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Abstract
We present a different version of the well-known
connection between Hopf–Galois structures and skew
braces, building on a recent paper of A. Koch and P. J.
Truman. We show that the known results that involve
this connection easily carry over to this new perspective,
and that new ones naturally appear. As an application,
we present new insights on the study of the surjectivity
of the Hopf–Galois correspondence, explaining in more
detail the role of bi-skew braces in Hopf–Galois theory.
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1 INTRODUCTION

Let 𝐿∕𝐾 be a finite extension of fields. A Hopf–Galois structure on 𝐿∕𝐾 consists of a 𝐾-Hopf
algebra𝐻 together with an action of𝐻 on 𝐿 that satisfies certain technical conditions. When 𝐿∕𝐾
is Galois with Galois group 𝐺, the prototypical example consists of the group algebra 𝐾[𝐺] with
the usual Galois action on 𝐿; indeed, the required properties for a Hopf–Galois structure mimic
precisely those of this structure, which is called the classical structure.
Hopf–Galois theory was initially introduced in the context of purely inseparable extensions

by Chase and Sweedler [18], but after it was mainly studied for separable extensions, providing
a generalisation of classical Galois theory. In the particular case in which the extension is also
Galois, Hopf–Galois structures have been shown to be extremely useful in dealing with problems
in arithmetic. For example, as discussed by Byott in [6], there are situations in which the Galois
module structure of an extension of 𝑝-adic fields can be better described in a Hopf–Galois struc-
ture different from the classical one; see [11, 12] for a detailed analysis on the role of Hopf–Galois
theory in local Galois module theory.
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Amain role in the development of this theorywas played by a groundbreaking result of Greither
and Pareigis [23]. We assume that 𝐿∕𝐾 is Galois with Galois group 𝐺, which is the case of interest
in the paper, underlining that the result can be stated also for separable non-normal extensions.
Then there exists a bijective correspondence between Hopf–Galois structures on 𝐿∕𝐾 and regular
subgroups of the permutation group Perm(𝐺) of 𝐺 normalised by 𝜆(𝐺), the image of 𝐺 under the
left regular representation. For example, 𝜌(𝐺), the image of 𝐺 under the right regular represen-
tation, corresponds to the classical structure, while 𝜆(𝐺) corresponds to the so-called canonical
nonclassical structure, different from the classical one when 𝐺 is not abelian. We define the type
of a Hopf–Galois structure to be the isomorphism class of the corresponding regular subgroup of
Perm(𝐺).
This result was followed by new approaches to the theory, and problems of existence and clas-

sification have been studied by several authors; given a group 𝑁, does there exist a Hopf–Galois
structure of type 𝑁 on 𝐿∕𝐾? Can we classify and count the Hopf–Galois structures on 𝐿∕𝐾? A
precise survey of the main results developed in the last years can be found in [11].
A deep problem that can be approachedwithGreither–Pareigis theory regards the surjectivity of

the Hopf–Galois correspondence. Given a Hopf–Galois structure on 𝐿∕𝐾 with𝐾-Hopf algebra𝐻,
we can attach to each 𝐾-sub Hopf algebra of𝐻 an intermediate field of 𝐿∕𝐾 in a natural way. The
correspondencewe get is called theHopf–Galois correspondence, which can be shown to be injec-
tive [18] but not necessarily surjective. For example, if we consider the classical structure, then we
recover the usual Galois correspondence, which is surjective. But it was proved in [23] that if we
consider the canonical nonclassical structure, then the image of the Hopf–Galois correspondence
consists precisely of the normal intermediate fields of 𝐿∕𝐾; this shows that if 𝐺 is Hamiltonian
(that is, nonabelian with all the subgroups normal), then the Hopf–Galois correspondence is sur-
jective, but as soon as the group is not abelian nor Hamiltonian, we find a Hopf–Galois structure
for which the Hopf–Galois correspondence is not surjective.
More generally, given a Hopf–Galois structure on 𝐿∕𝐾 with Hopf algebra 𝐻 corresponding

to a regular subgroup 𝑁 of Perm(𝐺) normalised by 𝜆(𝐺), we know that there exists a bijective
correspondence between 𝐾-sub Hopf algebras of 𝐻 and subgroups of 𝑁 normalised by 𝜆(𝐺);
the first explicit proof of this fact can be found in [17, Proposition 2.2]. As there always exists
a bijective correspondence between intermediate fields of 𝐿∕𝐾 and subgroups of the Galois
group 𝐺, we can translate the Hopf–Galois correspondence to find a correspondence between
subgroups of 𝑁 normalised by 𝜆(𝐺) and subgroups of 𝐺. This means that for groups of small
order the problem can be approached from a quantitative point of view; in [26], the authors
used GAP [22] to deal with groups of order 42 and found some nonclassical Hopf–Galois struc-
tures for which the number of subgroups of the Galois group 𝐺 equals the number of subgroups
of 𝑁 normalised by 𝜆(𝐺), meaning that the Hopf–Galois correspondence for these structures
is surjective.
A look in the literature seems to suggest that these cases are not really common. Beside

these examples and the aforementioned classical structure and canonical nonclassical structure
when 𝐺 is Hamiltonian, there exists only one other known class of Hopf–Galois structures for
which the Hopf–Galois correspondence is surjective; this was obtained from the study of the
connection between Hopf–Galois structures and skew braces, objects introduced by Guarnieri
and Vendramin [24], building on the pioneering work of Rump [35]. Skew braces are related
with several other topics, such as radical rings, solutions of the Yang–Baxter equation, and the
holomorph of a group. In particular, they are connected with regular subgroups of permuta-
tion groups, and in this way, also with Hopf–Galois structures. This connection, which is not
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1728 STEFANELLO and TRAPPENIERS

bijective, was initially suggested in [3] and then made precise in the appendix of Byott and
Vendramin in [39].
Thanks to this connection, the problem of the surjectivity of the Hopf–Galois correspondence

was translated into a different language by Childs [13, 14], who showed that given a Hopf–Galois
structure on 𝐿∕𝐾 with Hopf algebra 𝐻, there exists a bijective correspondence between 𝐾-sub
Hopf algebras of 𝐻 and certain substructures of the associated skew brace. In this way, Childs
proved that for all the Hopf–Galois structures on a Galois extension with Galois group cyclic of
odd prime power order, the Hopf–Galois correspondence is surjective.
Despite this promising start, to the best knowledge of the authors, no further examples of this

behaviour have been found. A new approach, introduced in [16], seems to suggest how difficult it
is to find them. Namely, instead of looking for Hopf–Galois structures for which the Hopf–Galois
correspondence is surjective, one can study the failure of the surjectivity. Given a Hopf–Galois
structure on 𝐿∕𝐾 with Hopf algebra 𝐻, how far is the Hopf–Galois correspondence from being
surjective? The idea is to compute (or estimate) the ratio between the number of 𝐾-sub Hopf
algebras of 𝐻 and the number of intermediate fields of 𝐿∕𝐾, which was translated by Childs in a
problem regarding just the associated skew brace.
A possible explanation for the lack of new examples could be given by the fact that the substruc-

tures of skew braces studied by Childs, which seem to arise naturally from Hopf–Galois theory,
are not the usual substructures considered in the theory of the skew braces, namely, left ideals,
strong left ideals, and ideals. This issuewas initially addressed byKoch andTruman [32], who con-
sidered the notion of opposite skew brace and showed that the substructures studied by Childs
coincide with left ideals of the opposite skew brace. They moved the problem to a more familiar
setting, and combined this observation with the results of [26] to describe some known properties
of Hopf–Galois structures in terms of the opposite skew brace.
This intuition is at the very base of this paper, where we present a new version of the known

connection between Hopf–Galois structures and skew braces, as per the following points.

(1) Use directly the opposite skew brace.
(2) Make the connection bijective.
(3) Forget about the regular subgroup.

The idea is that using this new point of view one can explicitly see how the knowledge of the
structure of a skew brace gives useful and qualitative information for the associated Hopf–Galois
structure. In particular, the role of bi-skew braces, certain skew braces introduced by Childs [15]
and then further studied byCaranti [9] and the authors [38], seems to appear in amore transparent
way from this new perspective, for example, in order to find Hopf–Galois structures for which the
Hopf–Galois correspondence is surjective.
The paper is organised as follows. In Section 2, we introduce the necessary preliminaries on

Hopf–Galois structures, skew braces, and their connections. We also recall the tool of Galois
descent, useful throughout the rest of the paper. In Section 3, we explicitly describe the new con-
nection we propose. We remark how the known advantages of the usual connection still apply in
the new perspective, and we see how some old and new results can be explained and derived. In
Section 4, we use the new point of view to deal with the Hopf–Galois correspondence. In par-
ticular, we present new qualitative results, examples, and statements to explain why, in some
situations, theHopf–Galois correspondence is surjective, fromamore general perspective. Amain
role here is played by bi-skew braces.
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HOPF–GALOIS STRUCTURES AND SKEW BRACES 1729

2 PRELIMINARIES

2.1 Hopf–Galois structures

Let𝐿∕𝐾 be a finite extension of fields. AHopf–Galois structure on𝐿∕𝐾 consists of a𝐾-Hopf algebra
𝐻 together with an action ⋆ of𝐻 on 𝐿 such that 𝐿 is an𝐻-module algebra and the 𝐾-linear map

𝐿 ⊗𝐾 𝐻 → End𝐾(𝐿), 𝑥 ⊗ ℎ ↦ (𝑦 ↦ 𝑥(ℎ ⋆ 𝑦))

is bijective. (We remark that two isomorphic 𝐾-Hopf algebras whose action on 𝐿 respect the
isomorphism give the same structure.) For more insights on the definition, we refer to [12].
For example, when 𝐿∕𝐾 is Galois with Galois group 𝐺, the classical structure consists of the

group algebra 𝐾[𝐺] together with the usual Galois action.
Following [18], given a Hopf–Galois structure on 𝐿∕𝐾 with 𝐾-Hopf algebra𝐻, we can attach to

each 𝐾-sub Hopf algebra𝐻′ of𝐻 an intermediate field 𝐹 of 𝐿∕𝐾, as follows:

𝐹 = 𝐿𝐻
′
= {𝑥 ∈ 𝐿 ∣ ℎ′ ⋆ 𝑥 = 𝜀(ℎ′)𝑥 for all ℎ′ ∈ 𝐻′},

where 𝜀 denotes the counit of 𝐻′. We obtain in this way the Hopf–Galois correspondence, which
is always injective. We remark that the 𝐹-Hopf algebra 𝐹 ⊗𝐾 𝐻

′ acts on 𝐿 naturally and gives a
Hopf–Galois structure on 𝐿∕𝐹, and in particular, [𝐿 ∶ 𝐹] equals the dimension of 𝐻′ as 𝐾-vector
space; see also [11, Section 7] for more details.
A 𝐾-sub Hopf algebra𝐻′ of𝐻 is normal if for all ℎ ∈ 𝐻 and ℎ′ ∈ 𝐻′,∑

(ℎ)

ℎ(1)ℎ
′𝑆(ℎ(2)) ∈ 𝐻

′,
∑
(ℎ)

𝑆(ℎ(1))ℎ
′ℎ(2) ∈ 𝐻

′,

where, in Sweedler’s notation, the image of ℎ under the comultiplication Δ of 𝐻 is Δ(ℎ) =∑
(ℎ) ℎ(1) ⊗ ℎ(2), and 𝑆 denotes the antipode of 𝐻. If 𝐻′ is a normal 𝐾-sub Hopf algebra of 𝐻,

then by [34, Lemma 3.4.2 and Proposition 3.4.3] there exists a short exact sequence

𝐾 → 𝐻′ → 𝐻 → 𝐻 → 𝐾

of 𝐾-Hopf algebras, in the sense of [1, Proposition 1.2.3]. Moreover, if 𝐹 = 𝐿𝐻′ , then the action of
𝐻 on 𝐿 yields an action of 𝐻 on 𝐹 which gives a Hopf–Galois structure on 𝐹∕𝐾; see [7, Lemma
4.1].
We recall that ℎ ∈ 𝐻 is a grouplike element if Δ(ℎ) = ℎ ⊗ ℎ.
One fundamental tool in this theory is given by Galois descent; we briefly recall it here for the

convenience of the reader, summarising [12, Section 2.12]. Suppose that 𝐿∕𝐾 is Galois with Galois
group 𝐺. Given an 𝐿-Hopf algebra𝑀 on which 𝐺 acts semilinearly, we say that𝑀 is 𝐺-compatible
if all the maps defining the structure of𝑀 as an 𝐿-Hopf algebra are 𝐺-equivariant. (Here 𝐺 acts
on 𝐿 via Galois action and on𝑀 ⊗𝐿 𝑀 diagonally.)
Denote by  the category of 𝐾-Hopf algebras, where morphisms are 𝐾-Hopf algebra homo-

morphisms, and by  the category of 𝐺-compatible 𝐿-Hopf algebras, where morphisms are
𝐺-equivariant 𝐿-Hopf algebra homomorphisms. Then there exists an equivalence of categories
between and , as follows.
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1730 STEFANELLO and TRAPPENIERS

∙ If𝐻 ∈ , then 𝐿 ⊗𝐾 𝐻 ∈ , where here 𝐺 acts on the first factor of the tensor product; given a
morphism 𝜑∶ 𝐻1 → 𝐻2 in, we have that id⊗𝜑∶ 𝐿 ⊗𝐾 𝐻1 → 𝐿 ⊗𝐾 𝐻2 is a morphism in .

∙ If𝑀 ∈ , then𝑀𝐺 = {𝑚 ∈ 𝑀 ∣ 𝐺 acts trivially on𝑚} ∈ ; given a morphism 𝜓∶ 𝑀1 → 𝑀2 in
, the restriction of 𝜓 to𝑀𝐺

1
is a morphism𝑀𝐺

1
→ 𝑀𝐺

2
.

∙ If𝐻 ∈ , then

𝐻 → (𝐿 ⊗𝐾 𝐻)
𝐺, ℎ ↦ 1 ⊗ ℎ

is an isomorphism in, and if𝑀 ∈ , then

𝐿 ⊗𝐾 𝑀
𝐺 → 𝑀, 𝑙 ⊗ 𝑚 ↦ 𝑙𝑚

is an isomorphism in .

We immediately derive some consequences.

∙ Let𝑀 ∈ . Then there exists a bijective correspondence between 𝐾-sub Hopf algebras of𝑀𝐺

and 𝐿-sub Hopf algebras of𝑀 which are invariant under the action of 𝐺 on𝑀. Explicitly, given
such an 𝐿-sub Hopf algebra 𝑀′, the corresponding 𝐾-sub Hopf algebra is (𝑀′)𝐺 , and 𝑀′ is
normal in𝑀 if and only if (𝑀′)𝐺 is normal in𝑀𝐺 .

∙ Let

𝐿 → 𝐴 → 𝑀 → 𝐵 → 𝐿

be a short exact sequence of 𝐿-Hopf algebras. If all the 𝐿-Hopf algebras are 𝐺-compatible and
all the 𝐿-Hopf algebra homomorphisms are 𝐺-equivariant, then

𝐾 → 𝐴𝐺 → 𝑀𝐺 → 𝐵𝐺 → 𝐾

is a short exact sequence of 𝐾-Hopf algebras.
∙ For all 𝑀1,𝑀2 ∈ , we have that (𝑀1 ⊗𝐿 𝑀2)

𝐺 and 𝑀𝐺
1
⊗𝐾 𝑀

𝐺
2
are isomorphic as 𝐾-Hopf

algebras.
∙ Let𝑀 ∈ , and take ℎ ∈ 𝑀𝐺 . Then ℎ is a grouplike element of𝑀𝐺 if and only if ℎ is a grouplike
element of𝑀.

Example 2.1. Let 𝑁 be a finite group on which 𝐺 acts via automorphisms, and extend this to an
action of 𝐺 on 𝐿[𝑁], where 𝐺 acts on 𝐿 via Galois action. Then it is straightforward to check that
𝐿[𝑁] ∈ . Here the 𝐿-sub Hopf algebras of 𝐿[𝑁] are the group algebras 𝐿[𝑁′] for subgroups 𝑁′
of 𝑁 (see [17, Proposition 2.1]), and almost by definition, 𝐿[𝑁′] is normal in 𝐿[𝑁] if and only if
𝑁′ is normal in 𝑁. We deduce that the 𝐾-sub Hopf algebras of 𝐿[𝑁]𝐺 are of the form 𝐿[𝑁′]𝐺 for
subgroups𝑁′ of𝑁 invariant under the action of𝐺, and 𝐿[𝑁′]𝐺 is normal in 𝐿[𝑁]𝐺 if and only if𝑁′
is normal in 𝑁. Note that moreover, the lattices of 𝐾-sub Hopf algebras of 𝐿[𝑁]𝐺 and subgroups
of 𝑁 invariant under the action of 𝐺, with the usual binary operations, are isomorphic.
If𝑁′ is a normal subgroup of𝑁 invariant under the action of𝐺, then, by [12, Proposition 4.14],

𝐿 → 𝐿[𝑁′] → 𝐿[𝑁] → 𝐿[𝑁∕𝑁′] → 𝐿
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HOPF–GALOIS STRUCTURES AND SKEW BRACES 1731

is a short exact sequence of 𝐿-Hopf algebras which are𝐺-compatible, where all the 𝐿-Hopf algebra
homomorphisms are 𝐺-equivariant, so

𝐾 → 𝐿[𝑁′]𝐺 → 𝐿[𝑁]𝐺 → 𝐿[𝑁∕𝑁′]𝐺 → 𝐾

is a short exact sequence of 𝐾-Hopf algebras.
Finally, as the grouplike elements of 𝐿[𝑁] are the elements of 𝑁, we find that the grouplike

elements of 𝐿[𝑁]𝐺 are the elements of 𝑁 on which 𝐺 acts trivially.

We conclude by mentioning [23, Theorem 2.1], whose proof heavily relies on Galois descent,
which gives a description of the 𝐾-Hopf algebras arising in this theory. Recall that a subgroup 𝑁
of Perm(𝐺) is regular if the map

𝑁 → 𝐺, 𝜂 ↦ 𝜂[1]

is a bijection. For example, 𝜆(𝐺) and 𝜌(𝐺) are regular subgroups of Perm(𝐺), where for all 𝜎, 𝜏 ∈
𝐺,

𝜆(𝜎)[𝜏] = 𝜎𝜏, 𝜌(𝜎)[𝜏] = 𝜏𝜎−1.

Then there exists a bijective correspondence between Hopf–Galois structures on 𝐿∕𝐾 and reg-
ular subgroups of Perm(𝐺) normalised by 𝜆(𝐺); explicitly, if 𝑁 is such a subgroup, then we can
consider the 𝐿-Hopf algebra 𝐿[𝑁], where 𝐺 acts on 𝐿 via Galois action and on 𝑁 via conjugation
by 𝜆(𝐺), and then via Galois descent take the 𝐾-Hopf algebra 𝐿[𝑁]𝐺 , which gives a Hopf–Galois
structure on 𝐿∕𝐾 with the following action on 𝐿:(∑

𝜂∈𝑁

𝑎𝜂𝜂

)
⋆ 𝑥 =

∑
𝜂∈𝑁

𝑎𝜂(𝜂
−1[1])(𝑥).

As already mentioned, 𝜌(𝐺) corresponds to the classical structure, while 𝜆(𝐺) corresponds to the
so-called canonical nonclassical structure. We say that the type of a Hopf–Galois structure is the
isomorphism class of the corresponding regular subgroup 𝑁 of Perm(𝐺).

2.2 Skew braces

A skew (left) brace is a triple (𝐺, ⋅, ◦), where (𝐺, ⋅) and (𝐺, ◦) are groups and the following property
holds: for all 𝜎, 𝜏, 𝜅 ∈ 𝐺,

𝜎 ◦ (𝜏 ⋅ 𝜅) = (𝜎 ◦ 𝜏) ⋅ 𝜎−1 ⋅ (𝜎 ◦ 𝜅),

where 𝜎−1 denotes the inverse of 𝜎 in (𝐺, ⋅). We denote by 𝜎 the inverse of 𝜎with respect to (𝐺, ◦).
It is easy to prove that for a skew brace (𝐺, ⋅, ◦), the identities of (𝐺, ⋅) and (𝐺, ◦) coincide. The
order of a skew brace is the cardinality of the underlying set 𝐺.
For example, given a group (𝐺, ◦), we have that (𝐺, ◦, ◦) is a skew brace, which is said to be

trivial. Similarly, if we define 𝜎 ◦op𝜏 = 𝜏 ◦ 𝜎, then (𝐺, ◦op, ◦) is a skew brace, which is said to be
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1732 STEFANELLO and TRAPPENIERS

almost trivial. More generally, if (𝐺, ⋅, ◦) is a skew brace, then also (𝐺, ⋅op, ◦) is a skew brace, called
the opposite skew brace of (𝐺, ⋅, ◦).

Notation 2.2. Given a skew brace (𝐺, ⋅, ◦), if we want to apply a group theoretical construction
with respect to one of the group operations, then we write the operation as subscript, to avoid
ambiguity. For example, we write 𝜄⋅(𝜎) to denote conjugation by 𝜎 in (𝐺, ⋅), for 𝜎 ∈ 𝐺.

With each element 𝜎 of a skew brace (𝐺, ⋅, ◦) we can associate the bijective map

𝛾(𝜎)∶ 𝐺 → 𝐺, 𝜏 ↦ 𝛾(𝜎)𝜏 = 𝜎−1 ⋅ (𝜎 ◦ 𝜏).

This yields a group homomorphism

𝛾∶ (𝐺, ◦) → Aut(𝐺, ⋅);

see [24, Proposition 1.9]. The map 𝛾, which is called the called the gamma function of (𝐺, ⋅, ◦),
gives an action of (𝐺, ◦) on (𝐺, ⋅) via automorphisms.
For example, the gamma function of (𝐺, ⋅, ⋅) is given by 𝛾(𝜎) = id. Also, if 𝛾 is the gamma func-

tion of a skew brace (𝐺, ⋅, ◦), then the gamma function of (𝐺, ⋅op, ◦) is given by 𝜄⋅(𝜎)𝛾(𝜎), as an easy
computation shows.
Consider two skew braces (𝐺1, ⋅, ◦) and (𝐺2, ⋅, ◦). A skew brace homomorphism is a map

𝑓∶ 𝐺1 → 𝐺2 such that 𝑓(𝜎 ⋅ 𝜏) = 𝑓(𝜎) ⋅ 𝑓(𝜏) and 𝑓(𝜎 ◦ 𝜏) = 𝑓(𝜎) ◦ 𝑓(𝜏) for all 𝜎, 𝜏 ∈ 𝐺1. Skew
brace isomorphisms and automorphisms are defined accordingly, andwe denote byAut(𝐺, ⋅, ◦) the
group of skew brace automorphisms of (𝐺, ⋅, ◦).
Let (𝐺, ⋅, ◦) be a skew brace. A left ideal of (𝐺, ⋅, ◦) is a subgroup 𝐺′ of (𝐺, ⋅) that is invariant

under the action of (𝐺, ◦) via the gamma function 𝛾 of (𝐺, ⋅, ◦). Note that this immediately implies
that𝐺′ is also a subgroup of (𝐺, ◦), so (𝐺′, ⋅, ◦) is a skew brace, and that actuallywe can also replace
‘subgroup of (𝐺, ⋅)’ with ‘subgroup of (𝐺, ◦)’ in the definition. If 𝐺′ is normal in (𝐺, ⋅), then we say
that 𝐺′ is a strong left ideal; if 𝐺′ is also normal in (𝐺, ◦), then we say that 𝐺′ is an ideal. In this
last case, the quotient (𝐺∕𝐺′, ⋅, ◦) is a skew brace in a natural way.
For example,

Fix(𝐺, ⋅, ◦) = {𝜏 ∈ 𝐺 ∣ 𝛾(𝜎)𝜏 = 𝜏 for all 𝜎 ∈ 𝐺}

is a left ideal of (𝐺, ⋅, ◦); see [21, Proposition 1.6].
It is clear that the characteristic subgroups of (𝐺, ⋅) are strong left ideals of (𝐺, ⋅, ◦). More gener-

ally, the strong left ideals of (𝐺, ⋅, ◦) are precisely the left ideals of (𝐺, ⋅, ◦)which are also left ideals
of (𝐺, ⋅op, ◦), because of the description of the gamma function of (𝐺, ⋅op, ◦).
A skew brace (𝐺, ⋅, ◦) is metatrivial if there exists an ideal 𝐺′ of (𝐺, ⋅, ◦) such that (𝐺′, ⋅, ◦) and

(𝐺∕𝐺′, ⋅, ◦) are trivial skew braces. For example, by [4, Theorem 2.12], all the skew braces that can
be obtained with [38, Theorem 6.6] are metatrivial.
Let (𝐺1, ⋅, ◦) and (𝐺2, ⋅, ◦) be skew braces. Following [39], given a group homomorphism

𝛼∶ (𝐺2, ◦) → Aut(𝐺1, ⋅, ◦),

we can define a semidirect product of (𝐺1, ⋅, ◦) and (𝐺2, ⋅, ◦) to be the skew brace (𝐺, ⋅, ◦),
where 𝐺 = 𝐺1 × 𝐺2 as set, with (𝐺, ⋅) = (𝐺1, ⋅) × (𝐺2, ⋅) and (𝐺, ◦) = (𝐺1, ◦)⋊ (𝐺2, ◦), where the
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HOPF–GALOIS STRUCTURES AND SKEW BRACES 1733

semidirect product is taken with respect to 𝛼. When 𝛼 is the trivial group homomorphism, we
find the direct product of skew braces,

(𝐺1, ⋅, ◦) × (𝐺2, ⋅, ◦).

We can generalise the notion of direct product to any finite number of skew braces. Note that the
gamma function of the direct product of skew braces (𝐺𝑖, ⋅, ◦) is given by the gamma functions of
the skew braces (𝐺𝑖, ⋅, ◦) in the obvious way.
If (𝐺, ⋅, ◦) is a skew brace isomorphic to a semidirect product of skew braces, then there exist

an ideal 𝐺1 and a strong left ideal 𝐺2 of (𝐺, ⋅, ◦) such that (𝐺, ◦) is the inner semidirect product of
(𝐺1, ◦) and (𝐺2, ◦), and (𝐺, ⋅) is the inner direct product of (𝐺1, ⋅) and (𝐺2, ⋅). When the semidirect
product is a direct product, also 𝐺2 is an ideal of (𝐺, ⋅, ◦).
Finally, a bi-skew brace is a skew brace (𝐺, ⋅, ◦) such that also (𝐺, ◦, ⋅) is a skew brace. If (𝐺, ⋅, ◦)

is a bi-skew brace and 𝛾 is the gamma function of (𝐺, ⋅, ◦), then the gamma function 𝛾′ of (𝐺, ◦, ⋅)
is given by 𝛾′(𝜎) = 𝛾(𝜎)−1 = 𝛾(𝜎); see [9, Section 3]. By [10, table at page 1175], a skew brace is
a bi-skew brace if and only if its gamma function has values in Aut(𝐺, ◦). If (𝐺, ⋅, ◦) is a bi-skew
brace, then the left ideals of (𝐺, ⋅, ◦) and (𝐺, ◦, ⋅) coincide; see [38, Lemma 3.1].

2.3 Hopf–Galois structures and skew braces

We recall the well-known connection between Hopf–Galois structures and skew braces. While
it was originally developed in the appendix of Byott and Vendramin in [39], we present here an
equivalent version, which does not involve explicitly the holomorph, as described in [41, Propo-
sition 2.1] (see also [11, Section 2.8]). This is based on the following result, which is a slight
reformulation of [24, Theorem 4.2].

Theorem 2.3. Let (𝐺, ⋅) and (𝐺, ◦) be groups with the same identity. Then (𝐺, ⋅, ◦) is a skew brace if
and only if 𝜆⋅(𝐺) is normalised by 𝜆◦(𝐺) in Perm(𝐺).

Let 𝐿∕𝐾 be a finite Galois extension of fields with Galois group (𝐺, ◦).

∙ Consider a Hopf–Galois structure on 𝐿∕𝐾, corresponding to a regular subgroup 𝑁 of Perm(𝐺)
normalised by 𝜆◦(𝐺). We can use the bijection

𝑁 → 𝐺, 𝜂 ↦ 𝜂[1]

to transport the group structure of𝑁 to𝐺. In this way, we find a group structure (𝐺, ⋅) for which
it is immediate to show that 𝜆⋅(𝐺) = 𝑁. By Theorem 2.3, we conclude that (𝐺, ⋅, ◦) is a skew
brace.

∙ Let (𝐴, ⋅, ◦) be a skew brace with (𝐴, ◦) ≅ (𝐺, ◦). Use this bijection to transport the structure of
(𝐴, ⋅) to 𝐺, to find a skew brace (𝐺, ⋅, ◦) isomorphic to (𝐴, ⋅, ◦). By Theorem 2.3, we have that
𝑁 = 𝜆⋅(𝐺) is normalised by 𝜆◦(𝐺), so we obtain a Hopf–Galois structure on 𝐿∕𝐾.

Example 2.4. Peculiarly, under this connection, the classical structure yields the almost
trivial skew brace. On the other hand, the trivial skew brace is obtained by the canonical
nonclassical structure.
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1734 STEFANELLO and TRAPPENIERS

We immediately state an important and well-known consequence.

Theorem 2.5. Let𝑁 and 𝐺 be finite groups. Then the following are equivalent.

∙ There exists a skew brace (𝐴, ⋅, ◦) with (𝐴, ⋅) ≅ 𝑁 and (𝐴, ◦) ≅ 𝐺.
∙ There exists a Hopf–Galois structure of type𝑁 on every Galois extension of fields with Galois group
isomorphic to 𝐺.

Remark 2.6. A bi-skew brace (𝐴, ⋅, ◦) of finite order yields not only a Hopf–Galois structure of type
(𝐴, ⋅) on every Galois extension of fields with Galois group isomorphic (𝐴, ◦), but also a Hopf–
Galois structure of type (𝐴, ◦) on every Galois extension of fields with Galois group isomorphic to
(𝐴, ⋅).

We underline that the previous connection is not bijective, as distinct Hopf–Galois structures
can correspond to isomorphic skew braces. This was precisely quantified in [41, Corollary 2.4];
see also [33, Corollary 3.1] and Section 3. However, there is a way to obtain from this connection
a bijective correspondence. Indeed, as a consequence of Theorem 2.3 (see [20, Section 7]), given a
group (𝐺, ◦), there exists a bijective correspondence between group operations ⋅ such that (𝐺, ⋅, ◦)
is a skew brace and regular subgroups of Perm(𝐺) normalised by 𝜆◦(𝐺), via

⋅↦ 𝜆⋅(𝐺).

In this way, given a finite Galois extension of fields 𝐿∕𝐾 with Galois group (𝐺, ◦), we obtain a
bijective correspondence between operations ⋅ such that (𝐺, ⋅, ◦) is a skew brace and Hopf–Galois
structure on 𝐿∕𝐾, which is a key observation for our new point of view.

3 THE NEW CONNECTION

We begin with our main result, in which we propose a new version of the connection between
Hopf–Galois structures and skew braces. We underline that some of the consequences, as devel-
oped in this section, can also be obtained from the usual theory, for example, from [26], together
with the observations on opposite skew braces in [32, Theorem 5.6]. However, we prefer to develop
directly the theory from this new perspective, to highlight how old and new statements can be
derived in a transparent way, without too much effort.

Theorem 3.1. Let 𝐿∕𝐾 be a finite Galois extension of fields with Galois group (𝐺, ◦). Then the
following data are equivalent:

∙ a Hopf–Galois structure on 𝐿∕𝐾;
∙ an operation ⋅ such that (𝐺, ⋅, ◦) is a skew brace.

Explicitly, given an operation ⋅ such that (𝐺, ⋅, ◦) is a skew brace, we can consider the Hopf–Galois
structure on𝐿∕𝐾 consisting of the𝐾-Hopf algebra𝐿[𝐺, ⋅](𝐺,◦), where (𝐺, ◦)acts on𝐿 viaGalois action
and on (𝐺, ⋅) via the gamma function of (𝐺, ⋅, ◦), with action on 𝐿 given as follows:(∑

𝜎∈𝐺

𝓁𝜎𝜎

)
⋆ 𝑥 =

∑
𝜎∈𝐺

𝓁𝜎𝜎(𝑥).
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HOPF–GALOIS STRUCTURES AND SKEW BRACES 1735

Proof. Denote by  the set of group operations ⋅ on 𝐺 such that (𝐺, ⋅, ◦) is a skew brace, and by
the set of regular subgroups of Perm(𝐺) normalised by 𝜆◦(𝐺). Consider the composition

 →  → ,

where the first map is the bijection that sends ⋅ to ⋅op and the second map is the bijection that
sends ⋅ to 𝜆⋅(𝐺), as described at the end of Section 2. Since 𝜆⋅op(𝐺) = 𝜌⋅(𝐺), we obtain a bijection

 → , ⋅↦ 𝜌⋅(𝐺),

which by Greither–Pareigis theory yields the equivalence of data in the statement.
We just need to show that the Hopf–Galois structures on 𝐿∕𝐾 can be described in the claimed

way. So take an operation ⋅ such that (𝐺, ⋅, ◦) is a skew brace. Clearly (𝐺, ⋅) ≅ 𝜌⋅(𝐺), via the map

𝜎 ↦ 𝜌⋅(𝜎).

This yields an 𝐿-Hopf algebra isomorphism 𝐿[𝐺, ⋅] → 𝐿[𝜌⋅(𝐺)]. Let (𝐺, ◦) act on (𝐺, ⋅) via the
gamma function of (𝐺, ⋅, ◦). We show that this isomorphism is also (𝐺, ◦)-equivariant. It is enough
to show that for all 𝜎, 𝜏 ∈ 𝐺,

𝜌⋅(
𝛾(𝜎)𝜏) = 𝜆◦(𝜎)𝜌⋅(𝜏)𝜆◦(𝜎)

−1.

The claim follows because the left-hand side element is the unique element of 𝜌⋅(𝐺)which sends
1 ∈ 𝐺 to

(𝛾(𝜎)𝜏)−1 = 𝛾(𝜎)(𝜏−1) = 𝜎−1 ⋅ (𝜎 ◦ 𝜏−1),

while the right-hand side element is the unique element of 𝜌⋅(𝐺) which sends 1 ∈ 𝐺 to

𝜎 ◦ (𝜎 ⋅ 𝜏−1) = (𝜎 ◦ 𝜎) ⋅ 𝜎−1 ⋅ (𝜎 ◦ 𝜏−1) = 𝜎−1 ⋅ (𝜎 ◦ 𝜏−1).

By Galois descent, we derive that 𝐿[𝐺, ⋅](𝐺,◦) and 𝐿[𝜌⋅(𝐺)](𝐺,◦) are isomorphic as 𝐾-Hopf
algebras, and the isomorphism is given as follows:∑

𝜎∈𝐺

𝓁𝜎𝜎 ↦
∑
𝜎∈𝐺

𝓁𝜎𝜌⋅(𝜎).

To conclude, we need to find the action of 𝐿[𝐺, ⋅](𝐺,◦) on 𝐿 that respects this isomorphism:(∑
𝜎∈𝐺

𝓁𝜎𝜎

)
⋆ 𝑥 =

(∑
𝜎∈𝐺

𝓁𝜎𝜌⋅(𝜎)

)
⋆ 𝑥 =

∑
𝜎∈𝐺

𝓁𝜎(𝜌⋅(𝜎)
−1[1])(𝑥)

=
∑
𝜎∈𝐺

𝓁𝜎𝜎(𝑥).
□

Remark 3.2. We believe that this point of view could simplify computation. Indeed, note the simi-
larities of the Hopf–Galois action described in Theorem 3.1 with the usual Galois action. Also, an
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1736 STEFANELLO and TRAPPENIERS

important role is played by the gamma function, which is a well-known and studied feature of a
skew brace.

Remark 3.3. Following the proof of Theorem 3.1, it should be clear that we are associating with a
Hopf–Galois structure on 𝐿∕𝐾 the skew brace that is opposite to the usual one. Explicitly, given a
Hopf–Galois structure inGreither–Pareigis terms, so a regular subgroup𝑁 ofPerm(𝐺)normalised
by 𝜆◦(𝐺), then the way to find the operation ⋅ associated to this structure is the following:

𝜎 ⋅ 𝜏 = 𝜈(𝜈−1(𝜏)𝜈−1(𝜎)),

where 𝜈∶ 𝑁 → 𝐺 is the usual bijection that maps 𝜂 to 𝜂[1].

For the rest of the section, we fix a finite Galois extension 𝐿∕𝐾 with Galois group (𝐺, ◦).

Notation 3.4. To lighten the notation, we associate a Hopf–Galois structure on 𝐿∕𝐾 with a skew
brace (𝐺, ⋅, ◦), implicitly meaning the operation ⋅ such that (𝐺, ⋅, ◦) is a skew brace.

We immediately see that the new version of the connection fixes the peculiar behaviour
described in Example 2.4.

Example 3.5.

∙ Consider the trivial skew brace (𝐺, ◦, ◦). As the gamma function in this case is given by 𝛾(𝜎) =
id, we find that the Hopf algebra in the Hopf–Galois structure on 𝐿∕𝐾 associated with (𝐺, ◦, ◦)
is 𝐾[𝐺, ◦], and we recover the classical structure.

∙ If instead we consider the almost trivial skew brace (𝐺, ◦op, ◦), we find the Hopf–Galois
structure on 𝐿∕𝐾 originally corresponding to 𝜆◦(𝐺), that is, the canonical nonclassical
structure.

Example 3.6. Let 𝐴 and 𝐵 be finite groups. Consider a group homomorphism 𝛼∶ 𝐵 → Aut(𝐴),
and suppose that (𝐺, ◦) is the semidirect product of 𝐴 and 𝐵 with respect to 𝛼. Given (𝑎, 𝑏) ∈ 𝐺
and 𝑥 ∈ 𝐿, write (𝑎, 𝑏)(𝑥) for the Galois action. Finally, take (𝐺, ⋅) = 𝐴 × 𝐵. Then by [24, Example
1.4], we have that (𝐺, ⋅, ◦) is a skew brace. We obtain a Hopf–Galois structure on 𝐿∕𝐾, which we
now describe.
First, a straightforward calculation shows that the gamma function of (𝐺, ⋅, ◦) is given as

follows:

𝛾(𝑐,𝑑)(𝑎, 𝑏) = (𝛼(𝑑)𝑎, 𝑏).

In particular, the 𝐾-Hopf algebra 𝐿[𝐺, ⋅](𝐺,◦) we obtain consists of the elements∑
(𝑎,𝑏)∈𝐺 𝓁(𝑎,𝑏)(𝑎, 𝑏) ∈ 𝐿[𝐺, ⋅] that satisfy, for all (𝑐, 𝑑) ∈ 𝐺,∑

(𝑎,𝑏)∈𝐺

𝓁(𝑎,𝑏)(𝑎, 𝑏) =
∑

(𝑎,𝑏)∈𝐺

[(𝑐, 𝑑)(𝓁(𝑎,𝑏))](
𝛼(𝑑)𝑎, 𝑏).
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HOPF–GALOIS STRUCTURES AND SKEW BRACES 1737

Such an element acts on 𝐿 as follows:( ∑
(𝑎,𝑏)∈𝐺

𝓁(𝑎,𝑏)(𝑎, 𝑏)

)
⋆ 𝑥 =

∑
(𝑎,𝑏)∈𝐺

𝓁(𝑎,𝑏)(𝑎, 𝑏)(𝑥).

Given a Hopf–Galois structure on 𝐿∕𝐾 with associated skew brace (𝐺, ⋅, ◦), we can define the
type of the structure to be the isomorphism class of (𝐺, ⋅); note that this coincides with the usual
definition. In particular, the known results about existence and classification can also be trans-
lated and obtained using the new point of view. Indeed, Theorem 2.5 immediately follows from
Theorem 3.1, as well as the result counting the number of Hopf–Galois structures associated with
the same isomorphism class of a skew brace. We recall this result and its proof here, which is just
a slight modification of the proof of [33, Corollary 3.1].

Proposition 3.7. Let (𝐺, ⋅, ◦) be a skew brace. Then there are

|Aut(𝐺, ◦)||Aut(𝐺, ⋅, ◦)|
Hopf–Galois structures on 𝐿∕𝐾 such that the associated skew brace is isomorphic to (𝐺, ⋅, ◦).

Proof. Consider the set  of group operations ⋅′ on 𝐺 such that (𝐺, ⋅′, ◦) is a skew brace. We need
to count for how many operations ⋅′ ∈  , the skew brace (𝐺, ⋅′, ◦) is isomorphic to (𝐺, ⋅, ◦). There
is an action of Aut(𝐺, ◦) on  , as follows:

𝜙∶ ⋅′ → ⋅′
𝜙
, 𝜎 ⋅′

𝜙
𝜏 = 𝜙(𝜙−1(𝜎) ⋅′ 𝜙−1(𝜏)).

Then the orbit of ⋅ ∈  consists precisely of the operations ⋅′ such that (𝐺, ⋅′, ◦) is a skew brace
isomorphic to (𝐺, ⋅, ◦). As the stabiliser of ⋅ under this action is Aut(𝐺, ⋅, ◦), we derive the
assertion. □

We also remark that Byott’s translation [5] for Galois extensions, an extremely useful tool to
count Hopf–Galois structures, can be obtained in this fashion. We recall here the statement and
a quick proof, along the lines of the one described in [12, Section 7], but without involving regu-
lar subgroups. Let (𝑁, ⋅) be a group of the same order as (𝐺, ◦). Denote by 𝑒(𝐺,𝑁) the number of
Hopf–Galois structures on 𝐿∕𝐾 of type (𝑁, ⋅), which by Theorem 3.1 equals the number of opera-
tions ⋅ such that (𝐺, ⋅, ◦) is a skew brace with (𝐺, ⋅) ≅ (𝑁, ⋅), and denote by 𝑓(𝐺,𝑁) the number of
operations ◦ such that (𝑁, ⋅, ◦) is a skew brace with (𝑁, ◦) ≅ (𝐺, ◦).

Theorem 3.8. The following equality holds:

𝑒(𝐺,𝑁) =
|Aut(𝐺, ◦)||Aut(𝑁, ⋅)| 𝑓(𝐺,𝑁).

Proof. Consider = {bijections 𝜑∶ 𝑁 → 𝐺} and = {bijections 𝜓∶ 𝐺 → 𝑁}. Clearly, there exists
a bijection

𝛿∶  → , 𝜑 ↦ 𝜑−1.
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1738 STEFANELLO and TRAPPENIERS

For all 𝜑 ∈ , consider (𝐺, ⋅𝜑), where ⋅𝜑 is the operation obtained by 𝜑 via transport of struc-
ture. In particular, 𝜑∶ (𝑁, ⋅) → (𝐺, ⋅𝜑) is an isomorphism. Similarly, for all 𝜓 ∈ , one can define
(𝑁, ◦𝜓). It is straightforward to check that 𝛿 restricts to a bijection

 ′ = {𝜑 ∈ ∣ (𝐺, ⋅𝜑, ◦) is a skew brace} → ′ = {𝜓 ∈  ∣ (𝑁, ⋅, ◦𝜓) is a skew brace}.

Note that the right action of Aut(𝑁, ⋅) on ′ via composition satisfies the following properties.

∙ The orbits of ′ under the action of Aut(𝑁, ⋅) correspond bijectively to the operations ⋅ such
that (𝐺, ⋅, ◦) is a skew brace and (𝑁, ⋅) ≅ (𝐺, ⋅).

∙ The action of Aut(𝑁, ⋅) on ′ is fixed-point-free.

We deduce that the cardinality of  ′ equals |Aut(𝑁, ⋅)|𝑒(𝐺,𝑁). A similar argument yields that
the cardinality of ′ equals |Aut(𝐺, ◦)|𝑓(𝐺,𝑁), so

|Aut(𝑁, ⋅)|𝑒(𝐺,𝑁) = |Aut(𝐺, ◦)|𝑓(𝐺,𝑁). □

We describe now the structure of the Hopf algebras in terms of the associated skew braces.
Consider a Hopf–Galois structure on 𝐿∕𝐾, with associated skew brace (𝐺, ⋅, ◦).

Theorem 3.9. The𝐾-sub Hopf algebras of 𝐿[𝐺, ⋅](𝐺,◦) are precisely those of the form 𝐿[𝐺′, ⋅](𝐺,◦) for
left ideals 𝐺′ of (𝐺, ⋅, ◦). Moreover, 𝐿[𝐺′, ⋅](𝐺,◦) is normal in 𝐿[𝐺, ⋅](𝐺,◦) if and only if 𝐺′ is a strong
left ideal of (𝐺, ⋅, ◦).

Proof. This follows from Galois descent and the fact that the subgroups of (𝐺, ⋅) invariant under
the action of (𝐺, ◦) via the gamma function of (𝐺, ⋅, ◦) are precisely the left ideals of (𝐺, ⋅, ◦). □

Consider a left ideal 𝐺′ of (𝐺, ⋅, ◦). Then 𝐺′ corresponds to an intermediate field 𝐿𝐻′ of 𝐿∕𝐾 via
the Hopf–Galois correspondence, where 𝐻′ = 𝐿[𝐺′, ⋅](𝐺,◦). But as 𝐺′ is a subgroup of (𝐺, ◦), we
have that 𝐺′ also corresponds to an intermediate field 𝐹 of 𝐿∕𝐾 via the usual Galois correspon-
dence.Wedenote both fields by𝐿𝐺′ , the ambiguity justified by the following pleasant consequence
of Theorem 3.1.

Corollary 3.10. The following equality holds:

𝐿𝐻
′
= 𝐹.

Proof. It is clear that if 𝑥 ∈ 𝐹, then 𝑥 ∈ 𝐿𝐻′ . Indeed, given
∑
𝜎∈𝐺 𝓁𝜎𝜎 ∈ 𝐻

′, we have(∑
𝜎∈𝐺

𝓁𝜎𝜎

)
⋆ 𝑥 =

∑
𝜎∈𝐺

𝓁𝜎𝜎(𝑥) =
∑
𝜎∈𝐺

𝓁𝜎𝑥 = 𝜀

(∑
𝜎∈𝐺

𝓁𝜎𝜎

)
𝑥.

The assertion then follows from [𝐿 ∶ 𝐹] = |𝐺′| = [𝐿 ∶ 𝐿𝐻′]. □

As the action of (𝐺, ◦) on (𝐺, ⋅) is given by the gamma function of (𝐺, ⋅, ◦), we can easily describe
the grouplike elements of 𝐿[𝐺, ⋅](𝐺,◦).

 14692120, 2023, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12815 by C

ochraneItalia, W
iley O

nline L
ibrary on [12/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



HOPF–GALOIS STRUCTURES AND SKEW BRACES 1739

Corollary 3.11. The grouplike elements of the 𝐾-Hopf algebra 𝐿[𝐺, ⋅](𝐺,◦) are the elements of
Fix(𝐺, ⋅, ◦).

We study now how several known notions in skew brace theory have a natural description in
Hopf–Galois theory.
Left ideals. As already mentioned, a left ideal 𝐺′ of (𝐺, ⋅, ◦) corresponds to a 𝐾-sub Hopf alge-

bra 𝐿[𝐺′, ⋅](𝐺,◦) of 𝐿[𝐺, ⋅](𝐺,◦), which then corresponds to an intermediate field 𝐹 = 𝐿𝐺′ of 𝐿∕𝐾.
The extension 𝐿∕𝐹 is Galois with Galois group (𝐺′, ◦), and there exists a natural Hopf–Galois
structure on 𝐿∕𝐹 given by the 𝐹-Hopf algebra 𝐹 ⊗𝐾 𝐿[𝐺

′, ⋅](𝐺,◦). The skew brace associated with
this Hopf–Galois structure is precisely (𝐺′, ⋅, ◦). Indeed, by Galois descent, the natural map

𝐹 ⊗𝐾 𝐿[𝐺
′, ⋅](𝐺,◦) → 𝐿[𝐺′, ⋅](𝐺

′,◦)

is an 𝐹-Hopf algebra isomorphism, and as both the actions of these Hopf algebras on 𝐿 are
obtained by that of 𝐿[𝐺, ⋅](𝐺,◦), the assertion easily follows.
Strong left ideals. Suppose in addition that 𝐺′ is a strong left ideal of (𝐺, ⋅, ◦), so 𝐺′ is normal

in (𝐺, ⋅). In this case, 𝐿[𝐺′, ⋅](𝐺,◦) is normal in 𝐿[𝐺, ⋅](𝐺,◦), and we obtain a short exact sequence of
𝐾-Hopf algebras

𝐾 → 𝐿[𝐺′, ⋅](𝐺,◦) → 𝐿[𝐺, ⋅](𝐺,◦) → 𝐿[𝐺∕𝐺′, ⋅](𝐺,◦) → 𝐾.

We find a Hopf–Galois structure on 𝐹∕𝐾 with 𝐾-Hopf algebra 𝐿[𝐺∕𝐺′, ⋅](𝐺,◦).
Ideals. Finally, suppose that 𝐺′ is an ideal of (𝐺, ⋅, ◦). Then 𝐹∕𝐾 is Galois with Galois group

(𝐺∕𝐺′, ⋅), and the Hopf–Galois structure on 𝐹∕𝐾 given by 𝐿[𝐺∕𝐺′, ⋅](𝐺,◦) is associated with the
skew brace (𝐺∕𝐺′, ⋅, ◦), because in this case the equality 𝐿[𝐺∕𝐺′, ⋅](𝐺,◦) = 𝐹[𝐺∕𝐺′, ⋅](𝐺∕𝐺′,◦) holds.
Semidirect products. Suppose that (𝐺, ⋅, ◦) is isomorphic to a semidirect product of skew

braces. Then there exists an ideal𝐺1 and a strong left ideal𝐺2 of (𝐺, ⋅, ◦) such that (𝐺, ◦) is the inner
semidirect product of (𝐺1, ◦) and (𝐺2, ◦), and (𝐺, ⋅) is the inner direct product of (𝐺1, ⋅) and (𝐺2, ⋅).
Write 𝐹1 = 𝐿𝐺1 and 𝐹2 = 𝐿𝐺2 . In this case, the towers 𝐾 ⊆ 𝐹1 ⊆ 𝐿 and 𝐾 ⊆ 𝐹2 ⊆ 𝐿 are described
exactly as before. Moreover, 𝐿[𝐺, ⋅] is isomorphic to 𝐿[𝐺1, ⋅] ⊗𝐿 𝐿[𝐺2, ⋅] as (𝐺, ◦)-compatible
𝐿-Hopf algebras, and by Galois descent,

𝐿[𝐺, ⋅](𝐺,◦) ≅ 𝐿[𝐺1, ⋅]
(𝐺,◦) ⊗𝐾 𝐿[𝐺2, ⋅]

(𝐺,◦)

as 𝐾-Hopf algebras.
We notemoreover that because𝐺1 is an ideal of (𝐺, ⋅, ◦), the obvious isomorphism𝜑∶ (𝐺2, ◦) →

(𝐺∕𝐺1, ◦) between Galois groups is in fact an isomorphism of skew braces 𝜑∶ (𝐺2, ⋅, ◦) →
(𝐺∕𝐺1, ⋅, ◦). This implies that theHopf–Galois structures on 𝐿∕𝐹2 and𝐹1∕𝐾 given by the previous
description are associated with skew braces isomorphic in a natural way. By this observation and
Galois descent, we can also deduce that

𝐹2 ⊗𝐾 𝐹1[𝐺∕𝐺1, ⋅]
(𝐺∕𝐺1,◦) ≅ 𝐿[𝐺2, ⋅]

(𝐺2,◦)

as 𝐹2-Hopf algebras.
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1740 STEFANELLO and TRAPPENIERS

Direct products. If the semidirect product is also direct, then the Galois group (𝐺, ◦) is the
inner direct product of (𝐺1, ◦) and (𝐺2, ◦), and we can repeat the previous analysis also for 𝐹2∕𝐾,
which is Galois in this case.
Metatriviality. Suppose now that (𝐺, ⋅, ◦) metatrivial. Consider an ideal 𝐺′ of (𝐺, ⋅, ◦) such

that (𝐺′, ⋅, ◦) and (𝐺∕𝐺′, ⋅, ◦) are trivial skew braces, and write 𝐹 = 𝐿𝐺′ . Then the Hopf–Galois
structures on 𝐿∕𝐹 and 𝐹∕𝐾 obtained by the action of 𝐿[𝐺, ⋅](𝐺,◦) on 𝐿 are the classical structures.

Remark 3.12. There are notions of solubility and nilpotency of skew braces that generalise meta-
triviality; see, for example, [21, 31]. ForHopf–Galois structures associatedwith skewbraces (𝐺, ⋅, ◦)
with these properties, similar conclusions, involving tower of intermediate fields of 𝐿∕𝐾, can
be derived.
We believe that the study of this kind of properties of the skew brace, together with appropriate

ramification on the extension 𝐿∕𝐾, could bring new results in Hopf–Galois module theory. For
example, in [7], a key role for the study of the Hopf–Galois module structure of a Galois extension
𝐿∕𝐾 of 𝑝-adic fields of degree 𝑝2, 𝑝 a prime, was played by an intermediate normal field 𝐹 of
𝐿∕𝐾 such that, given a Hopf–Galois structure on 𝐿∕𝐾, 𝐹 is in the image of the Hopf–Galois cor-
respondence, and the Hopf–Galois structure on 𝐿∕𝐾 yields the classical structures on 𝐿∕𝐹 and
𝐹∕𝐾.
More generally, all the skew braces obtained with [38, Theorem 6.6], which generalise several

constructions developed in recent years, are metatrivial, so similar reasonings could be repeated.

4 THE HOPF–GALOIS CORRESPONDENCE

In this final section, we study the Hopf–Galois correspondence with respect to the new version of
the connection. We fix a finite Galois extension of fields 𝐿∕𝐾 with Galois group (𝐺, ◦). From the
discussion of Section 3, we immediately derive the following result.

Corollary 4.1. Consider a Hopf–Galois structure on 𝐿∕𝐾, with associated skew brace (𝐺, ⋅, ◦). Then
the Hopf–Galois correspondence for this structure is surjective if and only if every subgroup of (𝐺, ◦)
is a left ideal of (𝐺, ⋅, ◦).
Specifically, if 𝐺′ is a subgroup of (𝐺, ◦), then 𝐿𝐺

′ is in the image of the Hopf–Galois
correspondence if and only if 𝐺′ is a left ideal of (𝐺, ⋅, ◦).

Example 4.2. Consider the classical structure, with associated skew brace (𝐺, ◦, ◦). In this case,
every subgroup of (𝐺, ◦) is a left ideal of (𝐺, ◦, ◦), so we find, as expected, that the Hopf–Galois
correspondence for this structure is surjective.

We note the following facts, which are direct consequences of Corollary 4.1

Remark 4.3. If (𝐺, ⋅, ◦) is a skew brace and (𝐺, ⋅) has less subgroups than (𝐺, ◦), then for
the Hopf–Galois structure on 𝐿∕𝐾 associated with (𝐺, ⋅, ◦), the Hopf–Galois correspondence is
not surjective.

Remark 4.4. Suppose that (𝐺, ⋅, ◦) is a skew brace isomorphic to the direct product of skew braces
(𝐺𝑖, ⋅, ◦) of pairwise coprime orders. If all the subgroups of (𝐺𝑖, ◦) are left ideals of (𝐺𝑖, ⋅, ◦), then
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HOPF–GALOIS STRUCTURES AND SKEW BRACES 1741

all the subgroups of (𝐺, ◦) are left ideals of (𝐺, ⋅, ◦), so for the Hopf–Galois structure on 𝐿∕𝐾
associated with (𝐺, ⋅, ◦), the Hopf–Galois correspondence is surjective.

We focus now our attention on Hopf–Galois structures associated with bi-skew braces. In this
case, the gamma functions take values in the automorphisms of the Galois group (𝐺, ◦), so we
easily derive the following fact.

Lemma 4.5. Consider a Hopf–Galois structure on 𝐿∕𝐾 such that the associated skew brace (𝐺, ⋅, ◦)
is a bi-skew brace. Let𝐺′ be a characteristic subgroup of (𝐺, ◦). Then 𝐿𝐺′ is in the image of the Hopf–
Galois correspondence for this structure.

Corollary 4.6. Suppose that (𝐺, ◦) is a cyclic group, and consider a Hopf–Galois structure on 𝐿∕𝐾
such that the associated skew brace (𝐺, ⋅, ◦) is a bi-skew brace. Then the Hopf–Galois correspondence
for this structure is surjective.

Example 4.7. Suppose that (𝐺, ◦) is cyclic of order 8. As shown in [36], there exists a skew
brace (𝐺, ◦, ⋅) with (𝐺, ⋅) ≅ 𝑄8, the quaternion group. A straightforward calculation shows that
(𝐺, ◦, ⋅) is a bi-skew brace. We conclude by Corollary 4.6 that for the Hopf–Galois structure on
𝐿∕𝐾 associated with the skew brace (𝐺, ⋅, ◦), the Hopf–Galois correspondence is surjective.

We remark that for a Hopf–Galois structure on 𝐿∕𝐾 associated with a bi-skew brace (𝐺, ⋅, ◦),
the Hopf–Galois correspondence is surjective if and only if 𝛾(𝜎) is a power automorphism of (𝐺, ◦)
for all 𝜎 ∈ 𝐺, that is, 𝛾(𝜎)𝜏 is a power of 𝜏 in (𝐺, ◦) for all 𝜏 ∈ 𝐺. Indeed, the power automorphisms
of (𝐺, ◦) are precisely the automorphisms of (𝐺, ◦) that map every subgroup of (𝐺, ◦) to itself.

Example 4.8. Suppose that (𝐺, ◦) is the direct product of an abelian group𝐴 and the cyclic group
𝐶2 of order 2. Denote by 𝛼 the action of𝐶2 on𝐴 via inversion, and consider the semidirect product
(𝐺, ⋅) = 𝐴⋊ 𝐶2 with respect to this action. Then (𝐺, ⋅, ◦) is a bi-skew brace; see [24, Examples 1.4
and 1.5]. Here the gamma function of (𝐺, ⋅, ◦) is given as follows:

𝛾(𝑐,𝑑)(𝑎, 𝑏) = (𝛼(𝑑
−1)(𝑎), 𝑏),

which is either equal to (𝑎, 𝑏) or to (𝑎, 𝑏). In particular, 𝛾(𝑐, 𝑑) is a power automorphism of (𝐺, ◦),
and we conclude that for the Hopf–Galois structure on 𝐿∕𝐾 associated with (𝐺, ⋅, ◦), the Hopf–
Galois correspondence is surjective.

We deal now with bi-skew braces (𝐺, ⋅, ◦) whose gamma functions have values in the inner
automorphism group of (𝐺, ◦); these skew braces have been recently studied in [19, 20, 27, 28, 38].
Denote by 𝑍(𝐺) the centre of (𝐺, ◦) and by𝑁(𝐺) the norm of (𝐺, ◦), that is, the intersection of the
normalisers of the subgroups of (𝐺, ◦). It is clear that 𝜄◦(𝜎) is a power automorphism of (𝐺, ◦) if
and only if 𝜎 ∈ 𝑁(𝐺).
We can apply this fact to obtain Hopf–Galois structures on 𝐿∕𝐾 for which the Hopf–Galois

correspondence is surjective, as follows. Given a group homomorphism 𝜓∶ (𝐺, ◦) → 𝑁(𝐺)∕𝑍(𝐺),
define

𝜎 ⋅𝜓 𝜏 = 𝜎 ◦ 𝜄◦(𝜓(𝜎))𝜏 = 𝜎 ◦ 𝜓(𝜎) ◦ 𝜏 ◦ 𝜓(𝜎);
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1742 STEFANELLO and TRAPPENIERS

here by𝜓(𝜎)we denote any element in the coset𝜓(𝜎) in𝑁(𝐺)∕𝑍(𝐺), with a little abuse of notation
justified by the fact that if 𝜏 ∈ 𝑍(𝐺), then 𝜄◦(𝜏) = id.

Theorem 4.9. For all group homomorphisms 𝜓∶ (𝐺, ◦) → 𝑁(𝐺)∕𝑍(𝐺), we have that (𝐺, ⋅𝜓, ◦) is a
bi-skew brace, and for the Hopf–Galois structure on 𝐿∕𝐾 associated with (𝐺, ⋅𝜓, ◦), the Hopf–Galois
correspondence is surjective.

Proof. Let 𝜓∶ (𝐺, ◦) → 𝑁(𝐺)∕𝑍(𝐺) be a group homomorphism. By the main theorem of [37], the
quotient 𝑁(𝐺)∕𝑍(𝐺) is abelian, so we can apply [38, Theorem 6.6] to derive that (𝐺, ⋅𝜓, ◦) is a
bi-skew brace and the gamma function of (𝐺, ⋅𝜓, ◦) is given by 𝛾(𝜎) = 𝜄◦(𝜓(𝜎)). In particular, the
gamma function of (𝐺, ⋅𝜓, ◦) is given by conjugation by elements of 𝑁(𝐺) in (𝐺, ◦), so by power
automorphisms of (𝐺, ◦), and therefore we obtain our assertion. □

Remark 4.10. Note that distinct group homomorphisms (𝐺, ◦) → 𝑁(𝐺)∕𝑍(𝐺) in Theorem4.9 yield
distinct operations, so distinct Hopf–Galois structures on 𝐿∕𝐾.

Example 4.11. Suppose that (𝐺, ◦) = 𝑄8, the quaternion group of order 8. There are 22 Hopf–
Galois structures on 𝐿∕𝐾, and six of them are of cyclic type; see [39, table 2]. As (𝐺, ◦) is
Hamiltonian, we derive that𝑁(𝐺) = 𝐺, so𝑁(𝐺)∕𝑍(𝐺) ≅ 𝐶2 × 𝐶2. Since there are 16 distinct group
homomorphisms

𝑄8 → 𝐶2 × 𝐶2,

we obtain 16 distinct Hopf–Galois structures on 𝐿∕𝐾 for which the Hopf–Galois correspondence
is surjective. We find indeed all the Hopf–Galois structures on 𝐿∕𝐾 except for the six of cyclic
type, for which the Hopf–Galois correspondence is not surjective by Remark 4.3.

Example 4.12. Suppose that (𝐺, ◦) is the nonabelian group of order 𝑝3 and exponent 𝑝2, with 𝑝
odd prime. An easy reasoning implies that 𝑁(𝐺) is the elementary abelian subgroup of (𝐺, ◦) of
order 𝑝2, while the centre is cyclic of order 𝑝. As there are 𝑝2 distinct group homomorphisms

(𝐺, ◦) → 𝐶𝑝,

we obtain 𝑝2 distinct Hopf–Galois structures on 𝐿∕𝐾 for which the Hopf–Galois correspondence
is surjective.

The following result, whose proof is immediate, shows that the behaviour of the canonical
nonclassical structure can also be assumed by other Hopf–Galois structures.

Proposition 4.13. Consider a Hopf–Galois structure on 𝐿∕𝐾 such that associated skew brace
(𝐺, ⋅, ◦) is a bi-skew brace with gamma function 𝛾∶ (𝐺, ◦) → Inn(𝐺, ◦). Then every normal
intermediate field 𝐾 of 𝐿∕𝐾 is in the image of the Hopf–Galois correspondence for this structure.
Moreover, if 𝛾∶ (𝐺, ◦) → Inn(𝐺, ◦) is surjective, then the image of theHopf–Galois correspondence

consists precisely of the normal intermediate fields of 𝐿∕𝐾.
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HOPF–GALOIS STRUCTURES AND SKEW BRACES 1743

Example 4.14. Consider the canonical nonclassical structure, with associated skew brace
(𝐺, ◦op, ◦). Here, 𝛾(𝜎) = 𝜄◦(𝜎) for all 𝜎 ∈ 𝐺. Applying Proposition 4.13, we recover the well-known
property of the canonical nonclassical structure.

Example 4.15. Suppose that (𝐺, ◦) is nilpotent of class two, and define

𝜎 ⋅ 𝜏 = 𝜎 ◦ 𝜄◦(𝜎)𝜏 = 𝜎 ◦ 𝜎 ◦ 𝜏 ◦ 𝜎.

Then by [20, Proposition 5.6], we have that (𝐺, ⋅, ◦) is a bi-skew brace and the gamma function
of (𝐺, ⋅, ◦) is given by 𝛾(𝜎) = 𝜄◦(𝜎). By Proposition 4.13, we derive that for the associated Hopf–
Galois structure on 𝐿∕𝐾, the image of the Hopf–Galois correspondence consists precisely of the
normal intermediate fields of 𝐿∕𝐾.
It is easy to see that if there exists 𝜎 ∈ 𝐺 such that 𝜎 ◦ 𝜎 is not in the centre of (𝐺, ◦), then the

Hopf–Galois structure we find is different from the canonical nonclassical structure. This holds,
for example, for the Heisenberg group of order 𝑝3, with 𝑝 an odd prime.

We study now a question posed in [16]. Let 𝐿1∕𝐾1 be a finite Galois extension of fields with
Galois group (𝐺, ◦), and consider a Hopf–Galois structure on 𝐿1∕𝐾1, with associated skew brace
(𝐺, ⋅, ◦). We can rewrite the Hopf–Galois correspondence ratio, defined as the ratio of the number
intermediate fields of 𝐿1∕𝐾1 in the image of the Hopf–Galois correspondence to the number of
intermediate fields of 𝐿1∕𝐾1, as follows:

𝐺𝐶(𝐿1∕𝐾1, 𝐿1[𝐺, ⋅]
(𝐺,◦)) =

|{left ideals of (𝐺, ⋅, ◦)}||{subgroups of (𝐺, ◦)}| .
Suppose in addition that (𝐺, ⋅, ◦) is a bi-skew brace, and let 𝐿2∕𝐾2 be a finite Galois extension of

fields with Galois group (𝐺, ⋅). The skew brace (𝐺, ◦, ⋅) is associated with a Hopf–Galois structure
on 𝐿2∕𝐾2. Are these two Hopf–Galois structures related in some way?
The next result follows immediately from the facts that the lattices of left ideals of (𝐺, ⋅, ◦) and

𝐾1-sub Hopf algebras of 𝐿1[𝐺, ⋅](𝐺,◦) are isomorphic, and the left ideals of (𝐺, ⋅, ◦) and (𝐺, ◦, ⋅)
coincide.

Theorem 4.16. The following facts hold.

∙ The lattices of 𝐾1-sub Hopf algebras of 𝐿1[𝐺, ⋅](𝐺,◦) and 𝐾2-sub Hopf algebras of 𝐿2[𝐺, ◦](𝐺,⋅) are
isomorphic.

∙ There is the same number of intermediate fields in the images of the Hopf–Galois correspondence
for the Hopf–Galois structure on 𝐿1∕𝐾1 associated with (𝐺, ⋅, ◦) and the Hopf–Galois structure on
𝐿2∕𝐾2 associated with (𝐺, ◦, ⋅).

∙ The following equality holds:

𝐺𝐶(𝐿1∕𝐾1, 𝐿1[𝐺, ⋅]
(𝐺,◦))

𝐺𝐶(𝐿2∕𝐾2, 𝐿2[𝐺, ◦](𝐺,⋅))
=

|{subgroups of (𝐺, ⋅)}||{subgroups of (𝐺, ◦)}| .
In particular, the ratio between the twoHopf–Galois correspondence ratios is constant anddepends
only on the isomorphism classes of the Galois groups.
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1744 STEFANELLO and TRAPPENIERS

Example 4.17. Suppose that (𝐺, ⋅, ◦) is the skew brace of Example 4.8 with 𝑝 an odd prime and
𝐴 = 𝐶𝑝. Then (𝐺, ⋅) is dihedral of order 2𝑝 and (𝐺, ◦) is cyclic of order 2𝑝. There are 𝑝 + 3 sub-
groups of (𝐺, ⋅) and four subgroups of (𝐺, ◦), and as every subgroup of (𝐺, ◦) is a left ideal of
(𝐺, ⋅, ◦), we have the following equalities:

𝐺𝐶(𝐿1∕𝐾1, 𝐿1[𝐺, ⋅]
(𝐺,◦)) = 1,

𝐺𝐶(𝐿2∕𝐾2, 𝐿2[𝐺, ◦]
(𝐺,⋅)) =

4

𝑝 + 3
,

𝐺𝐶(𝐿1∕𝐾1, 𝐿1[𝐺, ⋅]
(𝐺,◦))

𝐺𝐶(𝐿2∕𝐾2, 𝐿2[𝐺, ◦](𝐺,⋅))
=
𝑝 + 3

4
.

We conclude by focusing our attention on Hopf–Galois structures associated with skew braces
that are not necessarily bi-skew braces. We begin with the following theorem, which was proved
in [30]. We provide a quick proof for convenience.

Theorem 4.18. Let𝑁 be a group. If there exists𝑚 such that the number of characteristic subgroups
of order𝑚 of𝑁 is greater than the number of subgroups of order𝑚 of (𝐺, ◦), then 𝐿∕𝐾 has no Hopf–
Galois structures of type𝑁.

Proof. If 𝐿∕𝐾 has a Hopf–Galois structure of type 𝑁, then there exists a skew brace (𝐺, ⋅, ◦) with
(𝐺, ⋅) ≅ 𝑁. As every characteristic subgroup of (𝐺, ⋅) is a left ideal of (𝐺, ⋅, ◦), so also a subgroup
of (𝐺, ◦), we immediately derive a contradiction. □

On the contrary, if there exists a skew brace (𝐺, ⋅, ◦) such that the number of characteristic
subgroups of (𝐺, ⋅) equals the number of subgroups of (𝐺, ◦), then the Hopf–Galois structure on
𝐿∕𝐾 associated with (𝐺, ⋅, ◦) assumes a nice behaviour.

Proposition 4.19. Consider a Hopf–Galois structure on 𝐿∕𝐾, with associated skew brace (𝐺, ⋅, ◦).
Suppose that the number of characteristic subgroups of (𝐺, ⋅) equals the number of subgroups of
(𝐺, ◦). Then the Hopf–Galois correspondence for this structure is surjective.

Proof. Every characteristic subgroup of (𝐺, ⋅) is a left ideal of (𝐺, ⋅, ◦), so also a subgroup of (𝐺, ◦).
In particular, every subgroup of (𝐺, ◦) is a left ideal. □

Example 4.20. Suppose that (𝐺, ◦) is cyclic of odd primepower order, and consider aHopf–Galois
structure on 𝐿∕𝐾, with associated skew brace (𝐺, ⋅, ◦). By [29], also (𝐺, ⋅) is cyclic, so by Proposi-
tion 4.19, we conclude that the Hopf–Galois correspondence is surjective; we have recovered [13,
Proposition 4.3].

Example 4.21. Suppose that (𝐺, ◦) is cyclic of order 2𝑚, with 𝑚 ⩾ 1, and consider a Hopf–
Galois structure on 𝐿∕𝐾, with associated skew brace (𝐺, ⋅, ◦). We claim that the Hopf–Galois
correspondence for this structure is surjective.
If𝑚 = 1, 2, then by the explicit classification in [2, Proposition 2.4], one can check that (𝐺, ⋅, ◦)

is a bi-skew brace, so the result follows from Corollary 4.6.
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HOPF–GALOIS STRUCTURES AND SKEW BRACES 1745

Suppose now that 𝑚 ⩾ 3. By [8, Theorem 6.1], necessarily (𝐺, ⋅) is cyclic, the dihedral group,
or the generalised quaternion group. With the unique exception of 𝑚 = 3 and (𝐺, ⋅) ≅ 𝑄8, the
numbers of characteristic subgroups of (𝐺, ⋅) and subgroups of (𝐺, ◦) coincide, so we conclude by
Proposition 4.19.
Finally, suppose that 𝑚 = 3 and (𝐺, ⋅) ≅ 𝑄8. Then the centre 𝑍 of (𝐺, ⋅) is a characteristic sub-

group of order 2. It follows that𝑍 is an ideal of (𝐺, ⋅, ◦). By the case𝑚 = 2, we know that (𝐺∕𝑍, ⋅, ◦)
has a left ideal 𝐺′∕𝑍 of order 2, which easily implies that 𝐺′ is a left ideal of (𝐺, ⋅, ◦) of order 4.

Remark 4.22. With the classification given in [2], it is easy to construct a skew brace (𝐺, ⋅, ◦)
with (𝐺, ◦) cyclic of order 𝑝3, where 𝑝 is a prime, such that (𝐺, ⋅, ◦) is not a bi-skew brace. Thus,
Examples 4.20 and 4.21 do not follow from Corollary 4.6.

We shall now conclude by characterising all the Galois extensions that behave like Exam-
ples 4.20 and 4.21. First, a useful lemma.

Lemma 4.23. Suppose that (𝐺, ◦) is isomorphic to a direct product of groups (𝐴, ◦) and (𝐵, ◦),
and that there exists a skew brace (𝐴, ⋅, ◦) such that not every subgroup of (𝐴, ◦) is a left ideal of
(𝐴, ⋅, ◦). Then there exists aHopf–Galois structure on𝐿∕𝐾 forwhich theHopf–Galois correspondence
is not surjective.

Proof. We can use the group isomorphism (𝐺, ◦) ≅ (𝐴, ◦) × (𝐵, ◦) to transport the structure of
(𝐴, ⋅) × (𝐵, ◦) to 𝐺. We obtain a group operation ⋅ such that (𝐺, ⋅, ◦) is a skew brace isomorphic
to (𝐴, ⋅, ◦) × (𝐵, ◦, ◦). By assumption, there exists a subgroup of (𝐺, ◦) which is not a left ideal
of (𝐺, ⋅, ◦), so for the Hopf–Galois structure on 𝐿∕𝐾 associated with (𝐺, ⋅, ◦), the Hopf–Galois
correspondence is not surjective. □

Theorem 4.24. The following are equivalent.

∙ For all the Hopf–Galois structures on 𝐿∕𝐾, the Hopf–Galois correspondence is surjective.
∙ The Galois group (𝐺, ◦) is cyclic, and for all primes 𝑝 and 𝑞 dividing the order of (𝐺, ◦), we have
that 𝑝 does not divide 𝑞 − 1.

Proof. Suppose first that (𝐺, ◦) is cyclic of order 𝑛 and for all primes 𝑝 and 𝑞 dividing 𝑛, we have
that𝑝 does not divide 𝑞 − 1. Consider aHopf–Galois structure on 𝐿∕𝐾, with associated skewbrace
(𝐺, ⋅, ◦). If 𝑛 is even, then 𝑛 has no odd prime divisors, so the result follows from Example 4.21.
If instead 𝑛 is odd, then by [40, Corollary 1.7], we have that (𝐺, ⋅) is isomorphic to a semidirect

product of cyclic groups 𝐶𝑎 ⋊ 𝐶𝑏, where 𝑎 and 𝑏 are coprime and 𝑎𝑏 = 𝑛. But by the assumption
on the divisors of the order of (𝐺, ◦), this semidirect product is necessarily a direct product. In
particular, (𝐺, ⋅) is cyclic, andwe can apply [21, Corollary 4.3] to deduce that (𝐺, ⋅, ◦) is isomorphic
to a direct product of skew braces of coprime odd prime power order. The assertion then follows
from Remark 4.4 and Example 4.20.
Conversely, suppose that for all theHopf–Galois structures on𝐿∕𝐾, theHopf–Galois correspon-

dence is surjective. As this holds for the canonical nonclassical structure, (𝐺, ◦) is either abelian
or Hamiltonian. We proceed by exclusion.
Suppose first that (𝐺, ◦) is Hamiltonian. Then there exists an abelian group 𝐴 such that (𝐺, ◦)

is isomorphic to the direct product of 𝑄8 and 𝐴; see [25, Theorem 12.5.4]. As already mentioned,
there exists a skew brace (𝐺′, ⋅, ◦) where (𝐺′, ◦) ≅ 𝑄8 and (𝐺′, ⋅) is cyclic. By applying Remark 4.3
and Lemma 4.23, we derive a contradiction.
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1746 STEFANELLO and TRAPPENIERS

We deduce that (𝐺, ◦) is necessarily abelian. Suppose that (𝐺, ◦) is not cyclic. Then there exists
a prime 𝑝 such that (𝐺, ◦) is isomorphic to a direct product of the form 𝐶𝑝𝑟 × 𝐶𝑝𝑠 × 𝐴, where
1 ⩽ 𝑠 ⩽ 𝑟. Write 𝜎 for a generator of 𝐶𝑝𝑟 and 𝜏 for a generator of 𝐶𝑝𝑠 . In a slight variation of [38,
Example 6.7], there exists a skew brace (𝐺′, ⋅, ◦) such that (𝐺′, ◦) equals 𝐶𝑝𝑟 × 𝐶𝑝𝑠 with the direct
product operation and

(𝜎𝑖, 𝜏𝑗) ⋅ (𝜎𝑎, 𝜏𝑏) = (𝜎𝑖+𝑎, 𝜏𝑗+𝑏+𝑖𝑎).

Note that the subgroup 𝐶𝑝𝑟 × {1} of (𝐺′, ◦) is not a subgroup of (𝐺′, ⋅), so in particular it is not a
left ideal of (𝐺′, ⋅, ◦). Again by Lemma 4.23, we find a contradiction.
We deduce that (𝐺, ◦) is necessarily cyclic. Suppose that there exist primes 𝑝 and 𝑞 dividing the

order of (𝐺, ◦) such that 𝑝 divides 𝑞 − 1. Let (𝐺′, ◦) be the direct product of the Sylow 𝑞-subgroup
𝑄 and the Sylow 𝑝-subgroup 𝑃 of (𝐺, ◦). By assumption on 𝑝 and 𝑞, we can construct a nontrivial
semidirect product (𝐺′, ⋅) of 𝑄 and 𝑃. By [24, Example 1.5], we have that (𝐺′, ⋅, ◦) is a skew brace.
Suppose that {1} × 𝑃 is a left ideal of (𝐺′, ⋅, ◦). Then {1} × 𝑃 is not a left ideal of (𝐺′, ⋅op, ◦), because
otherwise {1} × 𝑃would be normal subgroup of (𝐺′, ⋅). As (𝐺, ◦) is isomorphic to the direct product
of all its Sylow subgroups, we find a contradiction from Lemma 4.23. □
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