobenius norm. In Doklady
Mathematics, volume 97, pages 164–166. Springer, 2018.

25

	1 Introduction
	2 Column subset selection
	2.1 Algorithm by Deshpande and Rademacher
	2.2 Computation of characteristic polynomial coefficients
	2.3 Overall algorithm
	2.4 Early stopping of column search
	2.5 Numerical experiments

	3 Matrix approximation
	3.1 CUR approximation induced by column subset selection
	3.1.1 Numerical experiments

	3.2 Cross approximation
	3.2.1 Conditional expectations
	3.2.2 Derandomized cross approximation algorithm
	3.2.3 Numerical experiments

	4 Tensor approximation
	4.1 Numerical experiments

	5 Conclusions

