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DEGENERATION OF QUADRATIC POLYNOMIAL ENDOMORPHISMS TO

A HÉNON MAP

FABRIZIO BIANCHI AND YÛSUKE OKUYAMA

Abstract. For an algebraic family (ft) of regular quadratic polynomial endomorphisms of
C

2 parametrized by D
∗ and degenerating to a Hénon map at t = 0, we study the continuous

(and indeed harmonic) extendibility across t = 0 of a potential of the bifurcation current on
D

∗ with the explicit computation of the non-archimedean Lyapunov exponent associated to
(ft). The individual Lyapunov exponents of ft are also investigated near t = 0. Using (ft), we
also see that any Hénon map is accumulated by the bifurcation locus in the space of quadratic
holomorphic endomorphisms of P2.

1. Introduction

Our aim is to study an algebraic family of regular quadratic polynomial endomorphisms of
C
2 parametrized by a punctured open disk and degenerating to a Hénon map at the puncture,

paying a particular attention to the asymptotic behaviour of the individual Lyapunov expo-
nents and their sums. For one dimensional meromorphic families of rational functions, such
degenerations towards rational functions of lower (topological) degrees have been studied in
[DeM16, FG17, DO17]. Favre recently introduced a general framework to study such degener-
ations for holomorphic endomorphisms of Pk in [Fav16] and we here provide the first concrete
study in dimension k higher than 1. We also study the geometry of the bifurcation locus, in the
sense of [BBD18], in the space of quadratic holomorphic endomorphisms of P2. The geometry
of the bifurcation locus near the line at infinity of the moduli space M2

∼= C
2 of the quadratic

rational functions on P
1 and that near the hyperplane at infinity of the natural parameter space

∼= C
3 of quadratic polynomial skew products on C

2 have been studied in [BG15] and [AB18],
respectively.

Let us be more specific and precisely state our results. In the rest of this article, we fix

c ∈ C
∗ and p(w) = w2 + c1w + c2 ∈ C[w].

For each

(g, h) ∈ C[z, w] × C[z, w] such that deg g = 2, gzz ∈ C
∗, and degh ≤ 2,(1.1)

we focus on the algebraic family

(1.2) ft(z, w) = ft(z, w; g, h) =

(

w
cz + p(w)

)

+ t

(

g(z, w)
h(z, w)

)

, t ∈ D,

of quadratic polynomial endomorphisms of C2 parametrized by D; we also set the constants
gzz/2! =: Gg = G ∈ C

∗ and hzz/2! =: Hh = H ∈ C, respectively, and set

g̃(z, w) := g(z, w) −Gz2.

For t = 0, the map f0(z, w) = (w, cz + p(w)) is a Hénon map (see e.g. [FM89]) and is
independent of (g, h). For every 0 < |t| ≪ 1, ft satisfies the condition

lim inf
‖(z,w)‖→∞

‖ft(z, w)‖
‖(z, w)‖2 > 0(1.3)
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(here ‖ · ‖ is the Euclidean norm on C
2), or equivalently, ft is a regular quadratic polynomial

endomorphism of C2, that is, it extends to a holomorphic endomorphism of P2 (see e.g. [BJ00]).
In particular, if 0 < |t| ≪ 1, then ft admits the (second) Julia set Jft , which is contained in C

2

and coincides with the support of the unique maximal entropy measure µft of (the holomorphic
extension to P

2 of) ft, and the sum L(ft) of the two individual Lyapunov exponents χ1(ft) ≥
χ2(ft)(indeed ≥ log

√
2 [BD99]) of ft with respect to µft is given by

L(ft) =

∫

C2

log |detDft|µft ∈ R.(1.4)

We also call L(ft) the Lyapunov exponent of ft with respect to µft . Here and below, we fix the
trivialization of the tangent bundle TC2 of C2 induced by the orthonormal frame (∂z, ∂w) of TC

2,
and identify the derivative dft of ft with the M(2,C)-valued function (z, w) 7→ det(Dft)(z,w),
by convention.

We regard the set of all (g, h) as in (1.1) as (C∗×C
2)×C

3, parametrizing it by the coefficients
of g, h to mention the local uniformity of the estimates.

1.1. Degeneration of the Lyapunov exponent. Our first interest is in the asymptotic be-
haviour of L(ft) as t → 0, where ft = ft(z, w; g, h), for each (g, h) as in (1.1). Such a behaviour
has been studied for meromorphic families of rational functions on P

1 by DeMarco [DeM16]. In
our situation, it follows from Favre’s generalization [Fav16] of DeMarco’s estimate that there is
a non-negative constant α such that

L(ft) = α log |t|−1 + o
(

log |t|−1
)

as t → 0

and that the constant α is characterized as the non-archimedean Lyapunov exponent associated
to the meromorphic family (ft)t∈D∗ , regarded as a single rational function defined over a field
of formal Laurent series at t = 0. The function t 7→ L(ft) − α log |t|−1 is continuous and
subharmonic on 0 < |t| ≪ 1 (see e.g. [DS10] for more details), and is a potential of the bifurcation
current (indeed measure) on 0 < |t| ≪ 1 associated to the family (ft) in the sense of [BBD18].

In the following, it is convenient to say that the pair (g, h) (or the associated (G,H) =
(Gg,Hh)) is non-exceptional if

∣

∣

∣

∣

H

G

∣

∣

∣

∣

6= |c|.(1.5)

Our first principal result answers affirmatively Favre’s general question [Fav16, Problem 1] in
our context by establishing the continuous (and indeed harmonic) extendibility of the potential
t 7→ L(ft) − α log |t|−1 across t = 0, with the concrete value α = 1/2, for any non-exceptional
(g, h).

Theorem 1. (i) Pick (g0, h0) as in (1.1). Then for every β > 0 small enough, we have

log
(1− β) · 4

∣

∣|H/G| − |c|
∣

∣

1/2

|G|1/2 ≤ L(ft)−
1

2
log |t|−1 ≤ log

(1 + β) · 4
(

|H/G|+ |c|
)1/2

|G|1/2(1.6)

for every t ∈ D
∗ close enough to 0 and every (g, h) close enough to (g0, h0), recalling that

ft = ft(z, w; g, h) and (G,H) = (Gg,Hg). In particular, for every (g, h), the non-archimedean

Lyapunov exponent α associated to the meromorphic family (ft)t∈D∗ equals 1/2.
(ii) Pick a non-exceptional (g, h). Then for the algebraic family (ft)t∈D∗ in (1.2) associated

to this (g, h), the continuous and subharmonic function t 7→ L(ft)− (1/2) log |t|−1 is harmonic

on 0 < |t| ≪ 1 and extends harmonically across t = 0, satisfying

lim
t→0

(

L(ft)−
1

2
log |t|−1

)

= log
4max

{

|c|, |H/G|
}1/2

|G|1/2 .(1.7)

Notice that a similar continuous extendability result has been obtained for meromorphic fam-
ilies of polynomials in one variable by Favre–Gauthier [FG17] and that examples of discontinuity
at t = 0 have been obtained in [DO17] for meromorphic families of rational functions on P

1.
2



1.2. Accumulation of the bifurcation locus to the Hénon locus. For a holomorphic
family of rational functions on P

1, the theory of J-stability/bifurcation, originating from the
seminal papers by Mañé-Sad-Sullivan [MSS83], Lyubich [Lyu83], DeMarco [DeM01, DeM03], is
now classical. A generalization of this theory to holomorphic families of holomorphic endomor-
phisms of Pk parametrized by a complex manifold M was recently developed in [BBD18, Bia16].
There the bifurcation locus in the parameter space M is defined as the support of the bifurca-

tion current on M ; the bifurcation current on M is the ddc of the Lyapunov exponent function
λ 7→ L(fλ) :=

∫

Pk log |detDfλ|µfλ on M , where µfλ is the unique maximal entropy measure of

fλ on P
k. In dimension k = 2, if in addition M is simply connected, then the bifurcation locus

coincides with, e.g., the complement in M of the locus where all the repelling cycles of fλ in the
second Julia sets Jfλ of fλ move holomorphically. We refer to [BBD18] for more details, and to
[Bia16] for an analogous (slightly weaker) characterization valid in any dimension k.

Let us now focus on the family

ft,G,H(z, w) :=

(

w
cz + p(w)

)

+ t

(

Gz2

Hz2

)

, (t,G,H) ∈ D
∗ × C

∗ × C,(1.8)

of quadratic polynomial endomorphisms of C2, which are regular for every t ∈ D
∗ since the

leading homogeneous term (Gz2, w2 +Hz2) of ft,G,H maps only (0, 0) to (0, 0).
The following is our second principal result.

Theorem 2. The bifurcation locus in the parameter space D
∗ × C

∗ × C of the family (ft,G,H)
accumulates to {t = 0} in D× C

∗ × C tangentially to the locus |H/G| = |c| in D
∗ × C

∗ × C.

The set Hol2(P
2) of all quadratic holomorphic endomorphisms of P2 is a Zariski open subset

in P
N2 , where N2 = 3 · 4!/(2!2!) − 1 = 17, in the coefficients parametrization, and in turn

is regarded as the parameter space of the holomorphic family of (all) quadratic holomorphic
endomorphisms of P2. We also note that all Hénon maps live in P

N2 \Hol2(P2) in the coefficients
parametrization.

The following immediate consequence of Theorem 2 is also one of our principal results, and
answers affirmatively a question by Johan Taflin.

Corollary. The Hénon locus in P
N2 \ Hol2(P

2) is accumulated by the bifurcation locus of

Hol2(P
2).

The proof of Theorem 2 (so that of Corollary) is based on Theorem 1 and is purely analytical.
In former studies, the presence of bifurcations has been established by means of more geometric
arguments; see e.g. [BT17, Duj17, BB16, Taf17, AB18, Bie18].

1.3. Individual Lyapunov exponents. It follows from a result by Pham [Pha05] that, for
any holomorphic family (ft)t∈M parametrized by a complex manifold M of holomorphic en-
domorphisms of P

k of a given degree d > 1, if we denote by χ1(ft) ≥ · · · ≥ χk(ft) all the
individual Lyapunov exponents of ft for each t ∈ M , then for every j ∈ {1, . . . , k}, the function
t 7→ ∑j

ℓ=1 χℓ(ft) on M is plurisubharmonic.
Let us focus on our family (ft) as in (1.2). Recall that the function t 7→ L(ft) ≡ χ1(ft)+χ2(ft)

is continuous and subharmonic on 0 < |t| ≪ 1, so by the above result by Pham, the function
t 7→ χ1(ft) is subharmonic and the function t 7→ χ2(ft) is lower semicontinuous, in general. We
conclude this introduction with the following precision of Theorem 1(ii).

Theorem 3. Pick a non-exceptional (g, h). Then for the algebraic family (ft)t∈D∗ in (1.2)
associated to this (g, h), the functions t 7→ χ1(ft)− 1

2 log |t|−1 and t 7→ χ2(ft) are harmonic on

0 < |t| ≪ 1 and extend harmonically across t = 0, satisfying

lim
t→0

(

χ1(ft)−
1

2
log |t|−1

)

= log
2max

{

|c|, |H/G|
}1/2

|G|1/2 and lim
t→0

χ2(ft) = log 2.

The proof of the harmonicity of χ1(ft), χ2(ft) is based on the full strength of Berteloot–
Dupont–Molino’s approximations, that is, approximations of not only χ1(ft) + χ2(ft)(= L(ft))
but also χ1(ft) [BDM08, Theorem 1.5].
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1.4. Organization of the article. In Section 2, we establish a key estimate, which is a devel-
opment of an estimate appearing in [Duj17]. In Section 3, we show Theorem 1. In Section 4,
we show Theorem 2 (and Corollary) using Theorem 1(i). We also include a comparison of our
analysis here with the study of bifurcations of quadratic polynomial skew products in [AB18]. In
Section 5, we show Theorem 3, which is a precision of Theorem 1(ii). To make such a precision,
we also recall some standard facts from ergodic theory as well as Berteloot–Dupont–Molino’s
approximations.

2. A key lemma

In this section we show a lemma concerning the position of the (second) Julia set Jft of
ft, which is needed in the sequel and inspired by [Duj17, Lemma 5.2]. From now on, set
B(r) := {z ∈ C : |z| < r} for every r > 0 and A(r, s) := {z ∈ C : r < |z| < s} for any r, s ∈ R

satisfying 0 < r < s; as convention, we also set A(0, s) := B(s) for every s > 0.

Lemma 2.1. Pick (g, h) = (g0, h0) as in (1.1). Then there is β ∈ (0, 1/2) so small that for every

(g, h) close enough to (g0, h0) and every t ∈ D
∗ close enough to 0, recalling that ft = ft(z, w; g, h)

and (G,H) = (Gg,Hg) and setting

Ut = Ut(β; g, h) := A

(

1− β

|Gt| ,
1 + β

|Gt|

)

×B

(

(

|H/G| + |c|
)1/2

(1 + 2β)

|Gt|1/2
)

and

Vt = Vt(β; g, h) := A

(

1− β

|Gt| ,
1 + β

|Gt|

)

×A

(

∣

∣|H/G| − |c|
∣

∣

1/2
(1− 2β)

|Gt|1/2 ,

(

|H/G|+ |c|
)1/2

(1 + 2β)

|Gt|1/2
)

,

we have f−1
t (Ut) ⋐ Vt, and in particular, Jft ⊂ Vt.

Proof. Pick (g0, h0). Let us see the former assertion. Suppose to the contrary that there exist

• a sequence (βn) in (0, 1) tending to 0 as n → ∞,
• a sequence ((gn, hn)) tending to (g0, h0) as n → ∞,
• a sequence (tn) in D

∗ tending to 0 as n → ∞, and
• a sequence ((zn, wn)) in C

2

such that for every n ∈ N, we have (zn, wn) ∈ C
2 \ Vtn(βn; gn, hn) and

(un, vn) := ftn(zn, wn; gn, hn) ∈ Utn(βn; gn, hn).

Claim. As n → ∞, wn + tng̃n(zn, wn) = o
(

tnz
2
n

)

.

Proof. Otherwise, taking a subsequence if necessary, there exists C > 0 such that for every
n ∈ N,

|wn + tng̃n(zn, wn)| ≥ C|tnz2n|.(2.1)

Let us first see that, taking a further subsequence if necessary, there exists C ′ > 0 such that for
every n ∈ N,

max{|wn|, |tnznwn|, |tnw2
n|} ≥ C ′max{|tnz2n|, |tn|−1};(2.1′)

indeed, taking a subsequence if necessary, there are exactly two possibilities;
(a) if |tnz2n| ≥ |tn|−1 for every n ∈ N, then also by (2.1), we have |wn + tng̃n(zn, wn)| ≥

Cmax{|tnz2n|, |tn|−1}, so if n ≫ 1, then max{1, |gzw|, |gww|/2}max{|wn|, |tnznwn|, |tnw2
n|} ≥

Cmax{|tnz2n|, |tn|−1} (recall g̃n(z, w) := gn(z, w) −Gnz
2 and gzw, gww ∈ C), which yields (2.1′)

in this case.
(b) If |tnz2n| ≤ |tn|−1 for every n ∈ N but, to the contrary, max{|wn|, |tnznwn|, |tnw2

n|} =
o(t−1

n ) as n → ∞, then |zn| ≤ |tn|−1 for every n ∈ N, and then under the assumption (2.1),
recalling g̃n(z, w) := gn(z, w)−Gnz

2, we also have tnz
2
n = o(t−1

n ) as n → ∞, that is, zn = o(t−1
n )

as n → ∞. Then we must have un = wn + tng(zn, wn) = o(t−1
n ) as n → ∞, which contradicts

(un, vn) ∈ Utn(βn; gn, hn) for every n ∈ N. Hence (2.1′) also holds in this case.
4



Once (2.1′) is at our disposal, we can deduce a contradiction as follows. Taking a subsequence
if necessary, there are exactly three possibilities.

(1) If |wn| ≥ max{|tnznwn|, |tnw2
n|} for every n ∈ N, then by (2.1′), we have |wn| ≥ C ′|tn|−1

and, moreover, |zn|2 ≤ |t−1
n wn|/C ′ ≤ (|wn|/C ′)2, that is, |zn| ≤ |wn|/C ′ for every n ∈ N. Then

vn := czn + p(wn) + tnh(zn, wn) = (1 + o(1))w2
n as n → ∞, so by (un, vn) ∈ Utn(βn; gn, hn), we

have wn = O(|tn|−1/4) as n → ∞. Then we must have 0 < C ′ ≤ |t−1
n wn| = O(|tn|3/4) → 0 as

n → ∞, which is impossible.
(2) If |tnznwn| ≥ max{|wn|, |tnw2

n|} for every n ∈ N, then for every n ∈ N, we have |zn| ≥
|tn|−1 and, by (2.1′), also have |zn| ≤ |wn|/C ′, so that |tnz2n| ≤ |tnw2

n|/(C ′)2 and |tnznwn| ≤
|tnw2

n|/C ′. Then vn := czn + p(wn) + tnh(zn, wn) = (1 + o(1))w2
n as n → ∞, so by (un, vn) ∈

Utn(βn; gn, hn), we have wn = O(|tn|−1/4) as n → ∞. Then we must have 1 ≤ |tnzn| ≤
|tnwn|/C ′ = O(|tn|3/4) → 0 as n → ∞, which is impossible.

(3) If |tnw2
n| ≥ max{|wn|, |tnznwn|} for every n ∈ N, then for every n ∈ N, we have |wn| ≥

|tn|−1, and by (2.1′), also have |wn| ≥
√
C ′|zn|, so that |tnz2n| ≤ |tnw2

n|/C ′ and |tnznwn| ≤
|tnw2

n|/
√
C ′. Then vn := czn + p(wn) + tnh(zn, wn) = (1 + o(1))w2

n as n → ∞, so by (un, vn) ∈
Utn(βn; gn, hn), we have wn = O(|tn|−1/4) as n → ∞. Then we must have 1 ≤ |tnwn| =

O(|tn|3/4) → 0 as n → ∞, which is impossible. Hence the claim holds. �

For every n ∈ N large enough, by the equality un = wn + Gntnz
2
n + tng̃n(zn, wn) and the

above Claim, we have zn = (1+o(1))(un/(Gntn))
1/2 as n → ∞, so that recalling that (un, vn) ∈

Utn(βn; gn, hn) and βnց 0, we have

zn ∈ A

(

(1 + o(1))(1 − βn)
1/2

|Gntn|
,
(1 + o(1))(1 + βn)

1/2

|Gntn|

)

⊂ A

(

1− βn
|Gntn|

,
1 + βn
|Gntn|

)

.

Moreover, since vn = czn + p(wn) + tnh(zn, wn) and (un, vn) ∈ Utn(βn; gn, hn) for every n ∈ N,
we have

w2
n + c1wn = vn − tnh(zn, wn)− czn − c2 = −tnHnz

2
n − czn + o(t−1

n ) as n → ∞.

Since (zn, wn) 6∈ Vtn(βn; gn, hn) for every n ∈ N, taking a subsequence if necessary, there are
two possibilities;

(i) if |wn| ≤
∣

∣|Hn/Gn| − |c|
∣

∣

1/2
(1 − 2βn)/|Gntn|1/2 for every n ∈ N, then wn = O(t

−1/2
n ) as

n → ∞, and then w2
n = −tnHnz

2
n − czn + o(t−1

n ) as n → ∞.

(ii) Alternatively, if |wn| ≥ (|Hn/Gn| + |c|)1/2(1 − 2βn)/|Gntn|1/2 for every n ∈ N, then
wn = o(w2

n) as n → ∞, and then w2
n = (−tnHnz

2
n − czn + o(t−1

n ))/(1 + o(1)) as n → ∞.
So in any case,

w2
n = (1 + o(1))(−tnHnz

2
n − czn + o(t−1

n )) as n → ∞.

Hence recalling that βnց 0, we also have
∣

∣|Hn/Gn| − |c|
∣

∣(1− 2βn)
2

|Gntn|
<|wn|2<

(

|Hn/Gn|+ |c|
)

(1 + 2βn)
2

|Gntn|
for every n ∈ N large enough. Hence we must have (zn, wn) ∈ Vtn(βn; gn, hn). This gives the
desired contradiction.

Once the former assertion is at our disposal, the latter assertion follows from, e.g., the fact
that µft = limn→∞ 2−2n(fn

t )
∗Ω weakly on C

2 for any smooth probability measure Ω compactly
supported in C

2 (see for instance [DS10]). �

3. Proof of Theorem 1

Let us see the former assertion (i). Pick (g, h) = (g0, h0) as in (1.1). By Lemma 2.1, we can
fix β ∈ (0, 1/2) so small that for every (g, h) close enough to (g0, h0) and every t ∈ D

∗ close
5



enough to 0, recalling that ft = ft(z, w; g, h), we have Jft ⊂ Vt(= Vt(β; g, h)), so that

L(ft) =

∫

Vt

log |detDft|µft(z, w).

For every (z, w) ∈ C
2, we compute as

det(Dft)(z,w) = det

(

tgz 1 + tgw
c+ thz p′(w) + thw

)

= det

(

2tGz + tg̃z 1 + tgw
c+ thz (2w + c1) + thw

)

= 4tGzw + 2tGzc1 + tg̃z(p
′(w) + thw)− (1 + tgw)(c + thz)

= 4tGzw ·
(

1 +
2tGzc1 + tg̃z(p

′(w) + thw)− (1 + tgw)(c + thz)

4tGzw

)

.

From the definition of Vt, we have

4(1 − β)
∣

∣|H/G| − |c|
∣

∣

1/2
(1− 2β)

|G|1/2|t|1/2 ≤ |4tGzw| ≤ 4(1 + β)
(

|H/G| + |c|
)1/2

(1 + 2β)

|G|1/2|t|1/2 on Vt,

and moreover, supVt
|det(Dft)(z,w)− 4tGzw| = O(1) as t → 0, uniformly on (g, h) near (g0, h0).

Hence increasing β slightly if necessary, we have

4(1 − β)
∣

∣|H/G| − |c|
∣

∣

1/2
(1− 2β)

|G|1/2|t|1/2 ≤ |det(Dft)(z,w)| ≤
4(1 + β)

(

|H/G| + |c|
)1/2

(1 + 2β)

|G|1/2|t|1/2 on Vt

(3.1)

for every t ∈ D
∗ close enough to 0 and every (g, h) close enough to (g0, h0). In particular, (1.6)

holds, increasing β slightly if necessary.
Now let us see the convergence assertion in the latter assertion (ii). Pick a non-exceptional

(g, h). From the above computation of det(Dft)(z,w), we also have

L(ft)−
1

2
log |t|−1 =

∫

Vt

log |4tGzw|µft(z, w) −
1

2
log |t|−1 + o(1) as t → 0,

and we compute as
∫

Vt

log |tzw|µft(z, w) −
1

2
log |t|−1 = −3

2
log |t|−1 +

∫

Vt

log |z|µft(z, w) +

∫

Vt

log |w|µft(z, w)

=− 3

2
log |t|−1 +

∫

Vt

log |z|µft(z, w) +
1

2

∫

Vt

log |w|2µft(z, w)

=− 3

2
log |t|−1 +

∫

Vt

log |z|µft(z, w) +
1

2

∫

Vt

(

log |cz + tHz2|+ log

∣

∣

∣

∣

1 +
o(t−1)

cz + tHz2

∣

∣

∣

∣

)

µft(z, w)

=
3

2

(

∫

Vt

log |z|µft(z, w) − log |t|−1
)

+
1

2

∫

Vt

log |c+ tHz|µft(z, w) +
1

2

∫

Vt

log

∣

∣

∣

∣

1 +
o(t−1)

cz + tHz2

∣

∣

∣

∣

µft(z, w),

where setting (u, v) := ft(z, w) ∈ Jft ⊂ Vt, we also used the estimate

w2 = −th(z, w) − cz + v − c1w − c2 = −tHz2 − cz+o(t−1) as t → 0.

Since (1− β) ≤ |tGz| ≤ (1 + β) on Vt, we have
∫

Vt

log |z|µft(z, w) − log |t|−1 = − log |G|+o(1) as t → 0

(as β → 0). Similarly, under the assumption that (g, h) is non-exceptional, since

0 <

∣

∣|c| − |H/G|
∣

∣

|G| ≤ lim inf
t→0

∣

∣

∣

∣

cz + tHz2

t−1

∣

∣

∣

∣

≤ lim sup
t→0

∣

∣

∣

∣

cz + tHz2

t−1

∣

∣

∣

∣

≤ |c|+ |H/G|
|G|
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(as β → 0), we have
∫

Vt

log

∣

∣

∣

∣

1 +
o(t−1)

cz + tHz2

∣

∣

∣

∣

µft(z, w)= o(1) as t → 0.

It remains to show that
∫

Vt
log |c+ tHz|µft(z, w) = logmax{|c|, |H/G|}+o(1) as t → 0. Under

the (linear) coordinates system change (z, w) 7→ (Z,W ) = (Gtz, tw) on C
2, setting

f̃t(Z,W ) :=

(

Z
W

)

◦ ft ◦
(

Z
W

)−1

=





Z2 +GW +Gt2g̃
(

Z
Gt ,

W
t

)

tp
(

W
t

)

+ c Z
Gt + th

(

Z
Gt ,

W
t

)



 ,

µ̃t :=µf̃t
=

(

Z
W

)

∗

µft ,

Ũt :=

(

Z
W

)

(Ut) = A(1− β, 1 + β)×B

(

(

|H/G|+ |c|
)1/2

(1 + 2β)

|G|1/2 |t|1/2
)

, and

Ṽt :=

(

Z
W

)

(Vt)

=A(1 − β, 1 + β)×A

(

∣

∣|H/G| − |c|
∣

∣

1/2
(1− 2β)

|G|1/2 |t|1/2,
(

|H/G|+ |c|
)1/2

(1 + 2β)

|G|1/2 |t|1/2
)

and letting p1 : (Z,W ) 7→ Z be the projection to the first coordinate, we compute as

∫

Vt

log |c+ tHz|µft(z, w) =

∫

Ṽt

(

Z
W

)

∗

(log |c+ tHz|µft(z, w))

=

∫

Ṽt

log

∣

∣

∣

∣

c+
H

G
Z

∣

∣

∣

∣

((

Z
W

)

∗

µft

)

(Z,W ) =

∫

Ṽt

log

∣

∣

∣

∣

c+
H

G
Z

∣

∣

∣

∣

µ̃t(Z,W )

=

∫

A(1−β,1+β)
log

∣

∣

∣

∣

c+
H

G
Z

∣

∣

∣

∣

((p1)∗µ̃t)(Z).

Set S1
Z := {Z ∈ CZ : |Z| = 1}. We claim that limt→0(p1)∗µ̃t = mS1

Z
weakly on CZ ; let ν

be any weak limit point of µ̃t on C
2 as t → 0, which is supported by S1

Z (as β → 0). Set

D̃t := Ũt ∩ (R>0 × C). For every n ∈ N, if 0 < |t| ≪ 1, then by (3.1), we have detDft 6= 0

on Vt (under the assumption that (g, h) is non-exceptional), so that f̃n
t : f̃−n

t (Ũt) → Ũt is

an unbranched covering of degree 22n, f̃−n
t (D̃t) consists of 22n analytic disks, f̃−n

t (Ũt \ D̃t)

consists of 22n components, and for each component U of f̃−n
t (Ũt \ D̃t), µ̃t(U) = 1/22n since

µ̃t(Ũt \ D̃t) = 1 and f̃∗
t µ̃t = 22µ̃t on C

2; moreover, as t → 0, f̃−n
t (D̃t) tends to the set of all

2n-th roots of unity in CZ and for each component V of S1
Z \ {2n-th roots of unity}, exactly

22n/2n components of f̃−n
t (Ũt \ D̃t) tend to V (as β → 0). Hence for every n ∈ N and every

component V of S1
Z \ {2n-th roots of unity}, we have ν(V ) = (22n/2n) · 1/22n = 1/2n, which

implies that (p1)∗ν = mS1

Z
on CZ (by Caratheodory’s theorem). Hence the claim holds.

Once this claim is at our disposal, recalling also Jft ⊂ Vt, we have the desired convergence

lim
t→0

∫

A(1−β,1+β)
log

∣

∣

∣

∣

c+
H

G
Z

∣

∣

∣

∣

((p1)∗µ̃t)(Z) =

∫

CZ

log

∣

∣

∣

∣

c+
H

G
Z

∣

∣

∣

∣

mS1

Z
(Z) = logmax

{

|c|,
∣

∣

∣

∣

H

G

∣

∣

∣

∣

}

since the function Z 7→ log
∣

∣c+(H/G)Z
∣

∣ is continuous near S1
Z under the assumption |H/G| 6= |c|.

Finally, let us see the harmonicity assertion of t 7→ L(ft) − (1/2) log |t|−1 on 0 < |t| ≪ 1 in
the latter assertion (ii). If 0 < |t| ≪ 1, then by f−1

t (Ut) ⋐ Vt and (3.1) (and the assumption
that |H/G| 6= |c|), we have (not only Jft ⊂ Vt but also) Vt ∩

⋃

n∈N∪{0} f
n
t (Cft) = ∅, where

Cft := {p ∈ C
2 : det(Dft)p = 0} is the critical set of ft. In particular, by [BBD18, (F)⇒(B) in

Theorem 1.1], the function t 7→ L(ft) is harmonic on 0 < |t| ≪ 1. �
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4. Proof of Theorem 2

Let us first note that by an argument similar to that in the final paragraph in the proof of
Theorem 1, for every (G0,H0) ∈ C

∗ × C satisfying the assumption |H0/G0| 6= |c|, there exists
0 < r0 ≪ 1 such that for every (G,H) close enough to (G0,H0) and every t ∈ D

∗
r0 , the parameter

(t,G,H) is not in the bifurcation locus in the parameter space D∗×C
∗×C of the family (ft,G,H).

In particular, for every G0 ∈ C
∗, every sequence (tn) in D

∗ tending to 0 as n → ∞, and every
bounded sequence (Hn) in C, if for every n ∈ N, the function H 7→ L(ftn,G0,H) on C is not
harmonic on any open neighborhood of H = Hn, then limn→∞ |Hn/G0| = |c|.

Let us next see that for every G0 ∈ C
∗ and every R > 2|cG0|, if 0 < |t| ≪ 1, then the

function H 7→ L(ft,G0,H) is not harmonic on {|H| < R}; otherwise, there exist R > 2|cG0|
and a sequence (tn) in D

∗ tending to 0 as n → ∞ such that for every n ∈ N, the function
H 7→ L(ftn,G0,H) is harmonic on the open disk {|H| < R}. Then using the estimate (1.6) of
L(ft,g0,0) for 0 < |t| ≪ 1, the mean value theorem for the harmonic functions H 7→ L(ftn,G0,H)
on {|H| < R}, and the (lower) estimate (1.6) of L(ft,G0,H) for 0 < |t| ≪ 1, which holds uniformly
on the circle {|H| = R}, we must have

log
4|c|1/2
|G0|1/2

= lim
n→∞

(

L(ftn,G0,0)−
1

2
log |tn|−1

)

= lim
n→∞

(

∫ 2π

0
L
(

ftn,G0,Reiθ

) dθ

2π
− 1

2
log |tn|−1

)

≥ log
4
∣

∣R/|G0| − |c|
∣

∣

1/2

|G0|1/2
> log

4|c|1/2
|G0|1/2

(as β → 0), which is impossible. Now the proof of Theorem 2 is complete. �

We conclude this section with a description of similarities between Theorem 2 and one of
the main results in [AB18], where the accumulation of the bifurcation locus to the hyperplane
at infinity for holomorphic families of quadratic polynomial skew products on C

2 has been
completely described.

A comparison with the bifurcation of polynomial skew products. Let us introduce in
the family (1.8) (after the coordinate change (z, w) 7→ (Gtz,w)) an extra parameter η ∈ {0, 1}
as

(4.1) ft,G,H,η(z, w) :=

(

z2 + η · tGw
w2 + H

tG2 z
2 + c

tGz

)

,

so that the family (1.8) (after the above coordinate change) corresponds to the choice η = 1 of
the parameter η. In the case η = 0, we get a family of regular quadratic polynomial skew products

on C
2 of the form studied in [AB18]. It is there proved by a method different from here and

based on the characterization of stability by means of the boundedness of the critical orbits that
the bifurcation locus in the parameter space C

3 of the family (z, w) 7→ (z2, w2 +Az2 +Bz+C)
of quadratic polynomial skew products on C

2 accumulates to the subset

{[A,B,C] ∈ P
2
∞ : Az2 +Bz +C = 0 for some z ∈ S1}

in the hyperplane at infinity P
2
∞ of C3, see [AB18, Theorem C]. Setting η = 1, A = H

tG2 , B = c
tG ,

and C = 0, the condition that Az2 +Bz + Cz = 0 for some z ∈ C reduces to

c+
H

G
z = 0 for some z ∈ S1.

This is equivalent to the bifurcation condition |H/G| = |c| that we found in Theorem 2.

The topologies of the (second) Julia sets. In [AB18, Theorem D], hyperbolic components
in the parameter space C3 of the family (z, w) 7→ (z2, w2+Az2+Bz+C) of quadratic polynomial
skew products on C

2 near the hyperplane at infinity P
2
∞ are also classified; the proof was based

on a monodromy argument, and distinguished hyperbolic components in terms of the topologies
of the (second) Julia sets.
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In our situation η = 1 in (4.1), by a similar monodromy argument, it is also possible to
observe that for every G0 ∈ C

∗, the topologies of the (second) Julia set Jft,G,H,1
of ft,G,H,1 at

parameters |H| ≪ 1 and |H| ≫ 1 and t ∈ D
∗ close enough to 0 are incompatible, so that the

two kinds of parameters (G0,H, t0) for |H| ≪ 1 and H ≫ 1 and 0 < |t0| ≪ 1 cannot belong
to the same hyperbolic component in the parameter space C of the family (ft0,G0,H)H∈C (notice
that this is not enough to provide a proof of Theorem 2).

Proposition 4.1. Let C be a Cantor set. Then for every (G0,H0) ∈ C
∗×C, the following hold;

(i) when |H0| ≪ 1, for every t ∈ D
∗ close enough to 0 and every (G,H) close enough to

(G0,H0), Jft,G,H
is a suspension of C set over S1.

(ii) when |H0| ≫ 1, for every t ∈ D
∗ close enough to 0 and every (G,H) close enough to

(G0,H0), Jft,G,H
is homeomorphic to S1 × C.

The proof is done by an argument similar to that in [AB18, Section 7] for the case of poly-
nomial skew products, and we would thus omit it.

5. Proof of Theorem 3

Pick a non-exceptional (g, h) and let ft = ft(z, w; g, h). Set Cη := {(x, y) ∈ C
2 : |y| > η|x| >

0} for each η > 0. Recall that ‖ · ‖ denotes the Euclidean norm on C
2 and let p2(z, w) = w be

the projection to the second coordinate.

Claim. For every δ ∈ (0, 1), there exists η0 > 0 so large that for every t ∈ D
∗ close enough to

0 and every (z, w) ∈ Jft, the subset Cη0 is invariant under (Dft)(z,w), that is, (Dft)(z,w)(Cη0) ⊂
Cη0 , and for every (x, y) ∈ Cη0 ,

(1− δ) · |2w| ≤
∥

∥(Dft)(z,w)(x, y)
∥

∥

‖(x, y)‖ ≤ (1 + δ) · |2w|,(5.1)

so in particular that, for every n ∈ N,

(

2(1− δ)
)n

n−1
∏

j=0

∣

∣p2(f
j
t (z, w))

∣

∣ ≤
∥

∥D(fn
t )(z,w)(x, y)

∥

∥

‖(x, y)‖ ≤
(

2(1 + δ)
)n

n−1
∏

j=0

∣

∣p2(f
j
t (z, w))

∣

∣.(5.1′)

Proof. For every α ∈ C, every t ∈ D
∗, and every (z, w) ∈ C

2, we compute as

(Dft)(z,w)

(

1
α

)

=

(

2tGz + tg̃z 1 + tgw
c+ thz (2w + c1) + thw

)(

1
α

)

=

(

2tGz + tg̃z + (1 + tgw)α
c+ thz + (2w + c1 + thw)α

)

.

By Lemma 2.1, for every β ∈ (0, 1) small enough, there exists η0 > 0 so large that for every
t ∈ D

∗ close enough to 0, every (z, w) ∈ Jft , and every (1, α) ∈ Cη0 , we have (Jft ⊂ Vt and
moreover) the estimates

|2tGz + tg̃z + (1 + tgw)α| ≤(1 + 4−1β) · (1 + |gzw/G|)|α| and

(1− 4−1β) · 2|wα| ≤ |c+ thz + (2w + c1 + thw)α| ≤(1 + 4−1β) · 2|wα|.
So, in particular

(1− β) · 2|w|
1 + |gzw/G| ≤

|c+ thz + (2w + c1 + thw)α|
|2tGz + tg̃z + (1 + tgw)α|

and

(1− 4−1β)|2wα| ≤
∥

∥(Dft)(z,w)(1, α)
∥

∥ ≤ (1 + 4−1β)
(1 + |gzw/G|

|2w| + 1
)

|2wα|.

Noting also that inf(z,w)∈Vt
|w| = O(t−1/2) as t → 0 (under the assumption that (g, h) is non-

exceptional), the invariance (Dft)(z,w)(Cη0) ⊂ Cη0 holds and, for every δ ∈ (0, 1), we obtain the
desired estimate (5.1), decreasing β ∈ (0, 1) and increasing η0 > 0 if necessary. �
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Let us first see the final convergence assertion on χ1(ft), χ2(ft) as t → 0. Recall two con-
vergence results from ergodic theory. For 0 < |t| ≪ 1, by the Oseledec multiplicative ergodic

theorem, for µft-almost every p ∈ C
2, the limit Λp := limn→∞

(

(Dfn
t )

∗
p(Dfn

t )p
)1/(2n)

exists in

M(2,C2) with respect to the operator norm topology and has the two individual Lyapunov
exponents χ1(ft) ≥ χ2(ft) of ft as the two eigenvalues. Moreover, there is a canonical filtration
C
2 ⊃ E2,p ⊃ {0} of C2 by the invariant subspace E2,p under Λp such that

lim
n→∞

1

n
log ‖D(fn

t )p(v)‖ =

{

χ1(ft) for every v ∈ C
2 \ E2,p,

χ2(ft) for every v ∈ E2,p \ {0}.
On the other hand, for every 0 < |t| ≪ 1, by the Birkhoff ergodic theorem, for µft-almost every
(z, w) ∈ C

2, we also have

lim
n→∞

1

n

n−1
∑

j=0

log
∣

∣p2(f
j
t (z, w))

∣

∣ =

∫

C2

log |w|µft(z, w).

Once the Claim and the above two convergence results from ergodic theory are at our disposal,
for every δ ∈ (0, 1), there is η0 > 0 so large that for every 0 < |t| ≪ 1, we have

∣

∣

∣

∣

χ1(ft)− log 2−
∫

Vt

log |w|µft(z, w)

∣

∣

∣

∣

≤ log(1− δ)−1.

On the other hand, in the proof of Theorem 1(ii), we have already seen that
∫

Vt

log |w|µft(z, w) −
1

2
log |t|−1

=
1

2

(
∫

Vt

log |z|µft(z, w) − log |t|−1

)

+
1

2

∫

Vt

(

log |c+ tHz|+ log

∣

∣

∣

∣

1 +
o(t−1)

cz + tHz2

∣

∣

∣

∣

)

µft(z, w)

= −1

2
log |G|+ 1

2
logmax

{

|c|,
∣

∣

∣

∣

H

G

∣

∣

∣

∣

}

+ o(1) as t → 0.

Hence we have the convergence

lim
t→0

(

χ1(ft)−
1

2
log |t|−1

)

= log
2max{|c|, |H/G|}1/2

|G|1/2
(as δ → 0), and in turn have the convergence χ2(ft) = L(ft)− χ1(ft) → log 2 as t → 0, also by
Theorem 1(ii).

Now let us see the harmonicity assertion on t 7→ χ1(ft), χ2(ft). Recall that by Berteloot–
Dupont–Molino [BDM08, Theorem 1.5], for every 0 < |t| ≪ 1,

{

limn→∞ 2−2n
∑

p∈R(fn
t )∩Jft

1
n log ‖D(fn

t )p‖ = χ1(ft) and

limn→∞ 2−2n
∑

p∈R(fn
t )∩Jft

1
n log |det(D(fn

t )p)| = χ1(ft) + χ2(ft),
(5.2)

where we denote by R(fn
t ) the set of all repelling fixed points of fn

t in C
2 and by ‖D(fn

t )p‖ the
operator norm of the differential D(fn

t )p for each p ∈ R(fn
t ) ∩ Jft .

We also claim that there is r0 ∈ (0, 1) so small that for every t ∈ D
∗
r0 , every n ∈ N, and

every p ∈ R(fn
t ) ∩ Jft , the absolute values of the two eigenvalues of the differential D(fn

t )p are
different and > 1, so in particular letting λ1,p,n(t), λ2,p,n(t) be the two eigenvalues of D(fn

t )p
such that |λ1,p,n(t)| > |λ2,p,n(t)|, the above approximations in (5.2) yield

{

limn→∞ 2−2n
∑

p∈R(fn
t )∩Jft

1
n log |λ1,p,n(t)| = χ1(ft) and

limn→∞ 2−2n
∑

p∈R(fn
t )∩Jft

1
n log |λ2,p,n(t)| = χ2(ft);

(5.2′)

indeed, by the above Claim, fixing δ ∈ (0, 1) and then η0 > 0 large enough, for every 0 < |t| ≪ 1
and every p = (z, w) ∈ R(fn

t )∩Jft , the Möbius transformation A induced by D(fn
t )p ∈ GL(2,C)

on the projectivization P
1 of C2 \{(0, 0)} maps the open spherical disk Dη0 in P

1 corresponding
to the cone Cη0 ∪ {(x, y) : x = 0} minus {(0, 0)} to a relatively compact subset in Dη0 . This
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implies the existence of a fixed point of A in Dη0 , and in turn that of an eigenvector v1 of

D(fn
t )p in Cη0 . Setting (zj , wj) := f j−1

t (p) for each j ∈ {1, . . . , n}, the eigenvalue λ1 of D(fn
t )p

associated to v1 satisfies 2(1 + δ)|w1 · · ·wn|1/n ≥ |λ1|1/n ≥ 2(1− δ)|w1 · · ·wn|1/n → ∞ as t → 0,
and the other eigenvalue λ2 of D(fn

t )p then satisfies

2 + o(1)

1 + δ
=

( n
∏

j=1

|4tGzjwj +O(1)|
2(1 + δ) · |wj |

)1/n

≤

≤ |λ2|1/n =

( |detD(fn
t )p|

|λ1|

)1/n

≤
( n
∏

j=1

|4tGzjwj +O(1)|
2(1− δ) · |wj |

)1/n

=
2 + o(1)

1− δ
as t → 0,

and both the divergence of |λ1|1/n and the bounds of |λ2|1/n as t → 0 are uniform on n, p. Hence
the claim holds.

Recall now that the function t 7→ L(ft) is harmonic on 0 < |t| ≪ 1 (seen in Theorem
1(ii)), so that by [BBD18, (B)⇒(A) in Theorem 1.1], for any simply connected subdomain D
in 0 < |t| ≪ 1, the set function t 7→ ⋃

n∈NR(fn
t ) ∩ Jft is regarded as a holomorphic motion

parametrized by D. Consequently, applying (a variant of) Harnack’s theorem (see e.g. [Ran95,
Theorem 1.3.10]) to the convergent sequences of positive harmonic functions on D in (5.2′),
both the functions t 7→ χ1(ft) and t 7→ χ2(ft) are harmonic on D. �
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