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Abstract
A method for the surface reconstruction of 3D tubular branched

structures characterized by low informative point clouds (i.e., 2.5D) is
proposed here. These specific clouds can arise when using photogram-
metry techniques on complex subjects in challenging scanning environ-
ments (e.g., underwater gorgonian coral at mesophotic depths). The
core idea behind the proposed Sphere Skeleton Approach (SSA) is to
approximate the assumed tubular shapes via merged spheres having
variable radii and centered in the points of the medial skeleton. To
assess the generality and robustness of the proposed SSA, additional
experiments have been conducted on 2.5D point clouds that were syn-
thetically generated from 3D model benchmarks. Hausdorff distance
between the target and the reconstructed 3D models have been used to
quantitatively compare the SSA performances as opposed to a classical
meshing algorithm. Early results highlight the capability to outper-
form existing approaches in reconstructing objects from 2.5D clouds.

1 Introduction

Significant developments in Computer-Aided Design (CAD) have been reached
and three-dimensional (3D) digitization of physical objects has now been
used proficiently on a wide array of fields [3]. In particular, applying 3D
digitization methods to marine sessile organisms, such as corals in deep-reef
environments, is an additional challenge that continually refines computa-
tional proficiency and helps us to understand growth patterns and responses
to hydrodynamic forces. The motivation of this study is to present a solu-
tion to a problem that arose during the 3D reconstruction of a Indo-Pacific
gorgonian coral, Annella Gray, 1858 (Cnidaria: Octorallia) (Fig.1).
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Figure 1: Three figures of the Annella coral. 60 meters depth, outer reef slope
of Palikir Pass Marine Reserve, Pohnpei [12], Federated States of Micronesia.

Due to the fragility of the corals and underwater environment, an in-
situ contact-less approach was used (i.e., Structure-from-Motion (SfM) pho-
togrammetry). After processing the 22 close-range underwater images of the
Annella (Fig.1) into Agisoft Metashape Professional Edition, Version 1.5.
[1], a 2.5D dense cloud was extracted (Fig.2, left).

Figure 2: Isometric view of the Annella 2.5D point cloud with 389,777 points
(left) and unsatisfactory Metashape mesh reconstruction (right).

Specifically, a 2.5D point cloud can be defined as a cloud that belongs
to an embedded surface in R3 whose atlas is composed of a single chart or
patch. In other words, a 2.5D cloud Y can be obtained from a 2D cloud set
that we denote by X ∈ R2, through a bijective function f : X → Y .

Despite its flexibility, when discriminative point features are insufficient,
SfM photogrammetry produces more challenging points clouds (e.g., 2.5D)
to manage during the reconstruction process compared to more accurate
approaches (e.g., Laser Imaging Detection and Ranging (LiDAR) [3]). In the
tubular 3D branched Annella coral case, for example, the 2.5D cloud could
be a consequence of numerous unfavourable features of the subject (e.g.,
thinness, front-back symmetry and self-replication) as well as the challenging
deep underwater conditions.

Unfortunately, only a shortage of methods capable of reconstructing 2.5D
point clouds were available when searching the literature or using commercial
software. As shown in Fig.2 (right), the 2.5D point cloud is a source of serious
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issues in the final step of the Metashape workflow (i.e., mesh generation). At
a glance this causes huge distortion in the final model since the 3D volumetric
tubular structure of the branches is completely missing.

The idea behind our contribution is to fill this gap by retrieving two basic
topological types of information of the subject stored in the 2.5D point cloud
(i.e., radii and skeleton) to reconstruct the tubular 3D shape.

2 Skeleton-based reconstruction techniques

The method in this study is largely based on the results and ideas of skeleton-
based approaches [3]. Among a broad spectrum of techniques we propose to
use the “L-1 Medial Skeleton” algorithm [7], stressing its capacity to deal with
complex point clouds (e.g., 2.5D). As demonstrated by [11] a tree structure
reconstruction from an incomplete point cloud has been successfully achieved
using the “L-1 Medial Skeleton”. Contrary to [11], we do not use an iterative
optimization process to repair the regions of missing data. Instead, our
proposed SSA approximates the cylindrical shapes by using techniques that
address industrial pipe meshing problems [8] and using adapted heuristic
with particular relevance to the radii of the branches.

The idea of computing a skeleton and using it for reconstruction is also
correlated to a remarkable work on wire object modeling [9]. In this work
the reconstruction of the complex point cloud of tubular objects was pro-
vided. However, no variable radius was accounted for and, therefore, is not
applicable for our aim.

Additional methodologies for tubular subjects reconstruction have been
developed using skeleton-based reconstruction methods but none seems to
approach 2.5D clouds.

3 Proposed SSA method

3.1 Environment and Equipment

Data was collected from the outer reef slope of Palikir Pass Marine Reserve,
Pohnpei, Federated States of Micronesia (659030:000 N, 15808013:100 E; Per-
mit No.: MPA-0017). Underwater imagery of the gorgonian coral Annella
(Fig.1) was conducted at 60 meters depth using mixed gas closed circuit re-
breather diving technology (Divesoft Liberty CCR), with a Sony RX100MkV
camera, INON UWL-H100 28M67 Type 2 wet lens, Nauticam NARX100V
waterproof housing, and Sola light configuration. All field data were collected
under the auspices of the British Sub-Aqua Club (BSAC; technical branch).
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3.2 Skeleton points extraction from 2.5D cloud

As previously highlighted, after processing the underwater imagery of the
Annella (Fig.1) into Metashape [1], a 2.5D dense cloud was extracted (Fig.2,
left). From hereon, P = point-set ∈ Annella 2.5D point cloud will refer to
the specific 2.5D point cloud from Fig.2 (left). The main steps of the adopted
“L-1 Medial Skeleton” algorithm are as follows: (i) random selection of sam-
ple points from P; (ii) iterative projection onto a skeletal point cloud with
a gradually increasing neighborhood size; (iii) down-sampling, smoothing,
and re-centering, in order to obtain the final central axis point cloud S =
point-set ∈ Annella 2.5D point cloud skeleton. Fig.3 graphically shows the
skeleton point cloud extraction process.

Figure 3: A close up view of the point cloud S extraction by the algorithm
presented in [7]. The panels show three consecutive steps from left to right:
the initial condition, after ten iterations, and after ten more iterations.

3.3 Sphere construction

Algorithm 1 approximates the assumed tubular shape by the use of an heuris-
tic that merges spheres whose radii are automatically detected for each point
that belongs to S using P as a reference.

Algorithm 1 SSA pseudo-code

1: Extract the point cloud skeleton S from P
2: Define r0, k and inc%
3: for each pointj(xj, yj, zj)∈ S do
4: Calculate the point density function
5: Evaluate the rules
6: Save the rj

7: Remove r-vector outliers
8: for each pointj(xj, yj, zj)∈ S do
9: Mesh the sphere j with rj

10: Merge all the spheres and post process
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Explanation of line 1 - 6 (Algorithm 1): After S has been extracted
(Section 3.2), define three parameters: (i) r0= initial radius of the sphere;
(ii) k= number of iterations for the sphere radius increment; (iii) inc%=
percentage increment at each iteration. All the above parameters can be de-
fined by a heuristic approach (e.g., visual tests on S and P). At the following
step choose r = r0 and let qj ∈ S. We construct the set: Nqj(r) = {qi ∈
P ; ∥qi − qj∥22 ≤ r2}. We introduce nqj = #Nqj(r) the cardinal of set Nqj(r)
and we define (1) as the PointDensity function for the skeleton point qj. The
process is iterative with k and r = r0(1 + inc%)

k.

fj(r) =
nqj(r)

r2
. (1)

The idea behind the PointDensity function is to allow for automatic de-
tection using its qualitative behavior as the radius r varies. Under the as-
sumption of sufficient and uniformly distributed data, a change in qualitative
behavior can, for instance, signal that r might overcome the local size of the
branch and the iteration process needs to be stopped.

In order to detect those changes, once (1) is calculated for each iteration
step k, the local maxima are identified and labeled (Fig.4, left). After that,
a set of experimental rules have been developed as follows: (i) if no local
maximum, then rj = rmax; (ii) if there is exactly one local maximum, then
rj is the radius corresponding to that local maximum; (iii) if the absolute
maximum is attained at the lowest radius from the set of local maxima, then
rj is set as the radius of the second highest local maximum; (iv) else, rj is
set as the radius for which the PointDensity attains its absolute maximum.

Figure 4: Local maxima sorted from the largest (i.e., 1st) to the smallest
(i.e., 6th) and related close-up views of the sphere growth till the final rj
selection (i.e., dotted line and green window) for a random point qj (left).
Isometric view of the Annella SSA reconstruction(right).
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Explanation of line 7 - 10 (Algorithm 1): For each point qj ∈ S, select
all the points in S that are inside the sphere with the radius rj calculated
from the previous rules. We call the set formed by those points Sqj and
we denote by nj its cardinality. We then define the sum of all those radii
R̄(qj) =

∑
q∈Sqj ,rq<0.5rj

rq and we denote by pj the cardinality of R̄(qj) ⊆ Sqj .

If the ratio between mj = nj − pj and nj is greater than a prescribed thresh-
old (e.g., good experimental results suggested 10%), no changes need to be

applied to rj. Otherwise, we downsized the sphere by applying rj =
R̄(qj)

pj
.

The final 3D model was converted to a mesh, and post-processing opera-
tions were applied to address the intersections of the spheres (e.g., Boolean
union) [6]. Fig.4 (right) shows the final reconstruction for the Annella.

4 Experimental benchmarking results

Due to the lack of a given 3D model and the incompleteness as well as
distortion of the cloud data for the Annella case, a comparative analysis
with respect to a reference was missing. To address this issue, the quality
of SSA was measured on experimental examples where the given 3D models
were known beforehand (Fig.5).

Figure 5: From left to right: given 3D mesh [14, 13]; synthetic 3D point cloud
extracted from the envelop of the 3D structure; synthetic 2.5D point cloud
(red) as a union of 2.5D clouds to retain the presence of the appendages of
the 3D subjects and skeleton point cloud (black); SSA output using 2.5D
point cloud as input; BPA output using 2.5D point cloud as input.



5 Discussion and future developments 7

In particular, and motivated by the idea of synthetic scanning [2], we
first simulated the 2.5D point clouds by extracting it from the ground-truth
models, on which we then apply SSA for the 3D reconstruction. For the
experiments we considered objects having structures quite close to the An-
nella (i.e., leaf and cactus Fig.5, 1st and 2nd row) and deliberately unrelated
highly variable circular cross sections (i.e., dino Fig.5, 3rd row).

We then compared the outputs against the target meshes computing the
Hausdorff distance utilizing the algorithm implemented in [6]. This metric
is calculated by sampling a collection of points over the surface of one of the
two meshes (i.e., sampled), and finding for each sample the closest point over
the other mesh (i.e., reference).

For a better assessment of our methodology, a classical interpolation tech-
nique (i.e., the Ball Pivoting Algorithm (BPA) [4]) implemented in Meshlab
[6], was tested as well. We selected this algorithm as an arbitrary represen-
tative example among uncountable, less or more recent or advanced mesh-
ing algorithms, which are intrinsically unable to catch the 3D nature of the
models from a 2.5D point cloud. Parameters adopted for SSA are shown in
Table 1 (SSA parameters), while BPA adopted the default ones [6]. Aggre-
gate statistics normalized with respect to the Bounding Box Diagonal (BBD)
both for SSA and BPA are shown in Table 1 (Hausdorff distance).

Table 1: Adopted SSA parameters and normalized Hausdorff distance for
SSA and BPA. Note that RMS stands for Root Mean Square.

SSA parameters Hausdorff distance
Object r0 k inc% Mean%

SSA-BPA

Max%

SSA-BPA

RMS%

SSA-BPA

Leaf 0.5 35 15 0.2 - 0.1 1.2 - 1.4 0.2 - 0.2
Cactus 0.003 20 14 0.7 - 2 3 - 4 0.8 - 2
Dino 0.01 30 15 0.3 - 3 6 - 9 0.6 - 4

5 Discussion and future developments

From Table 1 (Hausdorff distance) we deduced that our method approxi-
mates the target 3D models with a maximum error between the two meshes
of approximately 6% BBD. Nonetheless, on average, the two meshes are al-
most in the 0.006 range. Looking qualitatively at Fig.5, it is evident that
our method has outperformed classical methods for all of the experimental
examples. The leaf model stands out due to having better results from the
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classical methods for the given metrics but fails to reproduce the tubular 3D
structure and, therefore, is not satisfactory.

Among the major limitations of the proposed SSA is the need of a tubular
subject having 2.5D point cloud. Moreover, the outputs from SSA are not
perfectly accurate but do perform better than existing algorithms for this
type of challenging 2.5D raw point cloud.

As for future developments, automated skeleton curves extraction from
a 2.5D point cloud is still an open challenge in complex cases such as the
Annella coral, and alternative algorithms could be considered. Implicit mod-
eling (e.g., metaballs [5]) during the merging of spheres could reduce the
post-processing step and this aspect deserves attention as well. More math-
ematically robust and general techniques such as topological data analysis
is also ongoing [15]. The difficulty is that because of the irregular shape of
the holes in between the branches within the Annella colony, it is unlikely
that observing changes in homology would help determine the optimal ra-
dius. Nonetheless, implicit or prior knowledge related to self-repetitive fractal
structures may help [10].

6 Conclusion

A Sphere Skeleton Approach (SSA) for automated surface reconstruction of
2.5D point clouds has been proposed assuming a tubular shape of the sub-
ject and approximating the surface by primitive geometries (i.e., spheres)
centered in the skeleton points. A practical application to 2.5D biological
subject point cloud has been presented as one of the most challenging scan-
ning environments. An evaluation on a set of three synthetic 2.5D point
cloud generated from benchmarks have been conducted as well.

The proposed SSA overcomes the problems of reconstructing 3D fine
structures and captures the refined topology as closely as possible starting
from a low amount of information stored in the 2.5D point clouds. These
lessons will help drive research in surface reconstruction and development of
new software tools and algorithms for 2.5D point clouds.
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