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32INFN, Laboratori Nazionali del Gran Sasso, Assergi (L’Aquila), Italy

E-mail: gmandaglio@unime.it

Abstract. The Extreme Energy Events (EEE) experiment consists in a network of cosmic
muon tracker telescopes, each made of three Multi-gap Resistive Plate Chambers (MRPC),
able to precisely measure the absolute muon crossing time and the muon integrated angular
flux at the ground level. To investigate the MRPC telescope response and performance, a
simulation tool was developed in GEMC, software package based on GEANT4 libraries. The
framework was validated by comparing simulations with the EEE experimental data. Detailed
description of telescope response is fundamental to carry on the physics program of the EEE
project, and it could open other research avenues, such as using the telescope in combination
with other detectors to perform a (muon) tomography of material surrounding the telescope.
In this paper, the EEE simulation framework will be presented reporting results and discussing
further applications.

1. Results and Discussions
The Extreme Energy Events (EEE) experiment [1,2] deployed a network of about 60 cosmic muon
detectors sparse in an area of 3 × 105 km2. The EEE network acts as a gigantic telescope that,
precisely measuring cosmic muon rates and arrival times, looks at the sky in a complementary
way than traditional optical telescopes. The EEE main goal is to study high-energy cosmic rays,
and some recent results published by the EEE Collaboration include: observation of the Forbush
effect [3], searches for anisotropies in the cosmic ray intensity [4], and long distance correlation
in secondary muons [2].

Each station of the EEE network, that defines a “telescope” for cosmic rays (mainly muons),
is made of three Multigap Resistive Plate Chambers (MRPC) [5] specifically designed to achieve
good tracking and timing capability, low construction costs, and an easy assembly procedure [6].
The three MRPC chambers are placed one above the other with the top and the bottom chambers
at a distance of 50 cm from the middle chamber in the most common working configuration
resulting in an angular acceptance of 2.23 sr.

All EEE detectors, based on the same MRPC technology, may present slightly different
experimental configurations (e.g. the distance between the chambers and the absolute
orientation w.r.t. the North are not always the same). Moreover, the measured rate is affected
by the material surrounding the detector that is different for each telescope since they are hosted
in rooms located in non-dedicated buildings (high schools or university labs). Therefore, the
interpretation of experimental observations (cosmic ray absolute rates and angular distributions)
requires a reliable MonteCarlo simulation of the detectors response and experimental conditions.

The EEE simulation tool implemented by using the GEMC [8] framework, based on
GEANT4 libraries [7], includes: single cosmic muon generation based on an improved Gaisser
parametrization of the muon flux at the Earth level (see [9–12]), propagation through materials
surrounding the detector and a parametric description of the MRPC response to charged
particles, experimental trigger emulation and track reconstruction [13].

To validate the simulation tool, we selected two telescopes known to be very stable in time and
hosted in building with roof and walls easy-to-implement in simulations: TORI-03 telescope,
hosted in the High School in Turin, working with the most common configuration 50/50 cm
distance between the chambers; CERN-01 telescope, hosted by CERN, working with top/bottom
chambers distanced by 44/44 cm. The comparison between single-muon rates measured by
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TORI-03 and CERN-01 and the simulations, corrected by the experimental detector efficiency
(as described in Refs. [13, 14]), are reported in figure 1. The agreement within 5% at small θ
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Figure 1. Experimental-simulation ratio of polar angle distribution for TORI-03 (left panel)
and CERN-01 (right panel) telescopes.

and ∼10% in the whole polar angle acceptance, and the mean value of the ratio resulting to be
around unity, demonstrate that the EEE simulation framework is able to reproduce the absolute
observed angular cosmic muon rate in different working and set-up conditions.

EEE telescopes often work in different surrounding material conditions. We investigated this
effect by simulating the telescope working

Simulation of a telescope working in a room (parametrized with walls of 30 cm concrete
thickness) at the first floor a building of two floors, in two different building configurazions: one
with large windows in both floors and the other without, shows difference on counting rates fot
the two configurations up to 8% at polar angle larger enouh̀ıght to intercept the windows [13].
Such a significant sensitivity stresses the importance to take into account the possible distorsion
in counting rate due to morfology of building hosting the telescope, but on the other hand
shows the interesting feature to use muons as a proble to scan the surrounding materials [15].
Experimental evidence of this effect was observed in real data in the telescope hosted in the
University of Genoa where the singular structure of the building hosting the telescope produces a
counting rate asymmetry with respect the azimuthal angles at polar angles larger than 30 degree.
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Figure 2. Ratio of the simulated rates for muons of 0.2-2 GeV energy obtained by using a
geometry with an iron column at a side of the telescope and by a telescope working in a free
space (left panel). Rendering of the simulation with the iron coulumn (left panel).
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This effect has been reproduced and interpreted with the simulation (see details in [13,16]).
A further example of the features provided by the simulation tool is reported in figure 2,

where we report the ratio of the simulated muon counting rates as a function of the azimuthal
angle, registered by a telescope working with an iron cylindrical coulumn 5 metres tall placed 4
metres far from its long side and one working in a free space, by using muons of 0.2-2 GeV. The
choice of low energy muons is to amplify the shadow effect of the culomn. The ratio (left panel
of figure 2) shows a sensitive reduction of counting rate for polar angle higher than 30 degree at
azimuthal angles arount +90 degree due to the presence column shadow. This proves how the
telescope is able to locate the angular position of absorver material, like the column in this case.

2. Conclusion
The EEE Collaboration developed a full simulation framework, implemented in GEMC, to study
the response of the cosmic muon telescopes of its network. Simulation tool was validated with
experimental data. It is a valuable tool to study the detector performance: efficiency, angular
and spatial resolutions, and dependence on telescope set-up. It can be used to compare and
correct the response of different EEE telescopes for precise measurement of cosmic ray flux due
to the Forbush effect. It can also be used to investigate new directions, such as for example
the use of the cosmic muons for building tomography. The tool is ready to be interfaced with
Corsika events generator [17] for the investigation of extensive air showers with the EEE telescop
network.
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