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A B S T R A C T   

Surface acoustic wave (SAW) -based immuno-biosensors are used for several applications, thanks to their 
versatility and faster response than conventional analytical methods. SAW immuno-biosensors can be usefully 
applied to promptly detect bacteria and prevent bacterial infections that can lead to severe diseases. Here, we 
present a SAW immuno-biosensor to detect Legionella pneumophila in water. Our device, working at ultra-high 
frequency (740 MHz), is functionalized with an anti-L. pneumophila antibody to maximize the specificity. We 
report the characteristic curve of the sensor, calculated measuring bacterial samples at known densities, and its 
related parameters. We also measure L. pneumophila samples contaminated with different Gram-positive and 
Gram-negative bacterial species (Escherichia coli and Enterococcus faecium) and samples diluted in mains waters. 
The proposed device is able to detect L. pneumophila in the range from 1⋅106 to 1⋅108 CFU/mL, with a limit of 
blank of 1.22⋅106 CFU/mL and a limit of detection of 2.01⋅106 CFU/mL. The nonspecific signal due to 
contaminant bacteria is very limited and measurements of L. pneumophila are not affected by contamination. We 
obtain a good detection also in mains water, representing a realistic matrix for L. pneumophila. Our results are 
encouraging and pave the way to the use of fast, easy-to-use, reliable and precise sensors to prevent bacterial 
infections in human activities.   

1. Introduction 

SAW-based sensors are sensitive and fast-responsive tools to be used 
for mass detection [1]. To date, acoustic transducers are involved in the 
manufacturing of several kinds of sensors based on SAWs, like Rayleigh 
surface acoustic wave (R-SAW), shear-horizontal surface acoustic wave 
(SH-SAW), Love wave (L-SAW), and several other devices [2]. In a 
typical biosensor, a biologically active molecule (probe) decorates the 
surface of the sensing element exposed to the sample, and interacts with 
the analyte [3]. Biosensors functionalized with antibodies or antigens 
are referred to as immuno-biosensors [4]. Thanks to their good perfor-
mance, SAW immuno-biosensors find a variety of applications, e.g. in 

the detection of proteins [5–8], viruses [9–14] and bacteria [15–19]. 
Bacterial pollution is a common environmental matter. The presence of 
pathogenic bacteria in the environment is directly related to a wide 
range of diseases [20]. Transmission of bacterial infections to humans 
occurs through water, air, food, or animals. Common route of trans-
mission of bacterial infection are: airborne, waterborne, aerosol/-
droplet, contact [21]. Bacteria of the genus Legionella are pathogens 
that can cause legionellosis in humans. Legionellosis is a respiratory 
disease that includes fatal pneumonia called Legionnaires Disease (LD) 
and a minor disease called Pontiac Fever [22]. Legionella colonizes 
human freshwater environments, like air conditioning ducts [23], mains 
waters [24] and spa equipment [25]. Legionellosis mainly spreads from 
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such water sources, while the person-to-person transmission rarely oc-
curs [26]. The estimated threshold value for this bacterium to present a 
health risk to humans is 1⋅104-1⋅105 CFU/L [27]. 

The ISO 11731:2017 standard furnishes the guideline for the 
enumeration of Legionella in potable, industrial, waste and natural 
waters [28]. The ISO enumeration technique is based on defined culture 
methods for the isolation and the estimation of bacteria. Culture 
methods present some limitations, related to the presence of 
non-cultivable variants [29,30], that are potentially pathogenic [31]. 
Moreover, the laboratory procedures are rather long, and can take up to 
10 days [32]. Alternative techniques for monitoring Legionella already 
exist [33], like quantitative polymerase chain reaction (qPCR) [34] and 
immuno-based assays (ELISA) with a more rapid feedback time (about 
one day) [18]. However, despite their precision, those techniques have 
drawbacks such as the necessity of expert operators and expensive and 
time-consuming procedures. Diagnostic tools to identify Legionella in the 
shortest possible time and by nonspecialized operators definitely limits 
bacterial spread and the diffusion of related diseases. Large efforts 
should be done to reach this goal while maintaining sensor specificity 
and sensitivity. To date, the literature reports a limited number of op-
tical, electrochemical or immuno-biosensors for the quantification of 
Legionella pneumophila in Lab-on-Chip [35–37]. Among the SAW-based 
sensors, the literature reports a Love wave-based device for the detec-
tion of Legionella and E. coli, analyzing different functionalization pro-
tocols [38]. In the cited work, Legionella densities analyzed were 
comprised in the range from 7.5⋅108 to 2.5⋅106 cells/mL. 

The present work proposes a SAW device working at ultra-high fre-
quency (around 740 MHz), functionalized with an anti-L. pneumophila 
antibody. We have tested the device with a wide range of L. pneumophila 
suspensions, from 1⋅102 to 1⋅108 CFU/mL and calculated the limit of 
detection and the limit of blank. Moreover, we have tested suspensions 

of bacteria containing common water contaminants i.e. Escherichia coli 
and Enterococcus faecium, and a mix of Legionella and E. coli/E. faecium, 
to evaluate sensor specificity. The same sensor was tested with samples 
from mains water, both clean and contaminated with L. pneumophila, in 
order to mimic environmental-like conditions. 

2. Materials and methods 

Reagents and solvents are purchased from Sigma Aldrich, if not 
otherwise stated. 

2.1. Surface acoustic wave Lab-on-a-Chip fabrication 

Each SAW device (Fig. 1a) used in this study is fabricated on a 1 cm 
× 1 cm lithium niobate (LN) 128◦ YX substrate (Nano Quartz Wafer, 
Langenzenn, Germany). The SAW structures are constituted by inter-
digitated transducer (IDT) electrodes patterned on the LN substrate 
previously covered with Ti/Au layer and they consist of seven 1-port 
SAW resonators working in the ultra-high-frequency (UHF) regime 
(around 740 MHz) act as the sensors. One of the sensors, isolated from 
the other, is used as reference. In the center of the structure a larger IDT 
operating at 100 MHz acts as a mixer (Fig. 1b and c). 

The Ti/Au metallization (10/100 nm) is obtained by thermal evap-
oration, the design of the structures is patterned on a layer of resist ma-N 
1407 (Microresist Technology) by the laser writing process (mL-3, 
Durham Magneto Optics, Caxton, United Kingdom, UV dose 31.6 mJ/ 
cm2) and then transferred to the metal film by reactive-ion-etching (RIE, 
Sistec, Ar at 0.9 mbar, 50 W, 17 min). The residual Ti layer is then 
etched by a piranha solution (H2SO4:H2O2 3:1 v/v, 2 min) leaving the 
Ti/Au only in where the IDTs and necessary contacts are needed. 

Before microfluidic measurements, the devices are sealed by a 

Fig. 1. The SAW-LoC device: a the chip mounted on the printed circuit board; b chip magnification showing sensors, indicated with uppercase letters, the sensor R 
used as reference, and the interdigital transducer IDT that generates the SAWs moving in the directions indicated by the red arrows. White traces schematize the 
fluidic microchannels; scale bars = 0.3 mm. For further detail on Lab-on-Chip architecture, refer to [14]; c schematization of sensor functionalization (not in scale): 
formation of the PEG adlayer, functionalization with the anti-Legionella antibody, and blocking with BSA. 
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microfluidic chamber and a glass coverslip. The microfluidic chamber is 
made of Polydimethylsiloxane (PDMS, Sylgard® 184, 10:1) and its 
microchannels are patterned by curing it on a SU8–2100 (Microresist 
Technology) mold. The microfluidic chamber presents two fluidic ports 
(inlet/outlet) connected to two incubation microchambers covering the 
sensing resonators, and two isolated air-filled microchambers above the 
IDTs and the reference resonator. Inlets, outlets, and two bubble trap-
pers in the microchannels are made using a biopsy puncher. The PDMS 
microchannel is fixed by a clamp to the chip. 

2.2. Lab-on-a-chip radio frequency characterization and operation 

The device is wire-bonded on a printed circuit board (PCB) and 
connected to the radiofrequency (RF) instrumentation. The midmost 
IDT, which is used as a mixer, is powered by a single tone RF signal at 
99.7 MHz from a vector signal generator (N5181A MXG, Agilent Tech-
nologies) followed by an RF amplifier (ZHL-5 W-1, Mini-Circuits) to 
have an on-chip power is 22 dBm. A vectorial network analyzer (VNA, 
E5071C, Agilent Technologies) connected to an RF switch (34980A, 
Agilent Technologies) allows measuring the reflected power spectrum 
(S11) of the single resonators at a central frequency of around 740 MHz 
with a span of 40 MHz at 15001 points. An in-house software based on 
LabView® is used to pilot the RF-switch and the VNA. The mechanical 
characterization of the device was performed with a laser doppler 
vibrometer (LDV, UFH-120, Polytec). 

2.3. Surface functionalizations of biosensors 

Functionalizations are obtained by placing droplets (2 μl) of used 
solutions for each step on the resonator surface. During functionaliza-
tion, the devices are maintained under a water-saturated atmosphere to 
prevent evaporation phenomena. Surface functionalization of the sen-
sors consists in three steps (Fig. 1c): i. formation of an adlayer serving as 
a linker for the probe molecule and with antifouling properties; ii. 
conjugation of the probe molecule onto the adlayer; iii. blockage of the 
remaining non-specific binding sites. More in detail, the adlayer is ob-
tained with a solution of heterobifunctional thiol-polyethyleneglycol- 
streptavidin (PEG-STREP, PEG block Mw 2 kDa, NANOCS Inc.), 1 mg/ 
mL, in water (incubation time: 90 min); probe binding is obtained with a 
solution of biotinylated anti-Legionella Pneumophila antibody (anti- 
L. pneumophila, Abcam, ab20527), 500 ug/mL in phosphate buffer saline 
(PBS, 90 min); the blockage of residual nonfunctionalized sensor surface 
is obtained by a solution of bovine serum albumin (BSA), 1 mg/mL in 
PBS (15 min). At the end of each step, the devices are rinsed with water 
by dipping into a beaker filled with deionized water, and gently dried 
under nitrogen flux. 

2.4. Bacteria cultivation and preparation for ELISA assay 

L. pneumophila strains were isolated from sanitary water and geno-
typed at the Hygiene Laboratory of the University of Pisa as previously 
described [39]. L. pneumophila strains were cultured on Buffered Char-
coal Yeast Extract (BCYE) agar at 37 ◦C in CO2-enriched atmosphere for 
7–10 days. Bacterial colonies of each strain of L. pneumophila were 
diluted in PBS to obtain suspensions with OD600 of 0.1 (corresponding 
approximately to 1⋅108 CFU/mL). After two washes with PBS, bacterial 
cells were inactivated by incubation in 4 % paraformaldehyde for 
30 min at room temperature, for safety reasons. After two washes with 
PBS, bacteria were suspended in PBS to obtain a density (OD600) of 0.3 
and 0.03 corresponding to 3⋅108 and 3⋅107 CFU/mL, respectively. Before 
detection by the sensor, inactivated suspensions of L. pneumophila ATCC 
33152 were sonicated at 45 kHz for 60 min in an ultrasonic bath soni-
cator (VWR, Ultrasonic cleaner), in order to disrupt bacterial aggregates. 

The following bacterial strains, Escherichia coli ATCC 25923, Pseu-
domonas aeruginosa ATCC 27853, Staphylococcus epidermidids ATCC 
35984 and Enterococcus faecium 48840 were used as negative control in 

ELISA assays and in sensor detection. Such bacterial strains were 
cultured in LB broth (Sigma) at 37 ◦C in agitation for 20 h and then 
diluted in PBS up to a density (OD600) of 0.3 and 0.03, respectively. 

2.5. Enzyme-linked immunosorbent assay (ELISA) 

A volume of 30 μl of each bacterial suspension, containing approxi-
mately 106 or 107 bacterial cells was distributed in wells of 96 well 
plates and incubated for 20 h at 37 ◦C in static conditions to obtain the 
coating of wells. After three washes with PBS containing 0.05 % Tween 
20 (washing solution), the plates were blocked with PBS containing 5 % 
(v/v) BSA (3 h, 37 ◦C). After three washes with the washing solution, the 
samples were incubated with 100 μl of anti-Legionella pneumophila 
polyclonal antibody Abcam 20527 (Ab20527) diluted 1: 2500 in anti-
body buffer (0.05 % Tween 20 with 3 % BSA) (2 h, 37 ◦C). After 
removing the unbound primary antibody by three washes with the 
washing solution, a volume of 100 μl of goat anti-rabbit IgG peroxidase 
conjugate (Sigma), diluted 1:10.000 in antibody buffer was added (1 h, 
37 ◦C). After three more washes, 100 μl per well of substrate, consisting 
of 3,3′,5,5′-Tetramethylbenzidine 50 μg/mL (Sigma) and 30 % hydrogen 
peroxide (1μl/mL) in 0.1 M citrate-phosphate buffer, pH 5.0, was added. 
The reaction was stopped by the addition of 100 μl per well of 2 M 
sulfuric acid. Absorbance at 450 nm was determined with a plate reader 
(Fisher Scientific). The following controls were run in parallel: i) wells 
incubated with antibody buffer without bacteria; (ii) wells with anti-
body buffer instead of primary antibody. 

2.6. Sample detection 

Inactivated and sonicated L. pneumophila ATCC 33152 samples, ob-
tained as described before, are serially diluted in physiological solution 
to obtain bacterial suspension with density ranging from 1⋅108 to 1⋅102 

CFU/mL, and added with 4 % v/v of performic acid, before injecting 
them in the fluidic chambers (4.5 μl). All the samples are incubated for 
60 min in stop-flow conditions. Measures are performed with and 
without SAW during incubation with bacteria. 

As a negative control, a mix solution of E. coli ATCC 25923 and 
Enterococcus faecium 48840 is measured in sensors functionalized with 
the anti-L. pneumophila antibody. The concentration of each bacterial 
strain in the mix is 8⋅106 CFU/mL. The sensor specificity is evaluated 
measuring a mix of L. pneumophila ATCC 33152, E. coli ATCC 25923 and 
Enterococcus faecium 48840. The concentration of each bacterial strain in 
the mix is 8⋅106 CFU/mL. Surface sensors at the end of the experiments 
are analyzed by optical microscopy. 

We also test our device in a blind control procedure. The blind 
procedure consists in the measure of two samples, one containing 
Legionella and one clean, diluted in mains water. 

At the end of sample incubation, sensors are rinsed with deionized 
water and dried under nitrogen flux. 

2.7. Data analysis 

We acquire at least five spectra for each resonator before and after 
the sample detection. The resonance frequency shift of each resonator is 
calculated by using an algorithm based on the cross-correlation among 
the spectra. The final frequency shift from the sample analysis with the 
SAW device is calculated as the average and the standard error of the 
signal from the six biosensors before the sample injection and after the 
rinsing, corrected by subtracting the signal from the reference sensor. 
The statistical analysis of data obtained in control experiments and in 
the blind tests are performed with a t-test algorithm. In boxplots, the box 
indicates the data range from the first to the third quartile, the inner line 
through the box is the median value, and the whiskers delimitate the 
overall data range. Through the text, reported data are mean values and 
related standard errors. 

Experimental data obtained from the analysis of L. pneumophila 
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samples at different concentrations are fitted with a Langmuir-line 
model described by (Eq. 1): 

f (c) = a+
b

1 +
(

1
K•c

)n (1) 

In this equation, f is the function to be fitted, a and b are fitting pa-
rameters, c is the bacterial concentration in the sample solution, K is the 
association constant, and n is the heterogeneity index related to bindings 
occurring on heterogeneous surfaces. The values for the K and n from 
data fitting are calculated in the following cases: case A) measured signal 
as a function of the sample solution concentration, case B) measured 
signal as a function of the effective amounts of bacteria injected in the 
sensor chamber, and case C) measured signal as a function of the number 
of bacteria counted on the chip surface after incubation. The Langmuir- 
like proposed model is also used for the calculation of the biosensor 
Limit of Blank (LoB) and the Limit of Detection (LoD). 

3. Results and discussion 

We first tested the ability of the anti-L. pneumophila polyclonal 
antibody Ab20527 to detect different L. pneumophila strains inactivated 
with paraformaldehyde (three environmental and one ATTC strains 
belonging to serogroup 1, and three environmental strains belonging to 
serogroup 2–14) by ELISA assay. Ab20527 detected all the strains tested 
of L. pneumophila serogroup 1 (Sg1) in a dose-dependent manner at both 
bacterial loads (106 and 107 CFU/well), whereas it detected 
L. pneumophila Sg2–14 only at the highest bacterial load (107 CFU/well) 
(Fig. 1). The higher affinity of Ab20527 to Sg1 than Sg2–14 of 
L. pneumophila is possibly due to the production procedure, as Ab20527 
was produced by rabbit immunization with L. pneumophila ATCC 33152 
strain, which belongs to Sg1. The high affinity of Ab20527 towards Sg1 
is crucial as such serogroup of L. pneumophila causes about 85 % of all 
legionellosis cases in Europe [40]. Moreover, such antibody showed 
high specificity for L. pneumophila as other Gram-positive (S. epidermidis 
and E. faecium) and Gram-negative (E. coli and P. aeruginosa) bacterial 
species tested were detected at very low levels (Fig. 2). 

Our device is expected to exhibit a red shift of the resonance fre-
quency due to the mass adhesion on the gold fingers [41,42]. The signals 
obtained from measures are in line with this expectation. 

The first measure is performed to evaluate the surface functionali-
zation. Starting from the free surface condition (acquired signal: 0 
± 3 kHz), we register an average frequency shift after the sensor func-
tionalization of − 139 ± 4 kHz. The negative frequency shift confirms 
the mass adhesion and thus the functionalization. 

The experimental dataset of L. pneumophila detection (Fig. 3a) is 
generated from 16 individual immuno-biosensors without SAW during 
the sample incubation. Using the value of frequency shift registered 
before functionalization as baseline, the resonance frequency shift for 
the samples at different concentrations is in the range from − 192 kHz to 
− 527 kHz. Data follow a typical trend identifying the characteristic 
curve of the sensor. Frequency shifts measured for samples with con-
centration lower than 1⋅104 CFU/mL are out of the working range of the 
sensor. In measures with SAW on during sample incubation signals are 
null (data not shown). Unlike the detection of viruses [14], bacteria 
seem not to adhere with the mechanical streaming of the sample. 

Control measures (Fig. 3b) obtained with the bacterial mix composed 
of E. coli and E. faecium (negative control) give an average net frequency 
shift (− 12 kHz ± 7 kHz) around 7 times lower with respect to the 
samples containing the bacterial mix composed of L. pneumophila, E. coli 
and E. faecium (− 78 kHz ± 8 kHz). The net shift is calculated consid-
ering the frequency shift after functionalization as baseline. Different 
signals result in a statistically significant difference with p = 0.002. It 
indicates that the nonspecific signal due to contaminant bacteria does 
not affect the measure. Moreover, the high specific signal obtained from 
measures of the mix of three bacteria indicates that the sensor still has 
high specificity also in the presence of other bacterial contaminants. A 
direct comparison of results with those summarized in Fig. 3a is ob-
tained considering the functionalization shift as baseline. The mean 
value measured for the sample containing L. pneumophila is − 217 kHz, 
which is quite in line with results obtained with samples non contami-
nated with different bacteria. 

Blind measures obtained with samples diluted in mains water 
(Fig. 3c), without (negative control) and with added L. pneumophila 
(positive control), provide net shifts of 4 kHz ± 2 kHz and − 70 kHz 
± 16 kHz respectively, with a statistically significance of p = 0.028. The 
measure confirms the capability of the sensor to give statistically 
different signals in a blind procedure. With this measure, we also 
demonstrate that the sensor works well also with a realistic matrix for 

Fig. 2. Detection of inactivated Legionella pneumophila strains by ELISA assay using the polyclonal antibody Ab20527. To validate such antibody for Legionella 
pneumophila detection, four bacterial strains belonging to Sg1 and three strains to Sg 2–14 were used. L. pneumophila ATCC 33152 was used as positive control 
whereas two Gram-negative bacteria (E. coli ATCC 25923 and P. aeruginosa 27853) and two Gram-positive bacteria (S. epidermidis ATCC 35984 and E. faecium 48840) 
were tested as negative controls. 
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L. pneumophila, or mains waters. The mean frequency shift calculated on 
the baseline acquired before functionalization is − 209 kHz, which is in 
line with data obtained in experiments with clean L. pneumophila 
samples. 

Optical imaging allows evaluating and quantifying the number of 
bacteria bound to the sensor surface after the detection (pictures not 
shown). Bacterial count visibly increases with the exposure of the 
biosensor at higher concentrations of L. pneumophila in sensors used for 
measurements summarized in Fig. 3a. Bacteria distribution over the 
surface is homogeneous, in particular in sensors used to measures 
samples with higher concentrations. Bacterial count in sensors used to 
measure the overall L. pneumophila dataset linearly increases by 
increasing sample concentration (Fig. 4a), indicating that saturation 
does not occur in the analyzed concentration range. 

Optical images of sensors used for control measures clearly indicate a 
different count in sensors incubated with the negative control mix and 
the positive control mix (Fig. 4b-c). In the negative control, the count is 
close to zero and the overall sensor surface results clean. On the other 
hand, in the sensor incubated with the positive control the count is 
visibly higher and in line with optical images obtained for clean samples. 

Langmuir-like fittings (Fig. 5) are obtained for all the three analyzed 
cases. Such proposed modelling is used to calculate K, n, LoB and LoD 
(Table 1). Calculated parameters K and n are related to a solid-liquid 
equilibrium only in cases A and B, while for case C such parameters 
are calculated after the measure, when all the bacterium/antibody in-
teractions are already stable. 

The proposed model highlights the strong dependence of the sensor 
signal on the actual adhered bacteria. Indeed, in the plot of LoC-SAW 

Fig. 3. Results of LoC-SAW device: a overall dataset obtained from the measures on different concentration L. pneumophila samples (overall number of sensors 
n = 16); b control experiments with bacterial mix: E. coli and E. faecium with concentration of 8e6 CFU/mL per each bacterial strain (negative control, n = 6), mix of 
L. pneumophila, E. coli and E. faecium with concentration of 8e6 CFU/mL per each bacterial strain (positive control, n = 8); c blind measure with samples diluted in 
mains waters: empty sample (negative control, n = 4) and sample added with L. pneumophila (positive control, n = 5). 
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signal vs. bacterial concentration in the sample the signal seems to be 
not dependent on concentration at values lower than 1⋅106 CFU/mL. On 
the contrary, a clear dependence on the counted bacterial cells on the 
sensor surface after the measure is shown. 

The value of K in case A is three orders of magnitude lower than that 
calculated in case B. This parameter is related to the equilibrium 

between bacteria and probe molecules, and lower values indicated 
weaker interactions. In this case it is not possible to directly compare the 
two values, due to the different calculation provided, but it can be 
assumed that the LoC SAW signal is more related to the number of 
bacterial CFUs on the sensor surface than to the sample concentration. 
On the other hand, values of K are similar for cases B and C, confirming 
that the strong interactions in the liquid phase are due to the adhesion of 
bacteria to the sensor surface. 

Values of n are in all cases close to one, indicating a homogeneous 
adhesion of bacteria over the surface and, thus, a homogeneous distri-
bution of the probe. 

The calculated LoD is in line with that postulated in [38] for a similar 
SAW immuno-biosensor for Legionella detection. The LoD calculated 
over the actual number of bacteria adhered over the sensor surface is 
significantly lower, indicating the high potential of the proposed sensor 
to detect very low amounts of bacterial cells. 

While obtained detections are reliable, the calculated LoD (case A) is 
too high to identify a potentially harmful contamination, considering 
the limit of 1⋅104-1⋅105 CFU/L [27]. This aspect can be easily overcome 
by concentrating the sample to measure, which is an already established 
procedure in the measure of Legionella bacteria [43]. 

4. Conclusion 

The proposed immuno-biosensor has demonstrated good capability 
to measure inactivated L. pneumophila bacteria in aqueous samples. The 
characteristic curve of the device indicates a working range of sample 
concentration from 1⋅106 CFU/mL to 1⋅108 CFU/mL, which is state-of- 
the-art for SAW device bacteria biosensors. The same device shows a 
very limited nonspecific signal, measured with samples containing 
contaminant bacteria. Moreover, we successfully measured 
L. pneumophila also in contaminated samples, demonstrating the high 
specificity of the sensor. We positively tested our device with mains 
waters, which is a realistic matrix for L. pneumophila. 

With this work we have demonstrated the feasibility of 
L. pneumophila detection by means of a SAW LoC device working at 
ultra-high frequency regime. As a future development, we will apply the 
same technology to the detection of different bacteria, in order to pro-
vide a tool for the rapid detection of bacterial contamination in human 
buildings. 
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