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Abstract

Assessment of heartbeat dynamics provides a promising framework for non-invasive monitoring of
cardiovascular and autonomic states. Nevertheless, the non-specificity of such measurements among
clinical populations and healthy conditions associated with different autonomic states severely limits
their applicability and exploitation in naturalistic conditions. This limitation arises especially when
pathological or postural change-related sympathetic hyperactivity is compared to autonomic changes
across age and experimental conditions. In this frame, we investigate the intrinsic irregularity and
complexity of cardiac sympathetic and vagal activity series in different populations, which are
associated with different cardiac autonomic dynamics. Sample entropy, fuzzy entropy, and
distribution entropy are calculated on the recently proposed sympathetic and parasympathetic activity
indices (SAI and PAI) series, which are derived from publicly available heartbeat series of congestive
heart failure patients, elderly and young subjects watching a movie in the supine position, and healthy
subjects undergoing slow postural changes. Results show statistically significant differences between
pathological /old subjects and young subjects in the resting state and during slow tilt, with interesting
trends in SAI- and PAI-related entropy values. Moreover, while CHF patients and healthy subjects in
upright position show the higher cardiac sympathetic activity, elderly and young subjects in resting
state showed higher vagal activity. We conclude that quantification of intrinsic cardiac complexity
from sympathetic and vagal dynamics may provide new physiology insights and improve on the non-
specificity of heartbeat-derived biomarkers.

1. Introduction

Dysfunction in autonomic nervous system (ANS) dynamics is a major marker of cardiovascular risk, including
mortality. Congestive heart failure (CHF) and hypertension are characterized by sympathetic hyperactivity
(Lanfranchi ef al 1998). Any therapy that chronically stimulates sympathetic tone and/or decreases
parasympathetic activity can increase the risk of cardiac events, especially in patients with cardiovascular
diseases (Curtis and O’Keefe 2002). Therefore, in recent decades, the relationship between autonomic dynamics
and cardiovascular health has been deeply investigated, and clinicians have developed a strong awareness of the
importance of non-invasive monitoring of heart rate variability (HRV) as a crucial diagnostic and
prognostic tool.

There is alarge plethora of features that can be extracted from HRV time series, from standard statistical
metrics and frequency domain analysis, to the study of complex cardiovascular dynamics through
methodologies based on chaos theory (Acharya et al 2006, Shaffer and Ginsberg 2017, Castiglioni et al 2020). In
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particular, the latter has been considered a way to uncover the nonlinear dynamics derived from the interplay
between sympathetic and parasympathetic nervous systems, as well as between through interaction with central
nervous system, occurring at different temporal and spatial levels (Sunagawa et al 1998, Captur et al 2017,
Valenza et al 2018a, 2020).

Looking at the literature, changes in complexity of heartbeat dynamics in the phase space have been
hypothesized to be associated with aging and several cardiovascular dysfunctions (Goldberger et al 2002,
Marmarelis 2004), e.g. sudden cardiac death (Mikikallio et al 2001, Schulte-Frohlinde et al 2002, Glass 2009),
ventricular and atrial fibrillations (Mékikallio et al 1999, Corino et al 2006), congestive heart failure (Sassi et al
2009). However, despite the proven discriminative power of these techniques, their use in clinical settings is
hampered by the lack of precise physiological correlates and specificity issues. In fact, the relationship between
heartbeat metrics extracted through nonlinear analysis and the fluctuations in sympathetic and vagal tone
underlying these dynamics are still unknown. Previous studies have performed complexity analyses of
cardiovascular oscillations during a selective pharmacological blockade paradigm to understand whether
changes in the extracted metrics were sympathetic- or vagal-driven (Berntson et al 1994, Beckers et al 2006). A
major vagal involvement in regulating complex cardiovascular dynamics was hypothesized, given that a decrease
in the fractal properties of the heartbeat series was reported after atropine administration (Tulppo et al 2001,
Beckers et al 2006, Bolea et al 2014). Even if interesting, these findings can be misleading because a relevant
theoretical issue is based on selective blockade paradigms: the effects of phasic autonomic modulation on
heartbeat dynamics are considered additive. Features that can be extracted from HRYV series lack of specificity for
a particular physiological or pathological condition, leading to misinterpretation of the results for a particular
individual and consequent non applicability in actual clinical setting (Saul and Valenza 2021). To illustrate,
while a postural change in healthy humans leads to reproducible variations in the LF and HF powers, various
types of physical and mental stress and cardiac conditions such as CHF can reasonably lead to similar changes in
HRYV power (Saul and Valenza 2021).

To disentangle the unique contribution of each autonomic branch in heartbeat oscillations, we recently
proposed the sympathetic activity index (SAI) and the parasympathetic activity index (PAI) (Valenza et al
2018b). The calculation of these indices overcomes the limitations of standard spectral analysis of HRV based on
the study of two main frequency bands, i.e. the low-frequency band (LF, from 0.04 Hz to 0.15 Hz) and the high-
frequency band (HF, from 0.15 Hz to 0.4 Hz) (Malik 1996). In fact, if vagal activity strongly affects HF power,
there is no clear relationship between the spectral indices and the phasic autonomic modulation of heart rate.
Although sympathetic tasks often are associated with significant changes in LF power, it has been demonstrated
that both autonomic branches can influence the magnitude of the spectrum in this band (Goldstein et al 2011,
Billman 2013, Valenza et al 2018b). SAl and PAl rely on a proper weighted sum of primitives, defined from the
discrete-time orthonormal Laguerre bases spanning the frequency domain. After convolving the Laguerre bases
with the inter-beat (RR) interval series, an autoregressive model is identified without the need for a calibration
procedure at a single subject level.

Aiming to overcome non-specificity issues in heartbeat dynamics analysis among clinical and normal
populations, in this study we investigate changes in well-known entropy metrics extracted from time-varying
SATand PAl indices of healthy and pathological subjects referring to peculiar ANS conditions. We used three
entropy algorithms, namely, sample entropy (SampEn) (Richman et al 2000), fuzzy entropy (FuzzyEn) (Chen
etal2007), and distribution entropy (DistEn) (Li et al 2015) to investigate the irregularity and complexity of
cardiac sympathetic and vagal dynamics. To this end, we used three publicly available databases of
cardiovascular signals gathered from Physionet (Goldberger et al 2000): the congestive heart failure (CHF)
database (Baim et al 1986), the Fantasia dataset (Iyengar et al 1996), and the postural change dataset (Heldt et al
2003). Group-wise statistical differences were investigated in intrinsic sympathetic and vagal entropy values
among patients with CHF, elderly and young subjects in the resting state, and young subjects undergoing a head-
up tilt-table test.

2. Materials and methods

2.1. Experimental protocols
All three datasets used in this study were retrieved from the publicly-available Physionet repository (http://
www.physionet.org/) (Goldberger et al 2000). More details regarding each dataset are provided below.

2.1.1. Congestive heart failure (CHF) database

The first dataset used in this study includes ECG signals from the BIDMC Congestive Heart Failure Database
(Baim et al 1986). This database collects 15 long-term ECG recordings from 15 subjects (11 men, aged 22 to 71,
and 4 women, aged 54 to 63) with severe congestive heart failure (NYHA class 3—4). Patient monitoring was
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performed at Boston Beth Israel Hospital at a sampling rate of 250 Hz. After the first signal quality by visual
inspection, we used 1-hour ECG signals from 13 subjects for further evaluations.

2.1.2. Fantasia dataset

The second dataset used in this study is the Fantasia database, the details of which are reported in (Iyengar et al
1996). This database includes autonomic signals from 20 young healthy subjects (10 females, 21-34 years) and 20
healthy elderly subjects (10 females, 68-85 years), who were monitored for 120 minutes in the supine position
while watching the movie ‘Fantasia’ (Disney movie, 1940). The ECG signals were sampled at 250 Hz, the
heartbeats were annotated using an automated arrhythmia detection algorithm, and each beat annotation was
verified by visual inspection. For our analyses, we used 20 signals from 10 young and 10 elderly participants.

2.1.3. Physiological response to changes in posture dataset

The experimental protocol was based on sympathetic elicitation through a head-up tilt table test (Heldt et al
2003). Ten healthy volunteers (five males, aged 28.7+ 1.2) provided informed consent to participate in the
experiment. The study was carried out at the MIT General Clinical Research Center, and the experimental
protocol was approved by the Advisory Board of the MIT-MGH General Clinical Research Center and MIT’s
Committee on the Use of Humans as experimental subjects. None of the participants showed signs of
cardiovascular disease. The experimental protocol included six postural changes lasting three minutes: two
stand-ups, two rapid head-up tilts, and two slow head-up tilts, administered in a randomized order across
subjects, using a tilt table. Five minutes of the supine resting state preceded each postural change session. In this
study, we investigated the first two-minutes of slow-tilt sessions and the last two minutes of the preceding
resting-state sessions. During the entire duration of the experiment, single-lead ECG signals were continuously
acquired using a BIOPAC MP System.

2.2. Sympathetic and parasympathetic activity indices
To automatically detect R-peaks from the ECG series included in the three datasets used in this study, we applied
the Pan-Tompkins algorithm (Pan et al 1985). Our automated point process-based method was then used to
detect and correct possible erroneous and ectopic heartbeats (Citi e al 2012).

Once the artifact-free HRV series was obtained, we estimated the SAI and PAI series following the procedure
described in (Valenza et al 2018b).

Asafirst step, the jth-order discrete-time orthonormal Laguerre function ¢;(n, &) was convolved with the
RR series, as follows:

k-1
k) =3 ¢;(n, )RR(k — n — 1) ey
n=0
The jth-order discrete-time orthonormal Laguerre function ¢;(n, o) was defined as:
i 1 i(M\(7) .i-i i
g0 = o (1 = ' V() o 70 - ) @
i=0

where o is the constant of decay, belonging to therange 0 < av < 1,and n > 0.
Then, we defined the following autoregressive model:

Pwmp
tirr (ks His £(0) = go(k) + 7 g ;(0)1i(k)

j=0

Sympathetic
Pparsymp
+ > g;0L® ©)
j=Psymp+1

Parasympathetic

where Hy = (4, RRg, RRg_1,...,RRk_ k1) indicates the history of all the RR intervals before the kth and

§(t) = {8y(k), gy (k),....g ;(k)} is the vector containing the time-varying Laguerre coefficients. We use
equation (3) as the observation model of a linear dynamic system with state transition model given by a random
walk of the unknown time-varying Laguerre coefficients:

E) =&k — 1) + (k)
RR(k) = g,(k) + (k) &(K) + err(k) 4)

where ¢(k) is the state noise and e gr(k) is the observation noise. Finally, the disentangling Laguerre coefficients,
Wgand Wp, are used to define the values of SAI and PAI metrics, as follows (Valenza et al 2018¢):
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=1

N,
PAI(k, £(K)) = [\pro +3 ijgl’j+l(k)l 2RR(K) ©)
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A multiple regression analysis on physiological data acquired during postural changes with selective autonomic
blockade was used to estimate Wg and Wp, (see details in (Valenza et al 2018b)).

2.3. Entropy measures

In this study, the nonlinear dynamics of the beat-to-beat SAL PAI time series were analyzed using three well-
known measures of entropy: SampEn, FuzzyEn, and DistEn. The first two measures, SampEn and FuzzyEn, were
used to assess the irregularity of the time series, whereas DistEn was based on the estimation of the spatial
complexity of the attractor in the phase space.

The first step was common to the three metrics: the phase space of the SAI, PAI time-varying series was
reconstructed by setting the embedding dimension and time delay to m = 2, and 7 = 1. Starting from a time
series [u(7), u(i + 1),...,u(N)] of N'samples, we construct N — m + 1 embedded vectors in a phase space of
dimension m, defined as x(i) = [u(3), u(i + 1),...,u(i + m — 1)]. In our case, points x(i) constitute the trajectories
described by the SAI or PAI dynamics.

2.3.1. Sample entropy (SampEn)
The procedure described in (Richman et al 2000, Lake et al 2002) was used to compute SampEn.

Considering each pair of vectors x;and x; in the phase space, the Chebyshev distance d; ; is computed by
excluding self-matches (i = j). Then, C"(r), i.e. the probability that two vectors x; and x; of m coordinates will
match, was estimated as follows:

1 N—m 1 N—m
cm = O@r — d;; 7
@) N_m,; N—m—lf},?‘ij =iy @

where O is the Heaviside function. The parameter r represents the margin of tolerance used to compare the
distance values between the vectors, and is usually chosen between 10-25% of the time series standard deviation
(Castiglioni and Rienzo 2008). In this study, we set r equal to the 20% of the standard deviation of each series.
The embedding dimension was then increased from mtom + 1,and C erl(r) was calculated. Finally, the
SampEn value was found as the negative natural logarithm of the conditional probability that two sequences
similar for m points remain similar for m + 1 points (without self-comparisons), as follows:

Cm+1

SampEn(m, r, N) = —In (8)

Cm

2.3.2. Fuzzy entropy (FuzzyEn)

Given that in the real physical world, the imposition of clear boundaries can lead to ambiguous results, the
FuzzyEn algorithm uses a fuzzy function I" to replace the Heaviside function O, as the main novelty with respect
to SampEn (Chen et al 2007). This I" function assigns a membership degree to the Chebyshev distance value (d; )
between each pair of vectors in phase space. The higher the membership degree, the closer the value of I is to
unity, and the closer the vectors are in the phase space. In this study, I" function was defined as follows (Azami
etal2017,Nardellietal 2019):

D(dijy 1) = e/ ©)

where f,, is the power of the fuzzy function, which we set to 2 in accordance with previous evidence (Azami et al
2017, Nardelli et al 2019, Scarciglia et al 2022), and r was set to 20% of the standard deviation of the time series, as
in the SampEn computation. In the remaining part, the algorithm for the calculation of FuzzyEn follows the
steps described above for SampEn.

2.3.3. Distribution entropy (DistEn)

The DistEn algorithm investigates the probability distribution of the intervector distances without the need for a
preliminary estimation of the parameter r (Karmakar et al 2015, Li et al 2015, Nardelli et al 2019). Specifically,
following the procedure described in (Li et al 2015), all Chebyshev distances d;;among all pairs of embedded
vectors in the phase space were computed without considering self-comparisons. Then, the related empirical
probability distribution was studied using the histogram approach. The number of bins Bwas set to 512 as
suggested in previous studies (Li et al 2015, Shi et al 2019). In the case of the postural change dataset, we used
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Figure 1. Group-wise statistics for SampEn, FuzzyEn, and DistEn computed on SAI series acquired from the five groups

(CHF = congestive heart failure patients, OLD = elderly healthy subjects in resting state watching Fantasia movie, YOU = young
healthy subjects in resting state watching Fantasia movie, REST: healthy subjects in resting state session during head-up tilt-table test,
TILT: healthy subjects during slow-tilt). The p-values reported on the top are refereed to Kruskal-Wallis test. One asterisk (*) indicates
ap-value lower than 0.05, two asterisks (**) indicate a p-value lower than 0.01, and three asterisks (***) indicate a p-value less than
0.001 from the Mann-Whitney test after Bonferroni correction.

B =256, according to our previous study on ultra-short series (Nardelli ez al 2019). Considering p;, as the
count in bin b

probability value associated with each bin b (b = 1,...,B),i.e. p, = PPV B W - DistEn is computed
otal number O 1stances ij
using the Shannon entropy formula as follows:
1 B
DistEn(m, B) = — —— g p, log,(p,) (10)

Ing(B) t=1

Note that DistEn shows normalized values in the range [0, 1] since the Shannon Entropy formula is normalized
by the factor log,(B) (Lietal 2015).

2.4. Statistical analysis and multivariate linear regression analysis
Considering SampEn, FuzzyEn, and DistEn metrics, the Kruskal-Wallis non-parametric statistical test was used to
statistically compare group-wise medians for the SAI and PAT in the following five experimental groups: CHF patients,
elderly Fantasia subjects, young Fantasia subjects, healthy subjects during tilt-table resting state sessions, and healthy
subjects during slow-tilt sessions. The use of non-parametric tests was justified by the non-Gaussian distribution of
the samples (p < 0.05 from the Shapiro-Wilk test). In the post-hoc analysis, we compared the entropy values of each
pair of experimental groups using the Mann-Whitney test. The Bonferroni procedure for multiple-comparison
correction was applied by multiplying the Mann-Whitney p-values by the number of pairwise comparisons.

In order to evaluate the role of sympathetic and vagal dynamics and its complexity in predicting mean RR
interval, we performed a multivariate linear regression analysis considering two sets of predictors:

(1) SAIL PAI SampEn-SAI, SampEn-PAI
(2) SAI, PAI

The SAI and PAl information in time has been averaged, obtaining one sample per subject. Each regression is
evaluated through R statistic, adjusted R statistic, the F-statistic and its p-value, and an estimate of the error
variance. The likelihood ratio test is used to evaluate statistical differences between the models, considering that
the difference in log-likelihood between models follow a one degree-of-freedom chi-square distribution.

3. Results

Figure 1 shows group-wise statistics of SampEn, FuzzyEn, and DistEn computed for the SAI series of the five
experimental groups considered in this study. After applying the Kruskal-Wallis non-parametric test, we found
significant statistical differences among the groups using all three entropy algorithms (p < 10™°, see figure 1).
Concerning the results obtained through the Mann-Whitney test during the post-hoc analysis, we found that the
group of healthy subjects who underwent slow-tilt sessions presented values of SampEn extracted from the SAI
series significantly different from those of the other groups, with higher median values. Using FuzzyEn
computed on the SAl series, we were able to distinguish both groups taken from the postural change dataset
from CHF patients and elderly subjects in the Fantasia database. In this case, the sympathetic index series of CHF
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Figure 2. Group-wise statistics for SampEn, FuzzyEn, and DistEn computed on PAI series acquired from the five groups

(CHF = congestive heart failure patients, OLD = elderly healthy subjects in resting state watching Fantasia movie, YOU = young
healthy subjects in resting state watching Fantasia movie, REST: healthy subjects in resting state session during head-up tilt-table test,
TILT: healthy subjects during slow-tilt). The p-values reported on the top are refereed to Kruskal-Wallis test. One asterisk (*) indicates
a p-value lower than 0.05, two asterisks (**) indicate a p-value lower than 0.01, and three asterisks (***) indicate a p-value less than
0.001 from the Mann-Whitney test after Bonferroni correction.
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Figure 3. Group-wise statistics for the mean values of RR, SAI and PAI series acquired from the five groups (CHF = congestive heart
failure patients, OLD = elderly healthy subjects in resting state watching Fantasia movie, YOU = young healthy subjects in resting
state watching Fantasia movie, REST: healthy subjects in resting state session during head-up tilt-table test, TILT: healthy subjects
during slow-tilt). The p-values reported on the top are refereed to Kruskal-Wallis test. One asterisk (*) indicates a p-value lower than
0.05, two asterisks (**) indicate a p-value lower than 0.01, and three asterisks ("**) indicate a p-value less than 0.001 from the Mann-
Whitney test after Bonferroni correction.

and elderly subjects was more predictable than the corresponding series of young subjects during the tilt table
experiment. When the complexity of sympathetic dynamics was quantified through DistEn, we found that CHF
and elderly subjects presented statistically different and lower values with respect to young subjects in the
fantasia and postural change datasets.

In figure 2 we report the results of the statistical analysis computed on the entropy indexes extracted from the
PAI series. The Kruskal-Wallis test yielded significant results for all three metrics (p < 10~°). Concerning
SampEn, vagal dynamics were more irregular in the slow-tilt sessions than in CHF patients, elderly subjects, and
the preceding resting-state sessions (p < 0.001 after Mann-Whitney n test). Using FuzzyEn, patients with CHF
presented significantly lower median values than young subjects during rest and slow tilt. Post-hoc analysis of
DistEn values of the PAI series yielded the same results obtained for the SAI series in terms of pairs of groups that
were significantly different. The only difference was that patients with CHF and healthy subjects during the
resting sessions in the tilt protocol were not statistically discernible. Figure 3 shows the statistical results obtained
after the application of Kruskal-Wallis and Mann-Whitney tests on the mean values of the RR series, and SAI
and PAT series extracted from each of the five datasets. The mean values of RR series acquired from the CHF
patients and young subjects during the tilt table test were significantly lower than the mean values of the RR
series acquired during the resting state sessions in supine position recorded before the postural changes, and
during the Fantasia experimental protocol for both young and elderly subjects. While SAI showed higher values
in CHF patients and slow-tilt sessions, PAI was lower in CHF and slow-tilt groups with respect to Fantasia
groups and subjects in supine resting position. For both SAI and PAI, a significant statistical difference was
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observed between CHF and elderly Fantasia subjects and between the group of healthy subjects during the slow
tilt when compared to the supine position sessions in resting state and to the two groups belonging to Fantasia
dataset. Furthermore, the mean values of PAI were statistically different between CHF and young subjects.

The multiple linear regression analysis for the feature set 1) comprising { SAI, PAI, SampEn-SAI, SampEn-
PAI} showed an R*>=0.772, adjusted R?>=0.7587,F=57.59 p< 1076), and error variance of 0.0085. The
multiple linear regression analysis for the feature set 2) comprising { SAI, PAI} showed an R* = 0.7068, adjusted
R?=10.6985, F = 84.3884 < 10~%), and error variance of 0.0107. The likelihood ratio test shows differences
between models with p < 107°.

4. Discussion

This study reports the investigation of complex sympathetic and vagal dynamics in healthy and pathological
subjects. Three entropy metrics were extracted from the recently proposed time-varying SAI and PAI (Valenza
etal2018b, 2018c), which overcome the limitations of standard spectral analysis and provide more reliable
measures of phasic autonomic modulation of heart rate. The irregularities of the SAT and PAI dynamics were
quantified using two well-known algorithms: SampEn (Richman et al 2000) and FuzzyEn (Chen et al 2007).
Changes in the spatial complexity of the trajectories in phase space were investigated using DistEn (Karmakar
etal2015, Lietal 2015). While SampEn and FuzzyEn quantify the conditional probability that two vectors in the
phase space remain close by increasing the embedding dimension, DistEn studies the probability distribution of
all inter-vector distances.

Three datasets were retrieved from the publicly available repository Physionet (Goldberger et al 2000) and
five different groups of subjects were studied: patients affected by CHF (Baim et al 1986), elderly subjects in
supine position watching a movie, young subjects in supine position watching a movie, young subjects during
resting state in supine position, and young subjects during slow-tilt. We reported an ascending trend of
irregularity measures, especially in SAI and PAI dynamics, going from CHF patients to young healthy subjects
undergoing passive postural changes, passing through healthy subjects in old age (see SampEn and FuzzyEn
boxplots in figures 1, 2). Specifically, when we used SampEn, we were able to statistically discern short-term
autonomic modulation elicited during the slow-tilt sessions from other subjects in the resting state, whereas
with FuzzyEn, we were also able to distinguish more predictable SAI dynamics in patients with CHF and elderly
subjects with respect to young subjects in the resting state. Concerning vagal dynamics, patients with CHF also
presented significantly lower FuzzyEn values than the young subjects. If we consider the DistEn results, both
sympathetic and vagal dynamics of subjects undergoing postural changes were significantly more complex than
the corresponding dynamics in pathological and elderly subjects. Note that such entropy and complexity metrics
may be modulated not only by the amplitude range of the series, but also by its temporal and spatial evolution.
Accordingly, a heartbeat time series with smaller amplitude on average may be associated with a greater
irregularity or complexity (i.e, greater entropy). Indeed, while sympathetic (vagal) activity increases (decreases)
during tilt with respect to a previous resting state, tilt-related activity of both autonomic branches show more
irregular and/or complex dynamics.

The multiple linear regression analysis confirms that sympathetic and vagal activity, as estimated through
SATand PAI as well as the intrinsic SAI and PAI complexity, are fundamental predictors of the mean RR
interval.

Patients with CHF are known to have higher sympathetic activity than controls (Hasking et al 1986, Kaye
etal 1995, Lanfranchi et al 1998, Curtis and O’Keefe 2002, Valenza et al 2018c¢). However, several previous
studies have provided HRV-derived markers to distinguish patients with CHF from healthy subjects, e.g.
significantly lower LF and HF powers (Malik 1996, Van De Borne et al 1997, Guzzetti et al 2000, Acharya et al
2006). Through speculation, these changes have been associated with specific pathophysiological mechanisms,
such as central autonomic impairment (Van De Borne et al 1997), low responsiveness of the failing heart to
sympathetic modulation (Bristow et al 1982) and augmented chemoreceptor sensitivity (Ponikowski et al 1997).
Applying SAI and PAI indices, we were able to identify the activity of the two main ANS branches in patients with
CHF, finding augmented SAI and reduced PAI values, and confirmed the sympathetic hyperactivity (Valenza
et al 2018c). In the field of nonlinear metrics, CHF disease is characterized by a breakdown of physiological
fractal correlations and an overall decrease in the complexity of heartbeat dynamics (Woo etal 1992, Butler et al
1997, Ho et al 1997, Guzzetti et al 2000, Costa et al 2002, Wang et al 2018). A similar loss of information and
complexity was found in the heartbeat dynamics of elderly subjects when compared to young subjects (Costa
etal 2002), but also in healthy subjects during passive upright postural changes with respect to the resting state in
the supine position (Porta eral 2001, Heldt et al 2003, Valenza et al 2014, Nardelli et al 2019).

Finally, if we consider the groups of CHF, elderly, and young subjects in the resting state, the PAl results are
in agreement with previous knowledge about the loss of predictability in neurophysiological dynamics from
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pathological to healthy young subjects (see figure 2). However, in the comparison between pathological and
healthy subjects, we could hypothesize a direct relationship between vagal activity entropy and heartbeat entropy
values; the additional increase in irregularity during slow-tilt sessions showed the opposite behavior.

4.1. Conclusion and future works

Our promising findings show the potential diagnostic power of entropy and complexity assessment applied to
SATand PAI measurements for the clinical monitoring of ANS dynamics, despite cardiac autonomic non-
specificity. Compared to all the standard and nonlinear HRV features proposed in the literature, they offer the
advantage of presenting monotonic-like trend that allows distinguishing anomalous autonomic modulation due
to a pathological state or age from a response to passive stimulation in a healthy condition. In this regards, our
approach complements current non-invasive state-of-the-art measurements of autonomic control on heartbeat
dynamics. Future studies will be directed towards the investigation of autonomic complexity through the search
for optimal parameters (e.g. m, T, 1, and B), as well as towards the application of these methodologies to other
datasets related to different cardiovascular pathologies and experimental setups, also in comparison with further
complexity measurements (Nardelli eral 2019, Scarciglia et al 2022).
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