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ABSTRACT. Continuum Kac-Moody algebras have been recently introduced by the authors and O.
Schiffmann in [ASS18]. These are Lie algebras governed by a continuum root system, which can be
realized as uncountable colimits of Borcherds—-Kac-Moody algebras. In this paper, we prove that any
continuum Kac-Moody algebra g is canonically endowed with a non-degenerate invariant bilinear
form. The positive and negative Borel subalgebras form a Manin triple with respect to this pairing,
which allows to define on g a topological quasi-triangular Lie bialgebra structure. We then construct
an explicit quantization of g, which we refer to as a continuum quantum group, and we show that the

latter is similarly realized as an uncountable colimit of Drinfeld-Jimbo quantum groups.

Dedicated to Prof. Kyoji Saito on the occasion of his 75th birthday.

CONTENTS

Introduction
Kac-Moody algebras and quantum groups

Quantization of Lie bialgebras

Kac-Moody algebras

Quasi-triangular Lie bialgebras

Lie bialgebra structure on Kac-Moody algebras

Kac-Moody algebras by duality

Drinfeld-Jimbo quantum groups
Continuum Kac-Moody algebras

Vertex space

Topological quivers

Continuum Kac-Moody algebras

Colimit realization

The Lie algebras of the line and of the circle
The classical continuum r—matrix

Continuum free Lie algebras

Orthogonal coideals

Continuum Kac-Moody algebras by duality
Continuum quantum groups

Definition of continuum quantum groups

— O O O N

1
13
13
14
15
15
16
17
19
21
22
23
24
25
26
26

Key words and phrases. Continuum Kac-Moody algebras; topological quivers; continuum quantum groups; quantiza-
tion of Lie bialgebras.
The work of the first-named author is supported by the ERC Grant 637618. The work of the second-named author is
partially supported by World Premier International Research Center Initiative (WPI), MEXT, Japan, by JSPS KAKENHI

Grant number JP17H06598 and by JSPS KAKENHI Grant number JP18K13402.


http://arxiv.org/abs/1903.01413v1

2 A. APPEL AND E. SALA

5.2.  Colimit structure 28
5.3. Comparison with the quantum group of the line 28
5.4. Quasi-triangular bialgebra structure on continuum quantum groups 34
References 35

1. INTRODUCTION

Continuum Kac-Moody algebras have been recently introduced by the authors and O. Schiff-
mann in [ASS18]. Their definition is similar to that of Kac-Moody algebras, but they are con-
trolled by a continuum root system, arising from the combinatorics of connected intervals living
in a one—dimensional topological space. They are not Kac-Moody algebras themselves, but they
can be realized as uncountable colimits of symmetric Borcherds—-Kac-Moody algebras.

In this paper, we provide a gentle introduction to this new theory, avoiding the technicalities of
[ASS18], and we push further the study of these Lie algebras, providing two main contributions.
First, we prove that continuum Kac-Moody algebras have a canonical structure of (topologi-
cal) Lie bialgebras, which arises, as in the classical Kac-Moody case, from the construction of
a non—-degenerate invariant symmetric bilinear form. Then, we construct an explicit algebraic
quantization of these topological structures, which we call continuum quantum groups: they can
be similarly realized as uncountable colimits of Drinfeld-Jimbo quantum groups. Moreover, we
prove that, in the simplest cases of the line and the circle, they coincide with the quantum groups
constructed geometrically in [SS17] by the second-named author and O. Schiffmann via the theory
of Hall algebras. In [AKSS19], we adopt a similar approach to show that continuum quantum
groups admit analogous geometric realizations arising from Hall algebras.

In the remaining part of this introduction, we shall explain our work in more detail.

The continuum Kac-Moody algebra. The defining datum of a continuum Kac-Moody algebra
is a topological analogue of a quiver, defined as follows. Recall that the latter is just an oriented
graph Q = (Qy, Q1) with set of vertices Qp and a set of edges Q;. In a topological quiver, the
discrete set Qy is replaced by a vertex space X, which is, roughly, a Hausdorff topological space
locally modeled over R (cf. Definition 3.1). Examples of vertex spaces are the line R, the circle
S! = R/Z, smoothings of possibly infinite trees, or combinations of these. Thus, it is possible to
lift the notion of connected interval from R to X, in such a way that the set of all possible intervals
in X, denoted Int(X), is naturally endowed with two partially defined operations, that is, a sum
@, given by concatenation of intervals, and a difference ©, given by set difference whenever the
outcome is again in Int(X).

The set Int(X) comes naturally equipped with a set-theoretic non—-degenerate pairing (-|-) :
Int(X) x Int(X) — Z, defined as follows. On the space of locally constant, compactly supported,
left—continuous functions on IR, we consider a non-symmetric bilinear form given by:

(fr8) =2 f-(0)(g-(x) —g+(x)).

This restricts to Int(R), by identifying an interval a« with its characteristic function 1,. As before,
we lift it from R to X by decomposing every interval in X into an iterated concatenation of
elementary intervals in R. Finally, we define the Euler form (1o[1g) = (14, 1p) 4 (1g,14). Then,
the topological quiver of the vertex space X is precisely the datum Qx = (Int(X), &, &, (-, ), (-|-)).
Henceforth, we denote by fx the span of the characteristic functions 1,, « € Int(X).

Given a topological quiver Qx, together with O. Schiffmann, we construct in [ASS18] a Lie
algebra gx, which we refer to as the continuum Kac—Moody algebra of Qx, whose Cartan subalgebra
is generated by the characteristic functions of the intervals of X. The definition of gx mimics the
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usual construction of Kac-Moody algebras, with some fundamental differences controlled by the
partial operations of Qx. Namely, we first consider the Lie algebra gx over C, freely generated
by fx and the elements x5, « € Int(X), subject to the relations:

[GarCpl =0, [Ga,xp] == (alB) x5, [xf,x5] = uplu +acp (¥[op = Xpon) s

where &, =1, and a g = (—1)@h) . (a|B). Then, we set gx := §x/tx, where tx C §x is the sum
of all two-sided graded ! ideals having trivial intersection with fx.

In [ASS18], we show that the ideal vy is generated by certain quadratic Serre relations gov-
erned by the concatenation of intervals, thus generalizing Gabber—Kac theorem for continuum
Kac-Moody algebras (cf. [GK81]) and obtaining an explicit description of gx (cf. [ASS18, Thm. 5.17]
or Theorem 3.11 below).

Namely, gy is freely generated by the abelian Lie algebra fx and the elements x, a € Int(X),
subject to the following defining relations:

(1) Diagonal action: for a, B € Int(X),

Grxi] = £ (alB) - 2
(2) Double relations: for «, € Int(X),

[x;r, Xﬂ = 5043 Ca t+ T (x;é,g - X,E@a) ;
(3) Serre relations: for («, ) € Serre(X),

[Xf, x;ﬂ = iaa,a@ﬁ : x;t@/g .

Here, Serre(X) is the set of all pairs (a, ) € Int(X) x Int(X) such that one of the following occurs:

e « is contractible, and, for subintervals ' C a and ' C B with (B|p’) # 0 whenever
B’ # B, ' & B is either undefined or non-homeomorphic to S;

o xl Bie,n®pdoesnotexistandaNp=0a.

As mentioned earlier, gx can be equivalently realized as certain continuous colimits of Borcherds-
Kac-Moody algebras, further motivating our choice of the terminology. This is based on the
following observation. Let J = {ay }« be an irreducible finite set of intervals a € Int(X), i.e.,

(1) every interval is either contractible or homeomorphic to st

(2) giventwointervalsa, f € J, a # B, one of the following mutually exclusive cases occurs:
(a) a @ B exists;

(b) & @ B does not existand a N g = ©;
() a~S'and B C «.

Let A7 be the matrix given by the values of (-|-) on 7, i.e., (Aj)aﬁ = (a|B) for a, B € J. Note

that the diagonal entries of A 7 are either 2 or 0, while the only possible off-diagonal entries are
0,—1,—-2. Let Q 7 be the corresponding quiver with Cartan matrix A ;7. For example, we obtain
the following quivers.

IThe gradation is with respect to fx: we set deg(x) = +1, and deg(&,) = 0.
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Configuration of intervals Borcherds—Cartan diagram
&1 &2 &3 X1 &2 a3
—r *— 00—
&1 &3
\ X1 &2 a3
o<——
(1% T
&1
X1 &2
a2

Note, in particular, that any contractible elementary interval corresponds to a vertex of Q 7 with-
out loops, while any interval homeomorphic to S!, corresponds to a vertex having exactly one
loop.

There are two Lie algebras naturally associated to J:

(1) the Lie subalgebra g7 C gy generated by the elements {xi, & |« € J};
(2) the derived Borcherds-Kac-Moody algebra g% = g(A7)".

In [ASS18, Section 5.5], we show that g 7 and g”" are canonically isomorphic. In particular, gx
can be covered by Borcherds-Kac-Moody algebras. Moreover, we show that, given two compatible
irreducible sets 7, J’, there is an obvious embedding ¢ 7 7: g7 — g7, and the collection of all
such ¢’s is a direct system, so that we get a canonical isomorphism of Lie algebras (cf. [ASS18,
Cor. 5.18] or Corollary 3.14 below)

gx =~ colimyz g™ .

Continuum Lie bialgebras. It is well-known that any symmetrisable Borcherds—-Kac-Moody
algebra g is endowed with a symmetric non-degenerate bilinear form, inducing an isomorphism
of graded vector spaces b ~ b* between the positive and negative Borel subalgebras, and
consequently defining a Lie bialgebra structure on g. Moreover, the latter is quasi-triangular with
respect to the canonical element r € b, ®b_ corresponding to the perfect pairing by ® b_ — C
(cf. Section 2).



QUANTIZATION OF CONTINUUM KAC-MOODY ALGEBRAS 5

The first contribution of this paper is the extension of these results for continuum Kac-Moody
algebras.

Theorem (cf. Theorem 4.6). Let Qx be a topological quiver and gx the corresponding continuum Kac—
Moody algebras.

(1) The Euler form on fx uniquely extends to an invariant symmetric bilinear form (-|-) : gx ® gx —
C defined on the generators as follows:

(Euldp) = (alB) , (x4'1Gp) =0, (xf\xﬁ) =0, (xj[\xl;) = Oup -

Moreover, ker (-|-) = vx and therefore the Euler form descends to a non—degenerate invariant
symmetric bilinear form on gx.

(2) There is a unique topological cobracket 6 : gx — gx®gx defined on the generators by

6(&) =0 and 6(xF) =& nxf+ Y. apgeq- xﬁi /\x?rE ,
Boy=ua
and inducing on gx a topological Lie bialgebra structure, with respect to which the positive and
negative Borel subalgebras b;? are Lie sub-bialgebras.

(3) The Euler form restricts to a non—degenerate pairing of Lie bialgebras (-|-) : b} @ (by )P —
C. Then, the canonical element rx € b ®by corresponding to (-|-) defines a quasi—triangular
structure on gx.

Note however that in order to prove this result one cannot rely on the colimit realization of
gx given above, since the embeddings ¢ 7/ 7: 77" — g7, do not respect the cobracket, as clear
from their definition (cf. Corollary 3.14). Instead, our proof is based on an alternative realization
of gx by duality, inspired by the work of G. Halbout [Hal99] which relies on a semi—classical

version of techniques coming from the foundational theory of quantum groups [Dri87, Lus10].

By the result above, we can now associate to any topological quiver Qx a topological quasi-
triangular Lie bialgebra (gx, [+, -], ). The second and main contribution of this paper is the al-
gebraic explicit construction of a quantization U,gx, i.e., a topological quasi-triangular Hopf
algebra over C[#] such that

(1) there exists an isomorphism of Hopf algebras Uygx /hUzgx ~ Ugx;
(2) forany x € gx,
A(X) — A?L(X)

o(x) = ===——=  modh,

where X € U,gy is any lift of x € gx.
We refer to Uggx as the continuum quantum group of Qx.
The continuum quantum group. The definition of U,gx is very similar in spirit to that of gy,
but it depends on two additional partial operations on Int(X):

(1) the strict union of two intervals « and B, whenever defined, is the smallest interval aVp €
Int(X) for which (aVB) © a and (V) © B are both defined;

(2) the strict intersection of two intervals « and B, whenever defined, is the biggest interval
a AP € Int(X) for whicha © (a AB) and B © (a A B) are both defined.

Note that aV§ (resp. a A B) is defined and coincides with « U B (resp. @ N B) whenever it contains
strictly « and B (resp. it is contained strictly in « and f).

Definition (cf. Definition 5.6). Let Qx be a topological quiver. The continuum quantum group of X
is the associative algebra U,gx generated by fx and the elements X7, a € Int(X), satisfying the
following defining relations:
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(1) Diagonal action: for any «, B € Int(X),
[Cﬂu Cﬁ} =0 and [C:.(a, Xi] =x (DC‘AB) Xﬁi :
In particular, for K, := exp(%/2 - {x), it holds K th +(«lp) . X;Kﬂ(.

(2) Quantum double relations: for any &, § € Int(X),

_ K, —K;1
[XI,Xﬁ} =0up ;— 3

+
tagp - (450 X, Ky — qfor KO Xﬁ@a)
bg, —1 _
+bpa 7 (1 =07) X(yypopK mﬁ X(avp)on
(3) Quantum Serre relations: for any («, /3) € Serre(X),
XiXi_qaﬁ XiXi ibaﬁ q /5 X@5+baﬁ (g—q~ ) XavﬁXaiAﬁ
%)

In the definition above, we assume that X;% = 0 whenever a ©® B is not defined, for ® =
@, S, V, A. Moreover, the coefficients are defined as follows:

o a5 = (—1)P) (a|p);
° b“ﬁ = ag,avp;

1 _ 1
o C;_‘B =5 (ap,ucp —1);and Cap = 3 (apea,a +1);

o 1= (1= 0p) (=) P (alp)*;

1
sfﬁ =5 (ap,acp £ 1).

In order to prove that U,gx is naturally endowed with a topological quasi-triangular Hopf
algebra structure, we proceed as in the classical case, by showing that U;gx can be equivalently
realized by duality. This leads to the following.

Theorem (cf. Theorem 5.11). Let Qx be a topological quiver and Uygx the corresponding continuum
quantum group.

(1) The algebra U,gx is a topological Hopf algebra with respect to the maps
A: Uggx — Uggx®Uggx  and e: Uggx — C[n],
defined on the generators by e(&y) =0 = e(XF), A(&) =& @1+ 1® &, and

AXS) =X @1+ K@ X+ ) agpaysp, 0 (-0 ) X[Ky @ X,
a=pdy
AXy) =10X, + X @K = Y agpaqsg, (-9 ) X5 @ X KT
=Py
In particular, ¢(K,) = 1 and A(K,) = K, ® K. As usual, the antipode is given by the formula

S—Zm o(id—10g)® oA,

where m™) and A" denote the nth iterated product and coproduct, respectively.

(2) Denote by Uqbi the Hopf subalgebras generated by fx and X, a € Int(X). Then, there ex-
ists a unique non—degenerate Hopf pairing (-|-) : Uyb¥ ® (Ugby )P — C((h)), defined on the
generators by

d
A)=1, (@) = @B (Xi1%;) = ey
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and zero otherwise. In particular, (K,X |K ﬁ) = q(“\ﬁ).

(3) Through the Hopf pairing (-|-), the Hopf algebras (Ugb%, Ugby ) give rise to a match pair of Hopf
algebras. Then, U,gx is realized as a quotient of the double cross product Hopf algebra Ugb3, >
AUgby obtained by identifying the two copies of the commutative subalgebra fx. In particular,
Uy gx is a topological quasi~triangular Hopf algebra.

(4) The topological quasi-triangular Hopf algebra Ugygx is a quantization of the topological quasi—
triangular Lie bialgebra gx.

Moreover, we prove that, as in the classical case, the continuum quantum group can be realized
as an uncountable colimits of Drinfeld-Jimbo quantum groups.

Theorem (cf. Corollary 5.8). Let 7, J’ be two irreducible (finite) sets of intervals in X.

(1) Let Uyg g be the Hopf subalgebra in Uygx generated by the elements ¢, and X, witha € J.
Then, there is a canonical isomorphism of algebras Ugg”™ — Ugg 7.

(2) If J' C J, there is a canonical embedding ¢'; ;,: Ugg g1 — Ugg 7 sending generator to genera-
tor.

(3) If J is obtained from J' by replacing an element as € J' with two intervals «, B such that
as = a @ B, there is a canonical embedding ¢ ;- Uggzr — Uggz, which is the identity on

Uyg71 (as) = Ug87\ (a,p) and sends
s
Ene > 4_5!3 , Xais — :Fb;ﬁl g Sup . (X;:Xﬁi _qraﬁ XﬁiX;}) .
(4) The collection of embeddings gbfy, Nz 479, 1 indexed by all possible irreducible sets of intervals in
X, form a direct system. Moreover, there is a canonical isomorphism of algebras
Uygx =~ colimy Uyg7™ .
The quantum groups of the line and the circle. In [SS517], the second-named author and O.
Schiffmann introduced the line quantum group UysI(IR) and the circle quantum group U,sl(S!),
as quantum algebras arising from the Hall algebra of parabolic (torsion) coherent sheaves on

a curve. These are the simplest examples of continuum quantum groups. Namely, we get the
following.

Theorem (cf. Propositions 3.17 and 5.10). There exists a canonical isomorphism of topological Hopf
algebras Uysl(R) — Uggr. At q = 1, it gives rise to an isomorphism of topological Lie bialgebras
sI(R) — gR.

The case of the circle is slightly more delicate. Namely, the continuum Kac-Moody algebra
g1 contains strictly the Lie algebra s[(S!). Their difference is reduced to the elements x; cor-
responding to the full circle. More precisely, let gg1 be the subalgebra in g1 generated by the
elements x;ét, &y, & # S'. Note that the elements x;tl, Gg1, generate a Heisenberg Lie algebra of
order one in gg1, which we denote heisgi. Then, gg1 = gg1 @ beisgi and there is a canonical em-
bedding s(S!) — gg1, whose image is §g1 & k - &51. A similar relation holds for the Hopf algebras
Uysl(S') and Uyggi, where the role of heisg is played by the subalgebra generated in Uggg1 by

Cq1 and X;ﬁ

Future directions. In this last section, we shall outline some further directions of research, cur-
rently under investigations.

Geometric quantization. Asmentioned earlier, the continuum quantum groups U,s((S') and U,s((R)
originate from a Hall algebra type construction. More precisely, the rational circle quantum group
U;sl(Q/Z) was realized in [SS17] in two different ways. That is, by the second-named author
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and O. Schiffmann, as the (reduced) quantum double of the spherical Hall algebra of torsion par-
abolic sheaves on a smooth projective curve over a finite field, and, by T. Kuwagaki, from the
spherical Hall algebra of locally constant sheaves on Q/Z with fixed singular support. The latter
approach generalizes easily to R and S!, and to the type D case (a smooth tree with one root, one
node, and two leaves).

In [AKSS19], together with T. Kuwagaki and O. Schiffmann, we will provide two geometric
realization of Ugyx arising from Hall algebras associated with the following abelian categories
defined over a finite field. We first consider the category of coherent persistent modules (extending
the definition given in [SS519] for the line R and the circle S! to an arbitrary topological quiver).
Such objects can be thought of as a generalization of the usual notion of parabolic torsion sheaves
on a curve, mimicking the first realization of the circle quantum group. The analogue of the
second symplectic realization is instead obtained from the category of locally constant sheaves
over the underlying vertex space.

Highest weight theory. In general, the usual combinatorics governing the highest weight theory
of Borcherds—Kac-Moody algebras does not extend in a straightforward way to continuum Kac-
Moody algebras, mainly due to the lack of simple roots. The appropriate tools to describe the
highest weight theory of gx, the corresponding continuum Weyl group, and the character formu-
las, are currently under study. The same difficulties arise also at the quantum level.

Nonetheless, the geometric realization of continuum quantum groups would likely help to-
wards a better understanding of its representation theory. An inspiring example is given in
[SS19], where the second-named author and O. Schiffmann define the Fock space for Uysl(R),
considering a continuum analogue of the usual combinatorial construction in the case of Uysl(co).
In addition, the quantum group U,s[(S!) act on such a Fock space, in a way similar to the folding
procedure of Hayashi-Misra-Miwa. This construction should extend to the case of an arbitrary
topological quiver X, producing a wide class of interesting representations for the continuum
quantum group Uggx, and therefore for the continuum Kac-Moody algebra gx.

Outline. In Section 2, we recall the basic definition of Kac-Moody algebras and Drinfeld—Jimbo
quantum groups in the more general framework of quantization of Lie bialgebras. In Section 3,
we provide a concise exposition of the construction of continuum Kac-Moody algebras, as in-
troduced in [ASS18], and their realization as uncountable colimits of Borcherds—-Kac-Moody al-
gebras. In Section 4, we prove the first main result of the paper, showing that continuum Kac-
Moody algebras are naturally endowed with a standard topological quasi-triangular Lie bialge-
bra structure. In Section 5, we define the continuum quantum group associated to a topological
quiver and show that, in the cases of R and S!, it coincides with the quantum groups of the line
and the circle introduced in [SS17]. Finally, in Section 5.4, we prove the second main result of the
paper, showing that continuum quantum groups are topological quasi-triangular Hopf algebra,
quantizing the standard Lie bialgebra structure of continuum Kac-Moody algebras.

Acknowledgements. First, the second-named author would like to thank Professor Kyoji Saito
for his contribution to create the mathematics group at Kavli IPMU, where the author works as a
postdoc. In addition, the starting point of the collaboration of the authors with Tatsuki Kuwagaki
can be traced back to some discussion following a seminar given by the second-named author
at the GTM seminar established by Saito sensei. Finally, this work was initiated while the first—
named author was visiting Kavli IPMU. He is grateful to Kavli IPMU for its hospitality and
wonderful working conditions. Finally, we would like to thank Tatsuki Kuwagaki and Olivier
Schiffmann for many enlightening conversations.
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2. KAC-MOODY ALGEBRAS AND QUANTUM GROUPS

In this section, we recall the basic definition of Kac-Moody algebras and Drinfeld-Jimbo quan-
tum groups in the more general framework of quantization of Lie bialgebras. The results of this
section are well-known and due to [Kac90, Dri87]. We follow the exposition of [ATL18].

Henceforth, we fix a base field k of characteristic zero and set K := k[J#].

2.1. Quantization of Lie bialgebras. A Lie bialgebra is a triple (b, [-, -]p, 6y ) where
(1) bisa discrete k—vector space;

(2) (b,[-,-]p) is a Lie algebra, i.e., [-,-]p: b ® b — b is anti-symmetric and satisfies the Jacobi
identity

[/ Jooide @[+, Jo o (idges + (123) +(132)) = 0;

(3) (b,0p) is a Lie coalgebra, i.e., p: b — b ® b is anti-symmetric and satisfies the co—Jacobi

identity
(idpes + (123) + (132)) oidy @ dp 09p =0 ; (2.1)
(4) the cobracket dy, satisfies the cocycle condition
dp o[, ]p =adpoidy ®dp 0 (idpe2 — (12)), (2.2)
asmaps b®b — b® b, where ady: b®b® b — b ® b denotes the left adjoint action of b
onb®b.

A quantized enveloping algebra (QUE) is a Hopf algebra B in Vectyk such that

(1) Bis endowed with the fi-adic topology, that is {i""B},> is a basis of neighborhoods of
0. Equivalently, B is isomorphic, as topological K-module, to By[#], for some discrete
topological vector space By.

(2) B/hB is a connected, cocommutative Hopf algebra over k. Equivalently, B/%B is iso-
morphic to an enveloping algebra Ub for some Lie bialgebra (b, [+, ], d) and, under this
identification,

A(b) — A\ (b
() = D=8

where b € B is any lift of b € b.

mod 7,

We say that B is a quantization of (b, [-, -]y, 0p).

In Sections 2.2-2.6 we will describe the standard Lie bialgebra structure on symmetrisable
Kac-Moody algebras and their quantization provided by Drinfeld—Jimbo quantum groups.

2.2. Kac-Moody algebras. We recall the definition from [Kac90, Chapter 1]. Fix a finite set I and
a matrix A = (a;j);jecr with entries in k. Recall that a realization (h,IT,IT") of A is the datum
of a finite dimensional k—vector space §, and linearly independent vectors IT := {a;};c; C b*,
ITY = {hi}ie1 C b such that a;(h;) = aj;. One checks easily that, in any realization (b, IT, IT"),
dim b > 2|I| — rk(R). Moreover, up to a (non-unique) isomorphism, there is a unique realization
of minimal dimension 2|I| — rk(R).

For any realization R = (h,IL I1V), let §(R) be the Lie algebra generated by b, {¢;, f; }ic1 with
relations [, h'] = 0, for any h, b’ € b, and

[hei] = ai(h)e;, [hfi] = —ai(h) fi, e fi] = ijhi.
Set
Qi = PZsom S,

i€l
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Q = Q+ & (—Q4+), and denote by n (resp. n_) the subalgebra generated by {e;};c1 (resp.
{fi}ic1)- Then, as vector spaces, §g(R) = 0, © h ®n_ and, with respect to b, one has the root

space decomposition
i = P Fia

a€Q
aF#0

where g1, = {X € §(R) | Vh € b, [, X] = +a(h)X}. Note also that gg = h and dim g1, < co.
The Kac-Moody algebra corresponding to the realization R is the Lie algebra g(R) = g(R)/«,
where t is the sum of all two-sided graded ideals in g(R) having trivial intersection with b. In
particular, as ideals, vt = t4 @ v, where t4 =t Nn4. 2
Since v = v4 @ v_, the Lie algebra g(R) has an induced triangular decomposition g(R) =
n_ @ b @ n+ (as vector spaces), where
nei= @ gie, go={X€g(®) | Vheb, [h,X] =alh)X}.

aEQy
a#0

Note that dim g, < co. The set of positive roots is denoted Ry := {a € Q4+ \ {0} | gu # 0}.

Remark 2.1. The derived subalgebra g(R)" := [g(R), g(R)] has a similar and somewhat simpler
description. Namely, one can show easily that g(R)’ is generated by the Chevalley generators
{e fi,hi}ic1 and admits a presentation similar to that of g(R). Namely, let §’ be the Lie algebra
generated by {h;, e;, fi}icr with relations

[hi,hi] =0, [hj,e] = ai(hj) e, [hy fil = —ai(hy) i, lei fj] = 6ijhi -
Then, g’ has a Q-gradation defined by deg(e;) = a;, deg(fi) = —u«;, deg(h;) = 0, and gj, = 1/,
where the latter is the |I|-dimensional span of {/;};c1. The quotient of §’ by the sum of all two-

sided graded ideals with trivial intersection with b’ is easily seen to be canonically isomorphic to
g(R)". A
Remark 2.2. 1t is sometimes convenient to consider the Kac-Moody algebras associated to a (non-
minimal) canonical realization, which allows to obtain a presentation similar to that of the derived
subalgebra (cf. [FZ85, MO12, ATL19a]). Namely, let R = (h,T1, ﬁv) be the realization given by
h 2 11 with basis {h;}ie1 U {AY }ier T = {h}icrand TI = {a;};ic; C B, where a; is defined
by
Oél(h]) = ﬂ]'l‘ and 061<)\]v) = 51] .
Then, §(R) is the Lie algebra generated by {h;, A, ¢;, f;}ic1 with relations

[hi,h) =0, [h,A/1=0, [\, A/]=0,
and
hivej) = aije;, (M fil = —aifj, Mgl =0iei, A fil =0 f;, leifil = dijhi.

It is easy to check that the Kac-Moody algebra g(R) is just a central extension of g(Rumn), i.e.,
9(R) =~ g(Runin) @ ¢, with dim ¢ = rk(A). A

Remark 2.3. In certain cases the ideal v can be described explicitly. If A is a generalised Cartan matrix
(e, aji = 2,aij € Z<o, i # ], and a;; = 0 implies a;; = 0), then v contains the ideal generated by
the Serre relations

ad(e;)' "i(e;) = 0 =ad(f)' T(f;)  i#]

and coincides with it if A is also symmetrizable [GK81].

2The terminology differs slightly from the one given in [Kac90] where g(R) is called a Kac-Moody algebra if A is a
generalised Cartan matrix (cf. Remark 2.3) and R is the minimal realization. Note also that in [Kac90, Theorem 1.2] ¢ is set
to be the sum of all two—sided ideals, not necessarily graded. However, since the functionals «; are linearly independent
in h* by construction, v is automatically graded and satisfies t = v; @ v_ (cf. [Kac90, Proposition 1.5]).
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A similar description of v holds for any Borcherds—Cartan matrix A (i.e., such that a;; € Z,
i # j, and 2a;;/a; € Z whenever a; > 0). In this case, g is called a Borcherds-Kac-Moody
algebra and the corresponding maximal ideal contains the Serre relations

ad(e)) TYi(e) =0 =ad(£) TWU(f) i az;>0 and i#j
and
lei e;] = 0= [fi, fi] if 4;<0 and 4;=0.
If A is symmetrizable, v is generated by the Serre relations (cf. [Bor88, Corollary 2.6]). A

If the matrix A is symmetrizable, the corresponding Kac-Moody algebra can be further en-
dowed with a standard Lie bialgebra structure. Assume henceforth that A is symmetrizable, and
fix a realization R = (h,I1,I1V) and an invertible diagonal matrix D = diag(d;);c; such that DA
is symmetric. Let b’ C b be the span of {h;};c1, and b C h a complementary subspace. Then,
there is a symmetric, non—degenerate bilinear form (+|-) on b, which is uniquely determined by
(hi|-) = d; 'a;(-) and (h"'|"") := 0. The form (-|-) uniquely extends to an invariant symmetric bi-

«d—1. The kernel of this form is precisely t, so that (-|-) descends

linear form on g, and (e;|f;) = d;;d;

to a non-degenerate form on g.’

Set by = h D Duer, 9+« C g- One can see easily that the bilinear form induces a canon-
ical isomorphism of graded vector spaces b =~ b*, where b* = h* © @,cr, 9°,, and, more
specifically, g, ~ g* .

Let{ey;i|i=1,...,dimgs} and {f,; | i =1,...,dim g, } be bases of g, and g_,, respectively,
which are dual to each other with respect to (-|-), and set

dim gu dim b
re= Y Y ewi®fuit Y, Xi®x;,
®ER; i=1 i—1

where {x; | i =1,...,dimb} is an orthonormal basis of h.

We will show in Section 2.4 that g has a natural structure of Lie bialgebra with cobracket
6: 9 — gAggivenby

dly =0, 5(e;) =dih; Ne;, S(fi) =dihi N\ fi .

Moreover, it satisfies §(x) = [x ® 1 +1® x,7].
2.3. Quasi-triangular Lie bialgebras. A Lie bialgebra is quasi—triangular if there exists a tensor
r € b ® b such that

(1) Q3 :==r+ry is b-invariant, i, [x ®1+1® x, Q] = 0 forany x € b;

(2) ris asolution of the classical Yang—Baxter equation, i.e.,

[r12,713] + [r12, 123] + [r13,723] = 0;
(3) dp =or,ie, foranyx € b, Jp(x) =[x @1+ 1Rx,7].

Itis well-known that any Lie bialgebra (b, [+, |5, 65 ) can be canonically embedded into a quasi—
triangular topological Lie bialgebra. We recall below three versions of this construction, in terms
of Drinfeld doubles, Manin triples and matched pairs of Lie algebras.

3Namely, since (-|-) is non—-degenerate on b, the kernel £ := ker (+|-) is a graded ideal trivially intersecting h and
therefore it is contained in r. Conversely, for any graded ideal i = @, i, trivially intersecting h, one has i C ¢. More
precisely, let X € i, Y € ”g]; and Z € h such that f(Z) # 0. Then,

B(Z)- (X]Y) = (X[[2,Y]) = = ([X,Y]|Z) = 0.

In particular v C ¢ and therefore v = ¢.
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2.3.1. Drinfeld double. Let (b, [-,-]p,0p) be a Lie bialgebra. The Drinfeld double g, is defined as
follows.

e As a vector space, g = b @ b*. The canonical pairing (-|-) : b ® b* — k extends uniquely to
a symmetric non-degenerate bilinear form on gy, with respect to which b and b* are isotropic.
The Lie bracket on gy, is defined as the unique bracket which coincides with [+, -], on b, with
6%, on b*, and is compatible with (-|-), i.e., satisfies ([x,y]|z) = (x|[y,z]) forall x,y,z € gp. The
mixed bracket of x € band ¢ € b* is then given by

[x, ¢] = ad"(x) (¢) — ad"(¢)(x) ,

where ad* denotes the coadjoint actions of b on b* and of b* on (b*)*.

e We endow b and b* with the discrete and the weak topology, respectively, and g, = b @ b*
with the product topology. It is clear that the map [+, -]} : b* — b*®b*, where ® denotes the
completed tensor product, defines on b* a topological cobracket. Similarly, 6 := 8 — [, -]}, de-
fines a topological cobracket on g, which is easily seen to be compatible with [, -|. Therefore,
(g6, [+, ], 6) is a topological Lie bialgebra.

e Finally, the quasi-triangular structre on gy is given by the topological canonical tensor r €
b&b* C gp®gp corresponding to the identity under the identification End(b) ~ b&b*.

Remark2.4. Ifb = EBHE]N b, is N—-graded with finite—dimensional homogeneous components, the
restricted dual b* := @,y bj; and the restricted double gi® = b @ b* of b are also Lie bialgebras,
with cobracket &, — [+, -], Moreover, gi is quasi-triangular with respect to the canonical tensor
r € b&b* := [Ten by @ b2 A

2.3.2. Manin triples. A Manin triple the datum of a Lie algebra g with a non-degenerate invariant
symmetric bilinear form (-|-) and two isotropic Lie subalgebras b+ C g such that

(1) as a vector spaceg =by G b_;

(2) the inner product defines an isomorphism by — b*;

(3) the commutator of g is continuous with respect to the topology obtained by putting the
discrete and the weak topologies on b_ and b respectively.

Under these assumptions, the commutator on b ~ b* induces a cobracket: b_ — b_ ® b_
which satisfies the cocycle condition. Therefore, b_ is canonically endowed with a Lie bialgebra
structure, while b and g are, in general, only topological Lie bialgebras. Moreover, g is isomor-
phic, as a topological Lie bialgebra, to the Drinfeld double of b_.

Remark 2.5. If b is an IN-graded Lie bialgebra with finite-dimensional homogeneous components,
one can consider restricted Manin triples, where the inner product induces a isomorphism b, —
b*. In this case, by and g are both Lie bialgebras and the latter is isomorphic to the restricted
Drinfeld double of b_. A

2.3.3. Matched pairs of Lie algebras. The last construction is due to S. Majid [Maj95] and it is, from
a certain point of view, the most abstract, since it does not rely on a pairing. Two Lie algebras
(¢,[-,-]c) and (9, [+, -]o) form a matched pair if there are maps

>:c®0—0 and < c®0 = ¢
such that
(1) > isaleftactionof con?d, ie.,
> o[-, ] ®id => oid® > o(id — (12)),
and < is a right actionof d on ¢, i.e.,

<oid®[,-Jo =<0 A ®ido (id— (23));
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(2) <, > satisfy the compatibility conditions
o[, ]e®id=[,]co <®ido (23) 4+ [-,*]c 0id® <G + < 0id® > o(id — (12)),
and
>oid @ [-,-]o = [, ]oo B> ®id + [-,-]p 0id® > 0(12)+ > 0o < Rid o (id — (23)).

Remark 2.6. The conditions above are equivalent to the requirement that the vector space ¢ @ 0 is
endowed with a Lie bracket for which ¢, 0 are Lie subalgebras and, for X € cand Y €9,

X, Y|u=XD>Y+XQY.
The Lie algebra c><0 = (¢ &7, [, |w) is called the bicross sum Lie algebra of ¢, . A

Example 2.7. 1f (b,[-,-]p,0s) is a Lie bialgebra, then (b, [-,-]p) and (b*,6l) form a matched pair
with respect to the coadjoint action of b on b* and the opposite coadjoint action of b* on b. The
corresponding double cross sum Lie algebra b ><b* is precisely the Drinfeld double of a. A

2.4. Lie bialgebra structure on Kac—-Moody algebras. It is well-known that any symmetrisable
Kac-Moody algebra has a canonical structure of (quotient of) a Manin triple, which induce on it
a standard Lie bialgebra structure.
Let A be a symmetrisable Borcherds—Cartan matrix and fix an invertible diagonal matrix D =
diag(d;);e1 such that DA is symmetric. The bilinear form (-|-) induces a canonical isomorphisms
% = by, where b%. denotes the restricted dual. Consider the product Lie algebra g2 = g @ b7,
with h” = b, and endow it with the inner product (-|-) — (+|-)|pz - Let o g — go = b be the
projection, and bf ) c g(? the subalgebras

62 = {(X,h) € b @ b?| (X) = +h}
(2)

Note that the projection g(?) — g onto the first component restricts to an isomorphism b\’ — bt
with inverse b+ 3 X — (X, £mp(X)) € b(iz ) The following is straightforward.

1) ( g(2), b(_z), bf)) is a restricted Manin triple. In particular, bg? ) and g(2) are Lie bialgebras,

. — [, Ot — —
with cobracket 5b£§> = [ , }b(ﬁ) and 59(2) = (Sb(_z) 5[’9).

(2) The central subalgebra 0 @ h* C g(z) is a coideal, so that the projection g(Z) — ginduces a
Lie bialgebra structure on g and b=.

(3) The Lie bialgebra structure on g is given by
oly =0, de)) =dihinei, O(fi) =dihiNfi.
2.5. Kac-Moody algebras by duality. We recall an alternative construction of symmetrisable

Kac-Moody algebra, provided by G. Halbout in terms of matched pairs of Lie bialgebras [Hal99].
More precisely, his construction goes as follows.

e Let A be a symmetrisable Borcherds—Cartan matrix, D = diag(d;);cy an invertible diagonal
matrix such that DA is symmetric, and (-|-) the corresponding non—-degenerate bilinear form
on h.

o Let L4 be the free Lie algebras generated by the set Xy = {xijt,(ji | i € L& € h}. The
assignment
6+(¢F) =0 and 04(xi) = Fd;hi Axi

extends uniquely to a cobracket on £+ and induces a Lie bialgebra structure on it.
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e The assignment
(xf,x) = d ey, (65,67) =208, and (1) =0= (%)
extends uniquely to Lie bialgebra pairing (-,): L4+ ® L_ — k, i.e., for X4+, Y+ € L4,
(X, Ye], X5) = (X2 ® Yz, 05(X5)) (2.3)

Then, £ and £_ naturally form a matched pair of Lie bialgebras. *
The pairing (-, -) extends to the a possibly degenerate, invariant pairing on the double cross
sum Lie bialgebra £ >l _.

_2,.
e The ideals generated by [¢+, ¢F], [ﬁi,xiﬂ F zxi(ff)xii, ad(xii)1 ai; i (x]i) (i # jand a; > 0), and
[xii, x]i] (a;; < 0 and a;; = 0) are orthogonal to L+ and are coideals. Let s be the sum of these

ideals. In particular, s C ¢ = ker(:,-) C L, ><xL_.

e Finally, one observes that £ >1£_ /¢ has the form g © h*, where h” is a central copy of h and g is
the Borcherds-Kac-Moody algebra associated to A.° This implies, in particular, that ¢ coincides
with s and it is a coideal. Therefore, the Lie bialgebra structure on £ £ _ naturally descends
to g.

2.6. Drinfeld-Jimbo quantum groups. Let A be a symmetrisable Borcherds—Cartan matrix and
fix an invertible diagonal matrix D = diag(d;);c1 such that DA is symmetric. Let g = g(A) be
the corresponding Borcherds—-Kac-Moody algebra with its standard Lie bialgebra structure, and
set q := exp(h/2), q; = exp(h/2-d;). The following is a straightforward generalization to
Borcherds—Kac-Moody algebras of the quantum group defined by Drinfeld [Dri87] and Jimbo
[Jim85] (cf. also [Kan95]).

The Drinfeld—Jimbo quantum group of g is the associative algebra U,g topologically generated
over Kby h and the elements E;, F;,i € I satisfying the following defining relations.

(1) Diagonal action: for i, 1’ € h,i €1,
[h, ]’l,} =0, [h, Ei} = Dci(h)Ei ’ [l’l, Fi] = —Déi(]’l)Fi .

In particular, for K; := exp(f/2 - d;h;), it holds K;E; = q?ij -EjK; and K;Fj = qi_aij -EjK; .

(2) Quantum double relations:
K. — K1
i N

[Ei/Fi] = 1
qi — 4;

(3) Quantum Serre relations: for i, j € I witha;; =0,
[EUE]] =0= [Fl/F]] ’
and fori,j € I,i # j, with a;; = 2,

1—ﬂj]' (_1)1’?1 X

1—a;j—
m=o (Mgl = aij —mlg !

m
X;X"=0 (X=EF).

4By slight abuse of notation, we impose that (-, -) is symmetric, i.e., it can be considered as a function on either £ @ £_
or L_ ® L4, regardless of the order. Moreover, note that (2.3) can be equivalently restated as ([X+, Y+], X5) = (X4 A
Yir‘5¥(X¥)> .

5Indeed, it is clear that there is a surjective Lie algebra homomorphism 71 : g — 9, where 0 = L, <L _/(¢® h*), and,
since ker 7t C g is an ideal trivially intersecting b, it must be necessarily trivial.
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Moreover, Ugg has a Hopf algebra structure with counit, coproduct and antipode defined, for
hebhandi €I, by
e(h)=0, AMh)=he1+1&®h, S(h)
E(Ei) :O, A(Ei) = Ei@Kl-—Fl@Ei, S(Ei)
e(F)=0, AF)=FE®1+K'®F, S(F)=-KF.

I Il
| L
Mmoo
b

I

The following is well-known (cf. [Dri87, Lus10, CP95]).
Theorem 2.8.

(1) The Hopf algebra Uyg is a quantization of the Lie bialgebra g.

(2) Denote by Ugb_ (resp. Ugby) the Hopf subalgebra generated by b and {F;,i € 1} (resp. b and
{Ei,i € I}). Then, Ugb_ (resp. Ugb ) is a quantisation of the Lie bialgebra b_ (resp. b), and
there exists a unique non—degenerate Hopf pairing (-|-)p : Usb— @ Usby — k((h)), i.e., a non—
degenerate bilinear form compatible with the Hopf algebra structure, defined on the generators by

51‘]‘
(h|H") (Fi\Ej)D = P

(A)p=1, (hH)p =

Sk =

and zero otherwise.

(3) The Hopf pairing (-|-)p induces an isomorphism of Hopf algebras Uzb_ ~ (Ugb)*, which
restricts to the identification ¢: b — b*, ¢(h) = —2(h|-). Moreover, Uyg can be realized as
a quotient of the restricted quantum double of Ugb_ with respect to this identification, i.e.,
DUsb_ /(b ~ b*) ~ Ugg. In particular, Uyg is a quasi—triangular Hopf algebra with R—matrix

R= qulM@ui 'ZXP ® XP,
p

where {u;} C b is an orthonormal basis with respect to (-|-), {X,} C Ugn_, {XF} C Uyny are
dual basis with respect to the pairing (-|-)p.

It is useful to notice here that the proof of the theorem and the construction of the Hopf pairing
(+]')p is obtained following a quantum analogue of the procedure described in Section 2.5 (cf.
[Lus10, Part I]).

3. CONTINUUM KAC-MOODY ALGEBRAS

In this section, we recall the notion of continuum Kac-Moody algebras introduced in [ASS518],
and their realization as continuous colimits of Borcherds-Kac-Moody algebras.

3.1. Vertex space.

Definition 3.1. Let X be a Hausdorff topological space. We say that X is a vertex space if for any
x € X, there exists a chart (U, A, ¢) around x such that

(1) U is an open neighborhood of x,
(2) A ={A;}is a family of closed subsets A; C U containing x, such that U = {J; A;,

(3) ¢ = {¢;} is a family of continuous maps ¢;: A; — R which are homeomorphisms onto
open intervals of IR, such that if the intersection between A; and A j strictly contains the
point x, then ¢;] 4,0 A =9 lan A and ¢;] 4, yy induces a homeomorphism between A; N A;
and a closed interval of R.
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We say that x is an reqular point if the exist a chart such that A = {U}; while, we say that x is a
critical point if there exists a chart such that the boundary d(A; N A]-) of A;N A]-, as a subset of U,

contains x for any i, j.° @

Remark 3.2. Let x be a critical point with a chart (U, A, ¢) such that x € 9(A; N Aj) for any i, j.
Then x € 0A; for any i. A

Definition 3.3. Let X be a vertex space and let a be a subset of X. We say that « is an elementary
interval if there exists a chart (U, A, ¢) for which ] C A; for some i and ¢;(«) is a open-closed
interval of R. A sequence of elementary intervals («y,...,a,), n > 0, is admissible if

(@ (;pU---Ua;)Najrp =Dand (¢ U---Ua;) Uajyq is connected foranyi=1,...,n—1;

(b) foranyi =1,...,n — 1, there exist x € X and a chart (U, A, ¢) around x for which U D
(xp U+ Ue;) Uajyq and ((ag U -+ Ua;) Uajiq) N Ag is either empty or an elementary
interval for any k.

An interval of X is a subset « of the form ay U - - - Uy, where (a1, . .., &) is an admissible sequence

of elementary intervals. We denote by Int(X) the set of all intervals in X. @
Example 3.4. Let K = Q,R. Then K is an example of a vertex space. An interval of K is a subset
« C R which is an an open—closed interval of the form « = (a,b] := {x € R | a < x < b} for
some K-values a < b. A

3.2. Topological quivers. Let X be a vertex space and Int(X) the set of all intervals of X. Set
aUp ifanp=QandaUP € Int(X),
x®p =

n.d. otherwise,

a\B ifanp=panda\p <€ Int(X),

e p =
nd. otherwise.

We call & the sum of intervals, while we call © the difference of intervals.

Remark 3.5. The elements of Int(X) are described as follows [ASS18, Lemma 5.5].

(1) Every contractible interval is homeomorphic to a finite oriented tree such that any vertex
is the target of at most one edge.

(2) Every non—contractible interval is homeomorphic to an interval of the form
N
SSo@PThi=(-(SeT)®T) &)
k=1

for some pairwise disjoint contractible intervals Ty, with N > 0.
A

We denote by fx the Z-span of the characteristic functions 1, for all interval « of X. Note
that 1,45 = 1u + 1 for a given (a,B) € Int(X)g). We call support of a function f € fx the set
supp(f) = {p € X | f(p) # 0}. Itis a disjoint union of finitely many intervals of X.

Define a bilinear form (-, ) on fx in the following way. Let f,¢ € fx, and assume that there
exists a point x with a chart (U, A, ¢) for which the supports of f and g are contained in A; for
some 7, then we set

(f.8) =Y f-(p)(g-(p)—g+(p)), (3.1)

PEA;
where h4 (x) = lim;_,o+ h(x £ ¢).

®Here, somehow we are following the terminology coming from the theory of persistent modules (cf. [DEHH18,
Section 2.3].



QUANTIZATION OF CONTINUUM KAC-MOODY ALGEBRAS 17

Since we can always decompose an interval into a sum of elementary subintervals (and we
can do similarly with supports of functions of fx), we extend (-, -) with respect to & by imposing
the condition that (1, 15) = 0 for two elementary intervals a, 8 for which there does not exist a
common A; containing both.

As a consequence of the definition, the bilinear form (-, -) is compatible with the concatenation
of intervals, by Remark 3.5, it is entirely determined by its values on contractible elements.

Remark 3.6. Thanks to the condition (b) of Definition 3.3, one can easily verify that if § is a non-
contractible sub-interval of «, then (1, 1) = (1,c 5, 1), whenever a © B is defined.

Moreover, whenever « L B, i.e., (a,B) & Int(X ) and a N B = @, then (1, 1) = 0. Note also
that
1 if « is contractible,

<]10u1a> = {

0 otherwise .

Set

(flg) = (f.&) + (g f)

for f, g € fx. Then, if ], ]’ € Int(X) are contractible, then

2 ifa=2p,
1 if (a,8) € Int(X)D or (B,a) € nt(x)?,
(Lallg) =< 0 if (a,B) ¢ Int(X)P andan p = @,
-1 if (a,B) € Int(X)g and « & B is contractible ,
-2 if(a,pB) € Int(X)(z) and « @ B is non-contractible .

All other cases follow therein. Note in particular that, if a is non—contractible, (1,|1) = 0.

Henceforth, we set (¢, B) := (lly, Ig) and (a|B) = (1[lg). It follows immediately from Re-
mark 3.6 that

(ala) = 2 if a is contractible ,
0 if & is non—contractible .

Therefore, we will use real (resp. imaginary) as a synonym of contractible (resp. non—contractible)
in analogy with the terminology used for the roots of a Kac-Moody algebra.

Finally, we give the following:

Definition 3.7. Let X be a space of vertices. The topological quiver of X is the datum Qx :=
(Int(X), ®, S, (), (-))- @

3.3. Continuum Kac-Moody algebras. It is well-known that the set Ry of positive roots of a
Kac-Moody algebra g has a standard structure of partial semigroup, induced by its embedding in
the root lattice Q4, and that, as Lie bialgebras, the positive and negative Borel subalgebras b
are graded over Ry (cf. [ATL19b, Sec. 8]). Roughly speaking, continuum Kac-Moody algebras
are obtained by replacing the semigroup of the positive roots with the topological quiver Qx.
Namely, to any topological quiver Qx, we associate a Lie algebra gx, whose definition mimics
the construction of Kac-Moody algebras. Let gx be the Lie algebra over C, freely generated by fx
and the elements x;°, « € Int(X), subject to the relations:

(% ‘;7»/3] =0, [‘:mxg] = (alp) - x; ,

[er x ] = 511'[3606 (—1)@"/3) () - (ngﬁ - x/gg,,() :
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where ¢, = 1.
Note that the relation &yep = daap (Ga + p) holds by definition. Set
fy = spanz_ {1l | & € Int(X)} .

There is a natural fx—gradation on gx given by deg(x;) = +1, and deg(Zy) = 0, inducing a

triangular decomposition
gx = (@ §+¢) ®fx & (@ ﬁ—zp) .
per per

where g1 denotes the homogeneous subspace of degree +¢.

It is important to observe that the bilinear form (+|-) on fx is non-degenerate unless X = S!,
in which case, ker (-|) = Z - 1g1. Therefore, whenever X # S!, the homogeneous spaces g
coincide with weight spaces corresponding to the diagonal action of fx. That is, we have

g+ ={x €ox |V € fx | [, x] = = (ly) - x},
for ¢ € f5.

Definition 3.8. The continuum Kac—Moody algebra of Qx is the Lie algebra gx = gx/tx, where
tx C gx is the sum of all two-sided graded ideals with trivial intersection with fx. @

In particular, gx has a triangular decomposition
gx =ni Shdn_,

where ) = fx and n. are the Lie subalgebras generated, respectively, by the elements x3, a €
Int(X).

The main result of [ASS18] is a generalization to the case of gx of the results of Gabber-Kac
[GK81] and Borcherds [Bor88], showing that the ideal vy is generated by the Serre relations. In
particular, this gives an explicit description of the Lie algebra gx as follows.

Definition 3.9. Let Serre(X) be the set of all pairs (&, ) € Int(X) x Int(X) such that one of the
following occurs:

e « is contractible, and, for subintervals &’ C a and ' C B with (B|p’) # 0 whenever
B’ # B, ' & B is either undefined or non-homeomorphic to S;

o nl B,ie,a® B doesnotexistandaNp = 2.
%
Example 3.10. One has Serre(R) = Int(IR) x Int(R) and Serre(S!) = (Int(S') \ {S'}) x Int(S!). A

Set

ap = (=1)®P) . (a|) and bap = 3, xcp - (3.2)

Note that, if « © g or B © a are defined, then a,5 € {0, +1}, and, if « @ B is defined and («, B) €
Serre(X), then b,g € {£1}.

Theorem 3.11 (cf. [ASS18, Theorem 5.16]). The continuum Kac—Moody algebra g is freely generated
by the abelian Lie algebra fx and the elements xi, « € Int(X), subject to the following defining relations:

(1) Diagonal action: for a, f € Int(X),
G xi] = £ (wlB) - xF
(2) Double relations: for a, B € Int(X),

[x,,f,xlﬂ = 0upCatanp- (XIQ,B - x/;ea) ;
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(3) Serre relations: for (a, B) € Serre(X),
[x;t,xg] = Fbyg - xf@ﬁ .
Remark 3.12. If B ~ S and « C B, then (a, B) € Serre(X). Hence, by (2) above [xf,xlﬂ =0. A

3.4. Colimit realization. One fundamental ingredient in the proof of Theorem 3.11 is the rela-
tion between gx and certain Borcherds-Kac-Moody algebras naturally arising from families of
intervals. Let J = {ay }« be a finite set of intervals a; € Int(X). We say that J is irreducible if the
following conditions hold:

(1) every interval is either contractible or homeomorphic to S;

(2) giventwointervalswa, f € J, a # B, one of the following mutually exclusive cases occurs:
(a) a @ B exists;
(b) a @ B doesnotexistand a N B = Q;
() a~SlandB Cw.
Assume henceforth that 7 is an irreducible set of intervals. Let A 7 be the matrix given by the val-
ues of (+|-)on J, e, (A7) ap = («|B) for a, B € J. Note that the diagonal entries of A 7 are either

2 or 0, while the only possible off-diagonal entries are 0, —1, —2. Let Q 7 be the corresponding
quiver with Cartan matrix A 7. Note that a contractible elementary interval in J corresponds to
a vertex of Q 7 without loops at it. For example, we obtain the following quivers.

Configuration of intervals Borcherds—Cartan diagram
a3
X1 &2 3 &1 &2
——
X4
X4
x 2
&1 &2
a4
&2 X4
/_ "o ap & a5 Qg
®
&1
a3 a5
&3
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Instead, an interval of .7 homeomorphic to S! corresponds in Q 7 to a vertex having exactly
one loop at it, as in the following examples.

Configuration of intervals Borcherds—Cartan diagram

X2

1 a3

&2
7\
(a3 is a complete circle)
151 1%

(ap is a complete circle)

To any irreducible set of intervals 7, we can associate two Lie algebras:
(1) the Lie subalgebra g7 C gy generated by the elements {x5, & | & € J};
(2) the derived Borcherds-Kac-Moody algebra g™ := g(A 7).

We prove in [ASS18, Section 5.5] that g7 and g’ are canonically isomorphic. More precisely, we
have the following.

Proposition 3.13. The assignment
ew = X, farrxy and Ty &

forany a € J, defines an isomorphism of Lie algebras ® 7 : g% — g.7.

The proof relies on the simple observation that, fora, p € J, & # st B,
ad(x;) WP (xp) = 0.

It is then clear that gx can be constructed exclusively from Borcherds-Kac-Moody algebras. That
is, we have the following.

Corollary 3.14. Let J, J' be two irreducible (finite) sets of intervals in X.
(1) If J' C J, there is a canonical embedding 4){7 7t 871 — 87 sending X xE, & — & for
xe J.
(2) If J is obtained from J' by replacing an element a5 € J' with two intervals w, B such that as =
« @ B, there is a canonical embedding 479, gt 87 — 87, which is the identity on g g1\ (o) =
9.7\ {a,p} and sends

o > Ca+8p, xp > (1) EAETIR
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(3) The collection of embeddings gbfy, Nz gbf}, 1 indexed by all possible irreducible sets of intervals in
X, form a direct system. Moreover,

gx ~ colimz g%

3.5. The Lie algebras of the line and of the circle. In this section we recall the Lie algebra of
the line sI(K), with K = Q, R, and of the circle K/Z introduced in [S517]. Moreover, we recall
the connection with the continuum Kac-Moody algebra of the line X = K. This presentations
of sI(K) and of sI(IK/Z) were the stepping stones for the definition of continuum Kac-Moody
algebras.

First, we need to distinguish all relative positions of two intervals. For any two intervals
a = (a,b] and B = (a', V'], we write

e « — Bif b = a’ (adjacent)
o« l Bifb<a orl < a(disjoints)
e ot Bifa=a"and b < V' (closed subinterval)
e a4 Bifa’ <aandb =V (open subinterval)’
o u < Bifa <a<b<l (strict subinterval)
e ahpifa<a <b<U (overlapping)

We are ready to give the definition of s(KK).

Definition 3.15. Let s[(K) be the Lie algebra generated by elements ey, fo, hy, with « € Int(K),
modulo the following set of relations:

o Kac-Moody type relations: for any two intervals «, ,

gl =0, [haeg] = (Lallp) ep,  [ha f5] = — (La[1p) f5,

ha lfDC:‘B,
0 ifalBa—pB orf—ua,

[ea/f/%] = {

2)

e join relations: for any two intervals «, B with (a, 8) € Int(K)g’,
(-

ha@ﬁ = ha + hﬁ ’ expp = (_1)@;3,%) [ea/ eﬁ] ’ fa@ﬁ = 1) (1) [fauf,@} ;

e nest relations: for any nested «, B € Int(K) (thatis, such thata =, a L B, a < B, B < «,
a=pB,a-B, BFa orfa),

[6a,6/3] =0 and [fauf‘B} =0.
%)

Remark 3.16. It is easy to check that the bracket is anti-symmetric and satisfies the Jacobi identity.
Note that the joint relations are consistent with anti-symmetry, since, whenever | & ]’ is defined,

(-1) (lellg) — _ (-1) (g} Moreover, the combination of join and nest relations yields the (type
A) Serre relations (x # )

[em [em eﬁ]] =0= [fou [foc/fﬁ (]lﬂt|]lﬁ)
[emeﬁ} =0= Ua/fﬁ] (Mllﬁ)
Note also that there are canonical strict embeddings s[(Z) C sl(Q) C sl(R). A

"The symbol |- (resp. ) should be read as « is a proper subinterval in B starting from the left (resp. right) endpoint.
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First, note that the Cartan subalgebra of s((K), h := (hy | « € Int(K)), is canonically isomor-
phic, as a Lie algebra, to the commutative algebra fx generated by the characteristic functions
{Cu =14 | & € Int(K)}. In[ASS18, Corollary 2.10], we show that the set of relations satisfied by
the generators of s[(IK) can be simplified, indeed we have:

Proposition 3.17. The Lie algebra sI(KK) is isomorphic to gi.

Let us now move to the Lie algebra of the circle.

Definition 3.18. Let s[(IK/Z) be the Lie algebra generated by elements ey, fa, hﬁ, with o, § €
Int(IK/Z) and a # S!, modulo the following set of relations:

o Kac-Moody type relations: for any two intervals «, j,

[ha bl =0, [haseg] = (Taflp) ep,  [ha fp] = = (Lallp) fp,

ha lfDC:‘B,
0 ifalBa—pB orfp—ua,

[ea/f/%] = {

e join relations:
— for any two intervals &,  with (a, B) € Int(]K/Z)g'), we have hyqp = ha + hg;
- for any two intervals &,  with (a, B) € Int(]K/Z)g), such thata, B,a © B # S,

ea@ﬁ = (_1)<ﬂﬁ,ﬂa> [EDC/ 3/3] ’ fa@ﬁ = (—1)<]1""]1l3> [fﬂtrf‘B} ;

e nest relations: for any nested a, f € Int(IK/Z) (thatis, such thata = 8, « L B, 0 < B,
B<aabpB,a-p B a orpfa), witha, g #S!,

lea,ep] =0 and [fa, fp] =0.
%)

The continuum Kac-Moody algebra g1 strictly contains the Lie algebra s[(S') and their dif-
ference is reduced to the elements xgtl corresponding to the entire space. More precisely, let
g1 be the subalgebra in gg1 generated by the elements xE, &, & # S'. Note that the elements
x;tl, Cg1, generate a Heisenberg Lie algebra of order one in ggi1, which we denote heisgi. Then,
gs1 = Gq1 @ heisgr and there is a canonical embedding sI(S') — gg1, whose image is g1 @ k - &q1.

4. THE CLASSICAL CONTINUUM r—MATRIX

In this section, we show that continuum Kac-Moody algebras are naturally endowed with
a standard topological quasi-triangular Lie bialgebra structure. To this end, we provide here an
alternative construction of continuum Kac-Moody algebras by duality in the spirit of [Hal99].

Note that the results of this section rely on the non-degeneracy of the Euler form on fx, which
is automatic whenever X # Sl If X = S1, the kernel of the Euler form is one-dimensional,
spanned by the central element ¢ ¢1. However, this can be easily corrected by extending the vector
space g1 with a derivation corresponding to the Heisenberg Lie algebras heisgi. ° Henceforth,
we will therefore assume that the Euler form is non—-degenerate on fx for any vertex space X.

8In other words, we need to consider the canonical realization of the Cartan matrix [0] (cf. Section 2.2).
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4.1. Continuum free Lie algebras. Let £ be the free Lie algebras generated, respectively, by
the sets Vi = {xi5,&F | « € Int(X)}. Let 1, be the characteristic function corresponding to the
interval & € Int(X), and F := §§ = spanz_ {lls | « € Int(X)}. We consider on £ the natural

grading over F given by deg(x;) = 1, and deg(¢) = 0, thus
Li=ELsy.
¢eF

Example 4.1. Let a, 8,7 € Int(X) such that « = B @ 7. Then, the elements x;, [xﬁi, xﬂf], and

[ng, &1, %3], 8] have degree 1. A

For N > 0 and ¢ € F, a N-th partition of ¢ is a tuple = (¢1,...,¢n) € FV such that
Y1 + - - - + Py = ¢. We denote the set of Nth partitions of ¢ by F(¢, N). Then, we set

ﬁi,N:EB( [] ﬁi,w1®~~~®£i,ww),

peF \peF(¢,N)

where ® = ®, \. We regard LY  (resp. 'C/j\z, N) as a completion of LN (resp. ANLy). The
following is a straightforward generalization of [Hal99, Propositions 2.2, 2.3, and 2.5].

Proposition 4.2.

(1) For any collection of antisymmetric elements u™: Int(X) — L2, there exist unique maps 6+ :
Ly — EQ’Z such that

(5i(xf) = u;‘L and (Si(@‘f) =0

and the cocycle condition (2.2) holds. Moreover, if the co—Jacobi identity (2.1) holds for the generators
4+ .
Xy, ie.,

(id+ (123) + (132)) cid @ d+ (uF) =0, (4.1)
then (L+, [, ], 0+) are topological Lie bialgebras.

(2) Fix two matrices 1; : Int(X) x Int(X) — k, i = 0,1, and let V4 C L+ be the subspace spanned
by the set V. Assume that the elements u; satisfy the condition (4.1), so that (L, [,-],6+) are
topological Lie bialgebras, and belong to Vi’2. Then, there exists a unique pairing of Lie bialgebras
(-,-) 1 L4+ ® L_ — k such that

<'/ > C; x(s_
2_ Ko (DC, 7) 0
x;{ 0 x1(B,9)

(3) Fix two matrices x;: Int(X) x Int(X) — k, i = 0,1, and a collection of elements u™: Int(X) —
V2 satisfying the condition (4.1), so that (L, [-, ], 6+ ) are topological Lie bialgebras with a pairing
(-,): L4+ ® L_ — k. Let J be a set, and let

Ur:J =Ly and VE:Jx]— Ly

be two collections of elements such that 5i(uji) € VU, V;.), where VE(U., V;.) denotes the
completion in L) of the subspace spanned by the elements U~ A V]i :J = L+. Then, if

(U*,xF) =0=(U*,&),

the ideal generated by U™ is orthogonal to L+ and is a topological coideal in L +.
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4.2. Orthogonal coideals. We shall now fix a Lie bialgebra structure on £+ with a pairing, and
show that the defining relations of continuum Kac-Moody algebras arise from orthogonal coide-
als. We shall use repeatedly Proposition 4.2—(3).

Henceforth, we consider the Lie bialgebra structure on £+ given by

6+(&r) =0 and 6+(xy):=F& Axg F Y bmx Axy 4.2)
BOy=ua

where bg, = (—=1)(BFEN) (BB y) = ag ey Then, we define a pairing (-,-) : £+ ® L — k by
setting (xi, fjg) = 0and

(F,x5) = bap and (5F,E5) =2 (alp) -
Proposition 4.3. Let i+ be the ideal generated in L+ by the elements
Chop—denp (G5 +85)  [G5E), (655517 (alB)x;

Then, i+ is a coideal and it is orthogonal to L.

Proof. We show that the conditions of Proposition 4.2—(3) apply. We first observe that the elements
(j;t@ﬁ — Sacp (gf + §§) are orthogonal to £+. Namely, if a @ B is defined, then (a ® B|y) =
(a]y) + (B]y), and therefore

<§;t@/3/ C:-('qy:> = <§;¢t + C‘Bi/ §$> ’
while (&= xopr EF) =0 = (& + Ci &F). Moreover, 04 (33) = 0, therefore the condition on the
cobracket is trivially satisfied. S1m11ar1y, by duality, one has

([65,651,65) = 0= (&5, 641 xT)
and, by Formula (4.2), 5+ ([&5, fjlﬂ) = 0. Finally, we have
(e, x50, 65) F (alp) (x5, 85) =0,
and
(e, %)) T (lB) (x5, x5) = (&5 A xE,65.(3) F b3y (alB)
= :Eélg,y<§a A x éI A xﬂ F Oy (¢[B)

= £0p, (a]y) F Opy («[B)=0.
Moreover, since (a|8) = (a|y) + («]7’) whenever v & 7' = B, we get

o4 ([, x5 F (wlp) ) =
= [0 ®1+1® 8, 0x(x5)] F (a]B) 0= (x5)

= Fleu S Axg FE5 A Gx,x5]
F Y by (G5 A w0 Al x5]) F (1) 0+ (x5)
107 =p
= FleE e nxg 76 A (168 5] F @1B) xF)
T 5 by (6522 F ) ) At o A (625 7 (aly) 5))
TOY'=p
The result follows from Proposition 4.2—(3). O

Thanks to this result, the pairing (-,-): £+ ® L_ — k descends to a pairing between the
topological Lie bialgebras =L /iyt.
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Proposition 4.4. Let 54 be the ideal generated in R by the elements
sfﬁ = [xf,x?ﬂ ¥ baﬁxf@ﬁ ,
with («, B) € Serre(X). Then, s+ is a coideal and it is orthogonal to 0.
Proof. We proceed as before. Clearly, we have <sfﬁ, ¢¥) =0and
< a/;fx:F> <[x;¢t/xﬁi} > + baﬁ<xf@ﬁfx':;>

= <x;t A xﬁir oF (XB/:» + ‘S’y,aEBﬁbaﬁ

= iéﬂ/,zx@ﬁbaﬁ + 5’y,aéBﬁba[3 =0,
therefore the elements siﬁ are orthogonal to 9. Finally, one checks by direct inspection that
(5i( ) ZW/ S“r'y’ A V ’5 for some vectors V ’5 € ?+. The result follows from Proposition 4.2—
3). O

4.3. Continuum Kac-Moody algebras by duality. We now show that the procedure described
above realizes the continuum Kac-Moody algebra gx as a topological Lie bialgebras, endowed
with a non-degenerate invariant bilinear form.

Setd, := 0. /s5.. Then, 0y are topological Lie bialgebras endowed with a Lie bialgebra pairing
(-,): 94 ®0_ — k. In particular, (94,9_) is a matched pair of Lie algebras with respect to the
coadjoint actions given by ad* (d+)(d%) = £(1®d, 0 (d%)), d+,dy € v+ Let2() := o) <
be the double cross sum Lie bialgebra.

Proposition 4.5. The following relations hold in 9%). For any a, B € Int(X)
Cu + S

[x:arr /3] _5043

where ayp = (=1)@P) (x|B) .

Proof. Itis enough to observe that, by definition,

T aup (x:[@ﬁ - x/;ea) ’

b oc,oc_boc, o
ad" (] ) (5 ) = By oo 4 DB

xSp, bg «
ad*(xl;)( )_5 Cﬂt w :9/5

Moreover, since by, = a, 405 and a, 4ep = —3h,a@h/ we get

b,B@DC,tX - boc, Boun -, ba@ﬁ,ﬁ - bﬁ,tx@ﬁ — 3
2 ap s 2 ap -

The combination of Propositions 4.3, 4.4, and 4.5 leads to the following.
Theorem 4.6. Let Qx be a topological quiver and gx the corresponding continuum Kac—Moody algebras.

(1) The Euler form (3.1) on fx uniquely extends to a non—degenerate invariant symmetric bilinear
form (+|-) : gx ® gx — k defined on the generators as follows:

(ga\gﬁ) = («|B) , (xf\(jﬁ) =0, (xf\xﬁ) =0, (xj[\xl;) = ap -
(2) There is a unique topological cobracket 6: gx — gx®gx defined on the generators by
8(&) =0 and 6(xF) =& nxf+ ,3@2 bmxff A x$ ,
Y=ua

and inducing on gx a topological Lie bialgebra structure, with respect to which the positive and
negative Borel subalgebras b§ are Lie sub-bialgebras.



26 A. APPEL AND E. SALA

(3) The Euler form restricts to a non—degenerate pairing of Lie bialgebras (-|-) : by ® (by)®P —
k. Then, the canonical element rx € b3 @by, corresponding to (-|-) defines a quasi—triangular
structure on gx.

Proof. First, let ¢ be the ideal generated in 9(?) by the elements & — &, « € Int(X). It is clear
that ¢ is central in 0(2), is a coideal, and moreover it is contained in the kernel of the pairing (-, -)
naturally extended to 9(2). Therefore, d := 9(2) /¢ is also Lie bialgebra endowed with a pairing,
which we denote by (-, ).

Set &y = %((jj[ + ¢, ). In particular, we have

(CarCplo = (alB) - (43)

By Propositions 4.3, 4.4, and 4.5, there is an obvious identification gx = 0 as Lie algebras (cf. The-
orem 3.11). This allows to define a cobracket and possibly degenerate pairing on gx. However,
it follows from (4.3) that the kernel of (-, ), is a two-sided graded ideal, which trivially inter-
sects fx. Therefore, by definition of gy, it must hold ker(-, -)5 = 0. Therefore, (1), (2), (3) follows
directly from the identification gx = 0. (]

From the proof above, we also deduce the following

Corollary 4.7. The Euler form (3.1) on fx uniquely extends to a non—degenerate invariant symmetric
bilinear form (-|-) : §x @ §x — k defined on the generators as follows:

(8ulp) = (@), (x1Ep) =0, (xiflxf) =0, (xlxg) = dup.

Moreover, tx = ker (-|-), i.e., ker (-|-) is the maximal two-sided ideal trivially intersecting fx and it is
generated by the Serre relations from Theorem 3.11.

5. CONTINUUM QUANTUM GROUPS

In this section we shall introduce the continuum quantum groups, which provide a quantiza-
tion of the continuum Kac-Moody algebras . We will see that they can be similarly realized as
uncountable colimits of Drinfeld—Jimbo quantum groups. Finally, when the underlying vertex
space is the line or the circle, they coincide with the line quantum group and the circle quantum
group of [SS17].

5.1. Definition of continuum quantum groups. Let Qx = (Int(X),®, S, (-,-), (:|-)) be a topo-
logical quiver with underlying vertex space X. In order to define the continuum quantum group, we
need to introduce some new operations on intervals.

Definition 5.1. We define the following partial operations on Int(X):

(1) the strict union of two intervals « and B, whenever defined, is the smallest interval aVp €
Int(X) for which (aVp) © a and (V) © B are both defined;

(2) the strict intersection of two intervals « and B, whenever defined, is the biggest interval
a AP € Int(X) for whicha & (a AB) and B S (a A B) are both defined.

@

Remark 5.2. Note that aV (resp. a A B) is defined and coincides with « U B (resp. « N ) whenever
it contains strictly & and B (resp. it is contained strictly in & and B). In particular, V and A are
clearly symmetric. A

Remark 5.3. Let X = Rand «, B € Int(R).
o Ifa — B, thenaVp = a ® B and a AP is not defined.
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o Ifah B, thenavVBp =aUpBand a AS = a N B. Moreover,
((avp)Sp) @ (arp) =a=(aVh) S (BO (x2p))

e If x and B are nested, then «V and & A B are not defined. °

A
Definition 5.4. We shall use the following functions on Int(K) X Int(K):
e a5 = (—=1){P) (a|B);
xp ( ) ﬁ
o b, B = Aw,avp which generalizes the function b, 8 defined in (3.2);
+ 1 1 dc, = 1 1):
® Cip = > (aﬁ,p@ﬁ— ),an Cap = 5 (3’39“,“ + ),
o rpi= (1= 0,p) (—1)"“F) (aB)? ;
+ 1
* sy =3 (ag,aap £1).
%)

Remark 5.5. Let X = K, with K = Q, R. We summarize below all possible values of the functions
above.

axB | (apB) | (Ba)|aw| by czﬁ < | Tap szﬁ S5
(@) la—>p| —1 0 1 1 |nd|nd|-1| 0] -1
() | B— 0 -1 | -1| -1 |nd |nd| 1 1 0
(c)[amp | —1 1 0 1|nd |nd| O0|nd|nd
(d)| prha 1 -1 0| -1 |nd |nd | O0|nd |nd
(e) |« LB 0 0 0|nd |nd |nd | 0|nd |nd 5.1)
(f)|la<p 0 0 0|nd |nd |nd | 0|nd |nd
(g) | p<u 0 0 0|nd |nd |nd| 0|nd|nd
(h) | at-PB 0 1 l|ind |nd | 0] 1|nd|nd
(i) | «-B 1 0 | -1 |nd |nd 1|-1|nd |nd
(j) | BFa 1 0 |-1|nd| O0|nd|—-1|nd|nd
(k) | p1a 0 1 1|{nd | -1 |nd | 1|nd |nd
A

Definition 5.6. Let Qx be a topological quiver. The continuum quantum group of X is the asso-
ciative algebra U;gy generated by fx and the elements X, a € Int(K), satisfying the following
defining relations:

(1) Diagonal action: for any «, B € Int(X),
[Cﬂu C,B} =0 and [gﬂlxﬁi] == (DC“B) Xﬁi :

In particular, for K, := exp(%/2 - {x), it holds Kan = g=@lp). X/:SEK‘,(.

(2) Quantum double relations: for any «, § € Int(X),

_ K, —K;1 ch aup C o Ap x—
[XJ,X5}=5a,g7;_q_"‘l +aw~(q Xt g Ko — g% Kq Xﬁw)

b, -1 Pup o~
+ bﬁ“ g (q—q )X(ng)@g Kmﬁ X(avﬁ)ea )

9Recall that « and B are nested if they are perpendicular or one contained in the other.
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(3) Quantum Serre relations: for any (&, ) € Serre(X),

+
Xy Xg =4 XgX3 = Fbyg 7 - X g +byp - (9 —071) X5 X5

We assume that Xf(E@ p= 0 whenever « ® B is not defined, for ©® = @,6, V, A, and the functions
a,b,c,r,s are those introduced of Definition 5.4. @

5.2. Colimit structure. Inanalogy with Section 3.4, we prove that the continuum quantum group
Ujgx is covered by an uncountable family of Drinfeld—Jimbo quantum groups. Let J be an irre-
ducible family of intervals in Int(X) (cf. Section 3.4). We then consider two quantum algebras
associated to J:

e the Drinfeld—Jimbo quantum group U,g% with Cartan matrix A7 = [(«|B)]sse7 ;

o the subalgebra U,g 7 generated in U,gx by the elements {&,, X |« € J}.
Proposition 5.7. The assignment

Eo— X§, Fors Xy and Hy— &y

forany o € J, defines a surjective homomorphism of algebras @ 7 : Uqg?(M — Uggs.
Proof. First, note that Proposition 3.13 follows from the result above by setting 77 = 0. It is easy
to check that, applying the quantum Serre relations (3) of Definition 5.6 corresponding to the
elements X&t, with « € J, one recovers the standard quantum Serre relations of the Drinfeld-

Jimbo quantum group Ugg”7™ (cf. Section 2.6). Thus, by mimicking the arguments of the proof of
Proposition 3.13, the result follows. g

The following is straightforward.
Corollary 5.8. Let J, J' be two irreducible (finite) sets of intervals in X.
(1) If J" C J, there is a canonical embedding ¢'; ;/: Ugg 7w — Uggy sending Xif = X, Ga e
o, ve J.
(2) If J is obtained from J' by replacing an element a5 € J' with two intervals w, B such that
as = « @ B, there is a canonical embedding 479 72 Ugggr — Uggy, which is the identity on
Uqgj/\{as} = Uqgj\{a,ﬁ} and sends

ot
Ene Ca-ﬂfg, Xujcts — $b;ﬁl q Sup . (Xaixﬁi _qraﬂ Xﬁixai) .

(3) The collectit?n of embeddings 47:7/ Nz 479/ N indexec? by all .pos'sible irreducible' sets of intervals in
X, form a direct system. Moreover, there is a canonical surjective homomorphism

colim 7 Upg7™ — Uga(X) .
5.3. Comparison with the quantum group of the line. We will now show that the continuum

quantum groups of Ugx, X = R, S!, coincide with the quantum groups of the line and the circle
introduced in [SS17]. Let us first recall the definition of the line quantum group Usl(R).

Definition 5.9. Let K = Q, R. The quantum group of the line is the associative algebra U,s[(K) gen-
erated over C[7] by elements E,, Fy, Hy, with « € Int(IK), with the following defining relations.
Set g := exp(h/2) and K, := exp(h/2 - Hy).

o Kac-Moody type relations: for any two intervals «, j,

[HoyHp] =0,  [Ha Eg]l = («[B) Eg,  [Ha Fpg] = —(a[B) Fp, (5.2)
Ko — Ko
[E,Fgl = q—9g7! fa=p, (5.3)

0 ifao L B,a =B, orf—u,
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e join relations: for any two intervals &, f with « — §,

H‘X@ﬁ =H, + Hl; , (5.4)
Ewop= q"/?EsEg—q Y?EgE,, (5.5)
Fiop = —q"/*FxFg +q V2 FgF,y ; (5.6)

e nest relations: for any nested «, B € Int(K) (thatis, such thata =, & L B, a < B, B < «,
a=pB,a-B BFa orfa),

g EEp = PV EGE, and g P FFy = qPU R (5.7)
@
It follows, in particular, that
KKp = KgKo,  KoEp =g Egky,  KoFg = g~ (i) Fyk,

As in the case of s[(IK), the Cartan subalgebra of Uys((IK), namely Ujh := (H, | « € Int(KK)), is
canonically isomorphic to the symmetric algebra Sfk [1] generated by the characteristic functions
{8a:=1a | « € Int(K)}.

We have the following:
Proposition 5.10. There is an isomorphism of algebras Uygx — Uysl(K) given by

X 5 q¥Ey, Xy q 2F, Gar> Hy,
with a € Int(IK).

Proof. First, we show that the relations (1)-(3) from Definition 5.6 imply those from Definition 5.9.

5.3.1. The Kac-Moody relations (5.2) and (5.3) follow immediately from (1) and (2), respectively.
The join relation (5.4) is automatic, while (5.5) and (5.6) follow from (3). Namely, if « — B, then
xVB = a @ B, and a A B is not defined (therefore the last summand on the RHS of (3) does not
appear) and

— — + -
raﬁ——]., bﬂ(ﬁ_l’ Saﬁ—o, Sﬂéﬁ__l'

So that (3) reads XJXE - q’lXEX; = le@ﬁ (resp. X; Xz — q’lng; = —q’lxﬂj@ﬁ). Then,

since X = q%Ea and X, = q_%Fa, one has
1 3
qExEp — EgEa = q7Eyep and q 'FuFp—q *FgFa = =4 ?Fusp ,

which corresponds to (5.5) and (5.6), respectively. Assume now that « and f are nested and « # S,

so that « @ B, VP and a A B are not defined, and (3) reduces to X“ng = gl XEEX,?(E. Then, (5.7)

follows by observing that, in case of nested intervals, r g := (—1) (@) (a|B)? = (B,a) — (a,B), as
one checks easily from the last seven rows (e-k) of the table (5.1) above.

5.3.2. Conversely, we shall show that the relations (1)-(3) holds in Uys((K). (1) follows from
(5.2). By the previous discussion, (3) holds for the cases (a) and (e—k) listed in the table (5.1). It
remains to prove it holds in the cases (b—d).

e Case (b): B — a. From (5.5) and (5.6), we get
Q2EgEq — 4 2EaEp = Eqep,  q2FgFu —q 2FuFg = —Fuap.
Then, by X; = q2E, and X; = g~ 2F,, we get

gOXIXS — g XEX = —q 2 X, PXTX5 —qiX; XD = g2 X

B B wsp B B YL
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Finally, we get
XiXg —aXgXd = —aXjop,  XaXg —qXp Xy = X050
which agrees with (3), since for § — « we have g = 1, b“ﬁ = -1, s;fﬁ =1,and Soj‘B =0.

e Case (c): w h B. Note that, in this case, a VB and a A B are both defined, reg = 0, baﬁ =1, and (3)
reads

Xa X5 — XgXa = (9—q )X X0,-

Seta=ac (arp),b=ac(arp),andc =aAP. Thus,a =adcwitha »c,f=cPHb
withc = b, and aVB = a @ b with o« — b. Since ¢ 4« and « — b, we have

1 _1 _1 _
Eﬁ:q2Ech—q 2E,E., EyEc = qE.E,, EiEy, =9 2E0(V[3+q 1EbEa-
Therefore,

EoEp = Ea (1°EcEy — g PEEc) =

1

3 1/ 1 _
=q2E, (q 2EaVﬁ+q EbEa) —q 2 (q 2Eavﬁ+q 1EbEu¢) E. =
1
= gEcEyvp + quchEa —q EavﬁEc —q 2EpEcE, .
Sincec = a A B < aVp, we get
EsEg = EgEx + (q— qil)EaVﬁEaA/S ’
which agrees with (3) under the identification X; = q% E,. Similarly,
1 1 1
F‘B:_tith‘l’q_inFc, FaFC:chPa, Pth:_q_EFavﬁ‘i_q_thPa.
Therefore,
1 _1
FFg = Fa (—qZFch +q ZFch) -
3 _1 1 _1 _1 1
= —q2F, (—q 2Fyvp+4 FbFa) +q72 (_q 2Fyvp +4q FbFa) F. =
1 1
= qFcFovp — q2F.FyFy — q 'FygpFe +q 2FFFy =
= FﬁFlX + (q — q_l)levﬁFlXAﬁ ’

which agrees with (3) under the identification X, = g~ : Fy.

e Case (d): B h a. In this case, g = 0,b —1, and (3) reads

ap =
XiXg = Xg X3 = —(q— a7 )X pXiap -

Thus, « = c@awithc - a,f=bBcwithdb = c,and aVB = bDawithb — a. Sincec - «
and b — a, we have

1 _1 _ 1
Eg =q2EyEc —q 2EcEy, ExEc=q 'E.E,, EoEp = =92 Eqvp + qEpEx .

Therefore,
1 _1
EiEp = Eq (qubEC —yq ZECEb) =
1 1 3 1
=42 (_quaVﬁ + quEtx) E.— qiiEc (_quD{Vﬁ + quEa) =
1 1
= —qEqvpEc +q?EyEcEx + q 'EcEygp — q 2EEyEq =
= EﬁEa - (q - q_l)EaVﬁEaA/S ’
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which agrees with (3). Similarly,
1 1 1
Fl; = —q2FF.+q 2FF,, F,F. = q_lFCFa , F.F, = tiaV‘B + qFyFy .

Therefore,
1 _1
FoFg = Fa (—qubFC +q zFCFb) =
= _q% (q%FaVﬁ +quFuc) F +ff%Fc (q%FaVﬁ +quFo¢) =
= —qFyopFc — Q2 FyFeFo +q 'FeFypp +q 2F.FyFy =
= F/SFa - (q - q_l)FaVﬁFaAﬁ ’
which agrees with (3).

5.3.3.  We now show that relations (2) hold in U;sl(IK). This is clear for the cases (a), (b), (e) in
the table (5.1). We should prove it for all remaining cases. We start with the cases of a boundary
subinterval (rows h-k).

e Case (h): a b B. In this case, we have a,5 = 1 and Cap = 0, so that (2) reads

(X5, X5] = K, X,

[;] xaBoan
Sety = B & a. Thus, B = a @ ¢ with « — . We have

1 _1 _ _ _
Fg=—q?FFy+q 1, [Eo,F]=0, FK,=q 'K,E,, FK;'=gK'E,.

Therefore,
[Ex Eg) = —4*[Ex, Fa]Ey + 97 2By [Ex, Fa] =
1K, — K1 1 K, — K !
— 4 "2 F +g 2F e T
g—q 1 T g
1K, — K1 197K —qK—l)
— [ — EM-F -1 & TR VE o—
( Tyt T g !
g2 +q° 10— 1
= FKaFW = —q_fq _q,lKaFw =—q 2KFgou,
and we get [X], Xgl =K, X5,
o Case (i): a = B.
In this case, we have a, = —1 and c;ﬁ =1, so that (2) reads

(X, X5] = qK ' X, -
Set y = B © . Thus, B = a @ ¢ with v — a. We have
1 1
Fg=—q?F,Fy+q 1RF,, [Eo,F]=0, EK,=q'KFE,, FEK'=qK'F,.
Therefore,

[Ea, Fg) = —q2Fy[Ew, F] + 72 [Ea FJFy =
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and we get [X], Xgl= qKalel;@a = Xl;e“Ka_l.
e Case (j): B+ a.
In this case, we have a, = —1 and c:ﬁ = 0, so that (2) reads
+ oyl _xt+ g-1
X3, X5) = =X Kyt

Sety =a © B. Thus, « = & vy with B — . We have
1 _1 _ _ _
Eo=q2EgE, —q 2EyEp, [Ey, Fg] =0, KgEy=q 'E;Kg, Kz'Ey=qE,K;'.

Therefore,
1 _1
[Ea, Fg] = q2[Ep, F]Ey — g 2E,[Ep, Fg] =
(K, — Kt ., Ky—kj!
=gt —fE g iE, =
qg—q q9—q
_ 0Ky —aKgh KK
_E7 q2 q_q—l q 2 _q—l =
q% —|—q7% 1
_ -1 _ > -1
= EWK/S ﬁ = —quyKﬁ
and we get [X, X;] = —leeﬁKlgl = _‘flKElX,jeﬁ'

e Case (k): p - a. In this case, we have a;g = 1 and c:{ﬁ = —1, so that (2) reads

(X3, Xg5] = a7 X} K-
Sety = a © B. Thus, « = v ® p with v — B. We have
1 _1 _ — —
Eaw=q2EyEg—q 2EgEy, [Ey,Fgl =0, KgEy=q 'E;Kg, Ky'Ey=qE,K;'.
Therefore,

1 _1
[Ea, Fg] = 92 Ey[Ep, Fg] —q~ 2 [Ep, Fg|Ey =

K, — K;! K, —K3!
=B e B =
K, — K31 -1, — gK;1!
I By A N B b B N
—E’y q2 — g 2 — =
q—q q—q

and we get [X, X5 ] = q_lXa*@ﬁKﬁ = KﬁXa*@ﬁ.

e Case (c): a M B. In this case, we have baﬁ =1land bﬁa = —1, so that (2) reads

o -1 —
X5 X1 = =071 = 07X o pyopKenpX wopron -

Setc=anrB,a=a6c,b=BSc. Thus,a =a®cwitha —-c,f=cPHbwithc — b,andc I B.
Therefore,

1 _1 _1 —
Ea = q2EﬂEC — q 2E5Ea ’ [Eu, P‘B} = O ’ [Ec, F'B] = _q ZKCFh ’ KCEa = q 1EaKC y
and we have

[Ex, Fg] = [42EqEc — g 2 EcEq, Fg] =
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= q2Eq[Ec, Fy) — g7 [Ec, Fg)Eq =
= B (~q72KF) — g7 (—g 2 KFy) Eo =
= —E.K.Fy +q 2E;K.Fy = —(1 — g 2 EK.Fy .

Therefore, [X;, Xlg] =—q g~ q_l)X&vﬁ)gﬁKMﬁX(_Wﬁ)ea.

Case (d): B th a. In this case, we have baﬁ = —land bﬁ“ =1, so that (2) reads

- _ -1 -1 x—
(X X1 =a(a =0 )X 050 pKenpX wvp)on -

Setc=aArB,a=a0c,b=BSc. Thus,a =cPawithc - a,=bPcwithb - c,andc - B.
Therefore,

1 _1 1.1 -1 -1

Ea:quch_q ZEaEc, [EQ,F'B]:O, [EC/F‘B}:q2KC Fh, KC Ea:unKC ’

and we have
1 1
[E,X,Fﬁ} = [q2E.E; — g 2E,4E,, Fﬁ] =

1 1
92 [Ee, Fﬁ]Eu —q 2Eq[E, Fﬁ] =

1 1 1 1
=% (PPK'Ry) Bo— 0 2Eo (2K 'Ry =

(

Therefore, X, X5 ] = q(q — qil)Xavﬁ)eﬁK;AlﬁX(;vﬁ)ea‘

Case (f): « < B. Note that, in this case, B S a, « © B, aVB, a A B are not defined. Let b, b’ be the
two connected components of S\ a, sothat p = b @b witht =a®db”, b — V', b — a and
« - b'. Then,

1 _1 _1 _
Fg=—q2FFy +q 2FyF,, [EoF) =0, [EoFy]=—q 2K,Fy, FK,=q 'KF.
and we get
[Ex, Fg] = [Ex,—q? FFy +q 2 FyFy] =
1 1
= _qub[Ea/ Fb’] +q 2 [Ea, Fb/]Fb =
1 _1 _1 _1
= —q2Fb (—q 2K¢be”) —+ q 2 (—q ZKan//) Fb =
= q_lKanFb// — q_lKan//Fb =0 ’
where the last equality follows from (5.7), since b L V" and therefore F,F,» = F,Fy,. Thus, we

get [ X7, Xl;] =0.

Case (g): B < «. Note that, in this case, PO w, « © B, aVp, a A p are not defined. Let a,a” be the
two connected components of a \ B, so thata = a @ a’ witha' = pda”,a — a’,a — pand
B+ a'. Then,

Ev=q?EaEy —q *EgEa, [EoFs] =0, [Ew,Fs)=—q?EnK;', Ki'Eo=qEK;".
and we get
[Ea, Fg] = (72 EaEwr — q 2EyEq, Fg] =
= 3 EalEy, Fg] = 42 [Eq, Fg)Ea =
=q°E, (—q%Ea//Kgl) —q (—q%Ea"K,gl) E, =

= —qE.EsKy' + qEwEKy" =0,
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where the last equality follows from (5.7), since a L a4’ and therefore E,E,» = EpnEp. Thus, we
get [ X7, Xgl=0.

O

5.4. Quasi-triangular bialgebra structure on continuum quantum groups. We now prove the
second main result of the paper. Namely, we show that the continuum quantum group Uggx
is naturally endowed with a topological quasi-triangular Hopf algebra structure, quantizing the
topological quasi-triangular Lie bialgebra gx.

More precisely, we prove the following.

Theorem 5.11. Let Qx be a topological quiver and Uggx the corresponding continuum quantum group.

(1) Thealgebra U,gx is a topological Hopf algebra with respect to the maps A: Uygx — Ugax®@Ugax
and e: Uggx — C[1] defined on the generators by e(&x) = 0 = e(XF), A(&a) = Ca ® 1+

1® Cn, and
AXS) =X @1+ Ke® X+ ) agpaysp, 0 (-0 ) X[Ky @ X,
a=pdy
AX)=10X, +X, @K'= Y a s, - (—g )X @ X7K !
« « « « v, BEY 2By q—4 B Ty
=Py

In particular, ¢(K,) = 1 and A(K,) = K, ® K,. As usual, the antipode is given by the formula
S:= Zm(") o(id—10g)® oA,
n

where m™) and A" denote the iterated product and coproduct, respectively.

(2) Denote by Uqb§ the Hopf subalgebras generated by fx and X, a € Int(X). Then, there exists a
unique Hopf pairing (-|-) : Ugby ® (Ugby )P — C((h)), defined on the generators by

Ou
(11):=1, (&lép) = % (alB) (X[HX,Q) = #

and zero otherwise. In particular, (K,,( |K ﬁ) = q(“\ﬁ).

(3) Through the Hopf pairing (-|-), the Hopf algebras (U,b3;, U,by,) form a match pair. Therefore,
U, gx can be realized as a quotient of the double cross product Hopf algebra UgbY, iU, by, obtained

by identifying the two copies of fx. In particular, Uagx is a topological quasi-triangular Hopf
algebra.

(4) The topological quasi~triangular Hopf algebra Uggx is a quantization of the topological quasi—
triangular Lie bialgebra gx.

The strategy of the proof is essentially identical to that of Theorem 4.6 and consists in show-
ing that the continuum quantum group Uggx can be equivalently realized by duality. This is
obtained by considering the quantum analogue of the techniques used earlier, generalizing the
construction of Drinfeld-Jimbo quantum groups given by Lusztig (cf. [Lus10, Chapter 1]). We
will schematically described the proof below, leaving the details to reader.

e Let H4 be the free associative algebras over C[i]] with set of generators & and X5, a €
Int(X). Then, the assigments (&) = 0:= &(X7), Ay (&) = f ®1+1®¢&, and

Av(X) = XF @1+ K@ XS + Y. aypagsy, -4 (a—q ) XjKy @ XS,

a=pDy P
N - - ~1 - —1y yv— — -1
A—(Xa)'_1®xa +X¢x ®K0¢ - Z av,ﬁ@’ysﬁy'(q_q )Xﬁ ®X7K'y ’
x=Bdy

extend uniquely to two algebra maps A+ : H+ — Hx QHyande: He — C[n], defining
on H a structure of topological bialgebra.
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There exists a unique pairing of bialgebras (-|-) : H4+ ® H_ — C((h)) defined on the gen-
erators by
Sup
g—q7""
where q = exp(f1/2), and zero otherwise. In particular, (K“|Kﬁ) = (P, where K, :=
exph/2-Cq.

(11) =1, ( IICE) = %(leﬁ) , (X‘HXE) -

Let Z.. be the ideal generated in H 1 by the elements

Ciop—Ouep (G2 +C5) , [6585), 65 Xi5) — + (alB) X
for any a, B € Int(X), and
+
XaXg =0 X5Xg — Fbyg 07 - Xip = bug - (1071 - X3y pXanp
for any (a, B) € Serre(X). Then, Z+ is a coideal and it is orthogonal to H .

Set B+ = H+/Z4+. Then, (B4, B—) form a matched pair of topological bialgebras. More-
over, the quantum double relation (cf. Definition 5.6-(2)) holds in the double cross product
bialgebra D = By <iB_/ ~, where the quotient is obtained by identifying the two copies
of the commutative subalgebra generated by the elements &5, a € Int(X). In particular,
there is a canonical algebra isomorphism Uggx ~ D.

Finally one observes that, for any irreducible set J, the map Uyg’™ — Uggx ~ D from
Section 5.2 preserves the pairing. In particular, this implies that the pairing on D, and
therefore on U,gx is non—-degenerate. The result follows.

Moreover we get the following.

Corollary 5.12. The morphism colim 7 Uqg* — Uqg(X) from Corollary 5.8 is an algebra isomorphism.
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