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A Markov Chain Monte Carlo algorithm for litho-fluid facies
prediction and petrophysical property estimation: An application
for reservoir characterization in offshore Nile Delta 
M. Aleardi
Earth Sciences Department, University of Pisa, Italy

Introduction.� Seismic reservoir characterization uses pre-stack reflection seismic data to 
describe the spatial variability of subsurface properties around the target zone. In this work, I 
implement a non linear, target-oriented, inversion algorithm that exploits the amplitude versus 
angle (AVA) variations of the seismic reflections to estimate in a single-step both the litho-
fluid facies and the petrophysical properties. The inversion is casted in a Bayesian framework 
and given the non linearity of the forward modeling, it is formulated in terms of a Markov 
Chain Monte Carlo (MCMC) algorithm (Sambridge and Moosegard, 2002) in order to produce 
accurate and unbiased uncertainty estimations. I apply this algorithm in a clastic reservoir located 
in offshore Nile Delta where the reservoir zone is gas saturated and hosted in sand channels 
surrounded by shale sequences. A linear empirical rock physics model (RPM; see Aleardi et al. 
2016) is used to link the petrophysical properties to the elastic parameters, whereas the non-
linear Zoeppritz equations relate such elastic properties to the observed AVA response. The 
exact Zoeppritz equations allow me to take advantage of the long offset seismic acquisition and 
to consider a wide range of incidence angles (0 and 60 degrees) in the inversion. The Gaussian 
mixture (GM) distribution used to describe the a-priori information about the petrophysical 
properties takes into consideration the multimodality and the correlation that characterize the 
distribution of these properties in the reservoir zone. In the field data application the close match 
between the outcomes of the MCMC algorithm and the well log information demonstrates the 
applicability of the method and the reliability of the final results. In the following discussion, 
F indicates the litho-fluid facies that are shale, brine sand and gas sand, E represents the elastic 
properties that are P- wave, S-wave velocities (Vp and Vs, respectively) and density, R indicates 
the petrophysical properties that are water saturation (Sw), porosity (φ) and shaliness (Sh), 
whereas d is the observed data that is the AVA response pertaining to the top of the interpreted 
reservoir extracted for each considered CMP gather. 

The implemented MCMC algorithm. Before discussing more in detail the MCMC 
algorithm I point out that my inversion procedure follows a strictly target-oriented approach, 
therefore only the AVA response associated to the interpreted top of the reservoir interval has 
been inverted. For each considered reflecting interface the properties of the underlying layers 
are considered as unknowns, whereas the properties of the cap-rock are kept fixed and equal to 
the average properties of the shales that are defined from well log data.

The main advantage of MCMC methods is that they correctly sample the target posterior 
probability distribution (PPD) even if the a-priori distribution is not defined in a closed form and 
even for non-linear inverse problems in which the posterior distribution can not be analytically 
computed from the prior information and from the likelihood function. As MCMC algorithm I 
use the Metropolis-Hasting method. This method performs a random walk in the model space 
by applying a simple two-step procedure: in the first step a candidate model is drawn from 
the prior distribution, while in the second step this model is accepted with a probability that 
depends on its fit with the observed data. The ensemble of accepted models is the final output of 
the algorithm that can be used to numerically compute the final PPD. Once a candidate model 
is drawn, it is accepted following the so called Metropolis rule:

(1)

where mcand is the candidate model, mcurr is the current model (that is the last model accepted 
during the random walk) and α is the acceptance probability. Usually, multiple random walks 
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are sequentially performed starting from different parts in the model space to increase the 
reliability of the result. In addition, it is known that the samples accepted at the beginning of 
the chain (during the so called “burn-in” period) may not accurately represent the target PPD. 
Therefore, these samples are usually not considered in the computation of the final posterior 
distribution.

Following the Bayesian notation and applying the chain rule, the target posterior distribution 
for the analyzed case can be written as:

(2)

To derive such posterior probability, I implement the following MCMC algorithm. The 
following steps are used to define the initial model at the beginning of the chain:

1a)	 pick a litho-fluid facies from the prior probability distribution p(F);
2a)	 define the petrophysical parameters for the initial model by drawing random numbers 

from the conditional probability p(R|F); 
3a)	 apply the empirical RPM to convert the petrophysical properties into the elastic 

parameters;
4a)	 add to the derived elastic parameters the uncertainties associated to the rock physics 

model. The probability distribution of this uncertainty (assumed to be Gaussian) 
can be computed during the definition of the rock physics model by comparing the 
measured and the predicted elastic properties. This step is used to draw a sample from 
the conditional probability p(E|R,F);

5a)	 use the Zoeppritz equations to compute the likelihood p(d|E,R,F) for the considered 
model. The likelihood function I consider is based on a least-squares measure of misfit 
in which the noise is assumed to be normally distributed with a null mean value and a 
diagonal covariance matrix. I compute this covariance matrix by comparing the AVA 
responses of adjacent CMP gathers and by assuming that these responses are produced 
by similar petrophysical properties. Then, the differences between the AVA responses 
extracted from adjacent CMPs have been attributed only to noise contamination; 

6a)	 accept the initial model as the current model.
After generating this model, a candidate model must be defined. The steps advocated to this 

aim are the following:
1b)	 draw a random number p uniformly distributed over [0,1];
2b)	 if p<0.2, perturb the litho-fluid facies for the current model by selecting a litho-fluid 

facies from the prior distribution p(F). After this perturbation draw a random sample 
from p(R|F) to define the petrophysical properties for the candidate model;

3b)	 if p≥0.2, define the petrophysical properties of the candidate model by perturbing the 
petrophysical properties of the current model. This perturbation follows a random walk 
that sample the distribution p(R|F). Note that in this case the litho-fluid facies for the 
candidate model and for the current model are the same. 

After step 2b) or step 3b) I compute the elastic parameters associated to the candidate model 
and its likelihood by repeating steps 3a), 4a) and 5a). Then the candidate model is accepted 
according to the Metropolis rule. If the candidate model is accepted mcurr=mcand, and if the burn-
in period is over mcand is collected. 

In all inversion tests described in the following I use 10 different random walks that start from 
different initial models. In each walk 2000 models are collected and only 1500 are considered in 
the computation of the final PPD, thus considering a burn-in period of 500 models. 

Application to field data.� The available well log data and the geological knowledge 
about the investigated area are exploited to define the number of components of the a-priori 
Gaussian mixture distribution for the petrophysical properties. In this case I have considered 
three components each one associated with a given litho-fluid facies: shale, brine sand and gas 
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sand. The statistical characteristics of this a-priori GM distribution are obtained by applying the 
expectation maximization algorithm to the well log data. Fig. 1 shows the a-priori distribution 
for the petrophysical properties. Fig. 1a represents the a-priori distribution projected onto the 
Sw-φ plane, together with the associated two marginal prior probability density functions (PDF) 
computed along the Sw and φ directions. As expected, the shale correspond to high Sw values 
and low porosity, whereas both brine sands and gas sands are characterized by higher porosity, 
with the gas sands at lower water saturation values than brine sands. Fig. 1b illustrates the a-
priori distribution projected onto the Sw-Sh plane. Similarly to Fig. 1a the marginal distributions 
are also represented. As expected, the shales are characterized by higher shaliness values than 
brine sands and gas sands.

In the inversion I have considered a subset of CMP gathers extracted from the whole 3D 
seismic dataset and centered on the spatial location of an exploration well that reached the 
reservoir zone. The well log data associated to this well will be used to validate the final results. 
No a-priori information on the spatial correlation of petrophysical parameters has been used to 
constrain the inversion of adjacent CMPs. Therefore, the lateral continuity of the final results is 
mainly related to the lateral correlation of seismic data that is dependent on the Fresnel zone and 
the corresponding migration operator. A close-up of the CMP gather closest to the well location 
around the target interval together with the associated AVA response, are represented in Fig. 
2a. This AVA response have been extracted from the negative peak amplitude of the considered 
reflection and normalized to the normal-incidence reflection coefficient derived from borehole 
logs. Note the clear class III AVA anomaly around 2.46 s that is generated by the interface 
separating the overlying shale from the underlying gas sand. Also note the good S/N ratio of the 
seismic data on the whole angle range from 0 to 60 degrees that allows me to extract a reliable 
AVA response over a wide-angle range. Fig. 2b shows the final results (the posterior probability 
distributions for both the litho-fluid facies and for the petrophysical properties of interest) 
obtained from the inversion of the AVA response shown in Fig. 2a. The inversion correctly 
attributes this AVA response to a shale-gas sand interface and the predicted petrophysical 
properties are in good agreement with the average petrophysical properties measured in the gas 
sand interval: porosity around 25%, shaliness 10% approximately and water saturation around 
30-35%. From Fig. 2b emerges the higher uncertainty that characterizes the saturation estimate 
and conversely the good resolution on the shaliness and particularly on the porosity that reveals 
to be the best resolvable parameter.

The petrophysical properties estimated along the interpreted top of the reservoir are 
represented in Fig. 3a. This figure shows the maximum a posteriori (MAP) solution of the final 

Fig. 1 – Gaussian mixture a-priori distribution for the petrophysical properties. a) A-priori distribution projected onto 
the Sw-φ plane and the associated marginal distributions (PDF). b) Same as a) but considering the Sw-Sh plane. 
Black, yellow and red colors code the shales, brine sands and gas sands, respectively.
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PPD associated with each inverted CMP gather. The MAP solution pertaining to the posterior 
distribution of facies p(F|d) and the corresponding probability of occurrence of each facies are 
represented in Fig. 3b. The maps represented in Figs. 3a and 3b evidence that the exploration well 
has intersected a sand channel with high porosity and low water saturation and shaliness values. 
Moreover, these maps clearly depicts the later extension of the gas sand channel intersected by 
the well at 2.46 s and also the complex depositional structure of the investigated area with both 
interconnected and isolated sand channels surrounded by shale intervals. 

Conclusions.� I described a target-oriented, non-linear, MCMC algorithm for litho-fluid 
facies identification and petrophysical properties estimation. The algorithm has been applied 
for reservoir characterization in offshore Nile Delta. This approach, although its relatively high 
computational cost, reliably estimates the non-uniqueness of the solution that is the uncertainties 
affecting the estimated subsurface characteristics (both in terms of litho-fluid facies and 
petrophysical properties), taking into account the uncertainties in the prior information, the 
uncertainties in the estimated rock-physics model and the uncertainties in the observed AVA 
response. The field data application shows that the shaliness and particularly the porosity are the 
best resolvable parameters, whereas the water saturation is poorly resolvable due to its minor 
influence on the AVA response in the range 0%-95%. The petrophysical properties estimated 
for the CMP gather closest to the well show a close match with the well log information thus 
confirming the reliability of the final results. The 2D maps of litho-fluid facies and petrophysical 
properties estimated along the interpreted top of the reservoir show a very complex depositional 

Fig. 2 – a) Left: close-up around the target time interval for the CMP gather closest to the position of an exploration 
well. Right: the AVA response extracted from the CMP shown on the left and associated to the target reflection. b) 
Inversion results obtained for the CMP illustrated in a), showing a comparison between prior and posterior distributions 
for litho-fluid facies and petrophysical properties.
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Fig. 3 – a) From left to right 2D probability maps representing the maximum a posteriori solution for water saturation, 
porosity and shaliness, respectively, estimated along the interpreted top of the reservoir. b) Leftmost part: the 
maximum a posteriori solution for the litho-fluid facies distribution. Black, yellow and red correspond to shale, brine 
sand and gas sand, respectively. In b) the other plots represent the probability of occurrence of each facies at each 
CMP location. In a) and b) the white dashed crosses indicate the well location. 

setting with many interconnected and isolated sand channels, surrounded by shale sequences. 
As a final remark I point out that the high computational cost of my MCMC algorithm (5 hours 
in the field data test using a i5 CPU at 2.67 GHz) can be drastically reduced by an accurate 
parallel implementation. 
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