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A B S T R A C T   

Accurate modelling of Li-ion batteries is essential for optimising performance and safety across a range of ap-
plications, from electric vehicles (EVs) to grid storage. This paper critically evaluates two prevalent battery 
modelling methodologies: Equivalent Circuit Model (ECM) and Physics-Based Model (PBM), using a 60 Ah 
prismatic graphite/lithium‑iron-phosphate battery as a case study. The focus of this work is on developing, 
parameterising, and cross-validating these approaches through a comprehensive set of electrical tests at different 
ambient temperatures under constant and variable current densities, including the Worldwide Harmonised Light 
Vehicles Test Cycle (WLTC) protocol. This evaluation not only assesses the accuracy and reliability of the ECM 
and PBM but also underscores their strengths and limitations. The ECM shows advantages in computational 
speed, ease of calibration, and accuracy within its calibration range and for variable current profiles. However, 
its accuracy diminishes at higher currents, especially for prolonged current pulses, and beyond the calibration 
range, as evidenced in charging scenarios beyond 1C. Conversely, the PBM maintains accuracy beyond the 
calibration dataset but necessitates estimation of many physical parameters, a laborious calibration process, and 
extended computational times for variable current scenarios. Within the range of conditions investigated (from 
C/3 to 2C between 10 ◦C and 40 ◦C), the average errors in voltage prediction are 51.5 mV for ECM and 19.3 mV 
for PBM, while 0.9 ◦C for ECM and 0.4 ◦C for PBM in temperature prediction. In summary, while the ECM is 
suited for reproducing constant discharges or WLTC-like profiles with brief and low-intensity charge pulses, the 
PBM strength lies in its predictiveness for high-rate operations, making them complementary tools for simulating 
realistic EV load operations and for optimising fast-charging protocols, respectively. These insights contribute to 
the ongoing advancement of battery technology, focusing on realistic and applicable model development and 
parameterisation.   

1. Introduction 

Li-ion batteries, integral to a myriad of applications from electric 
vehicles (EVs) to renewable energy storage, are a cornerstone of 
contemporary energy solutions [1,2]. Their complex behaviour and 
performance characteristics necessitate precise modelling for optimisa-
tion and understanding [3–6]. In the field of Li-ion battery modelling, 
two predominant methodologies have emerged: equivalent circuit 
models (ECMs) and physics-based models (PBMs) [7,8]. Each of these 
approaches has been extensively applied in the literature, reflecting a 
diverse array of modelling objectives and scenarios [9–16]. 

ECMs conceptualise the battery as an electrical network comprising 
resistors, capacitors, and voltage sources [13,17,18]. This analogy into 

an electrical framework simplifies the battery intricate internal pro-
cesses, a feature that has been widely acclaimed in the literature for its 
computational efficiency and ease of integration into simulation tools 
and battery management systems [9,19,20]. The adaptability of ECMs 
across different battery types, sizes, and geometries, with minimal 
calibration data, is particularly noted in various studies, enhancing their 
appeal for real-time applications and general condition estimations 
[17,19,21–23]. However, limitations of ECMs are evident in their su-
perficial handling of the battery internal physical and chemical dy-
namics, such as ion diffusion and electrochemical reactions [8]. This 
lack of depth in representing internal processes often results in 
compromised predictive accuracy under extreme conditions or in the 
development of novel battery chemistries [24]. 
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On the other hand, PBMs are rooted in the fundamental physical and 
chemical underpinnings of battery operation, including the principles of 
mass and charge conservation, diffusion, and reaction kinetics [25–28]. 
The PBMs are promoted for their ability to provide detailed insights into 
internal processes like concentration and temperature gradients, which 
are crucial for probing new battery chemistries and predicting behav-
iour under a variety of operational scenarios [29–33]. Their compre-
hensive nature makes PBMs invaluable tools for in-depth analysis and 
exploration, as they can capture complex interactions within the battery 
that ECMs might overlook. However, the intricate nature of PBMs comes 
with its own set of challenges, as noted in various studies [3,7,34]. The 
high computational demands of these models and the necessity for 
extensive experimental data for calibration and validation purposes are 
significant drawbacks [35]. These requirements limit PBMs immediate 
applicability in real-time systems or contexts requiring rapid and effi-
cient modelling [36]. 

To bridge the gap between ECMs and PBMs, a hybrid approach that 
combines the strengths of both methodologies has been explored in 
recent research, that is the development of hybrid physics-based 
equivalent circuit models [37–39]. These advanced equivalent circuit 
models incorporate physical and chemical principles, offering a more 
robust representation of the battery internal processes, while main-
taining the computational efficiency of traditional ECMs [40,41]. This 
combination allows for efficient, real-time applicability while main-
taining a deeper understanding of key phenomena such as diffusion, 
kinetic reactions, and concentration gradients [40,42–44]. Physics- 
based ECMs offer a balanced solution by capturing battery behaviour 
across a range of operating conditions, including high-rate charging and 
discharging cycles [42]. Nevertheless, precise parameter identification 
and the complexity of modelling intricate battery dynamics [3,45–47] 
remain challenges which still require PBMs to provide accurate 
predictions. 

To explore the full range of these possible modelling approaches, this 
work focusses on ECM and PBM critical comparison. While existing 
literature includes works that compare the capabilities of both ECM and 
PBM methods, even when applied to real case studies [48,49], there is 
still limited evidence of studies applying these two methods to the same 
battery and independently assessing their results using a shared set of 
experimental tests. Therefore, this research aims to critically compare 
the ECM and PBM performance on the same experimental dataset 
providing a balanced perspective of both approaches. A validated 
comparative framework applied to a commercial graphite/Li‑iron- 
phosphate (LFP) battery evaluates model effectiveness across various 
temperature and operational scenarios. The examination includes their 
respective limitations, identifying their applicability ranges and poten-
tial areas for improvement. This analysis extends to the application of 
these models to the Worldwide Harmonised Light Vehicles Test Cycle 
(WLTC) protocol [50], exploring the challenges and opportunities of 
employing ECMs and PBMs in vehicular technology settings [51,52]. 
While this study uses the WLTC protocol to evaluate Li-ion batteries, 
primarily used in electric vehicles, the growing use of these LFP batteries 
in stationary storage systems is also acknowledged; in any case, the 
findings of the study will remain robust across various application set-
tings, including those with less dynamic operation rates [53,54]. Over-
all, this research offers a comprehensive examination of the dominant 
modelling methodologies in Li-ion battery research, with the goal of 
advancing both theoretical understanding and practical application in 
this rapidly evolving field. 

The structure of the paper is as follows. Section 2.1 introduces the 
cell under investigation, detailing its internal characterisation and the 
electrical procedures used to generate the dataset for model testing. 
Subsequently, Sections 2.2 and 2.3 delineate the mathematical frame-
works and key parameters of the ECM and PBM, respectively. Section 
3.1 focuses on the calibration procedures for these models, while in 
Section 3.2 the calibrated models are cross-validated in a wider spec-
trum of operational conditions beyond their calibration dataset, 

critically comparing model predictions in terms of average and 
maximum deviations from experimental data. Finally, the application of 
the models to a WLTC scenario examines the practical efficacy and 
constraints of ECM and PBM in dynamic EV applications, leading to the 
final conclusions in Section 4. 

2. Methods 

2.1. Investigated cell and electrical characterisation methods 

In this research, a 60 Ah Li-ion battery with a prismatic geometry 
(Fig. S1) is analysed to parametrise and validate the ECM and the PBM. 
The battery specifications, based on data sheets and prior material 
characterisations [51,52,55], are detailed in Table 1. 

Understanding the definition of C-rate is crucial for this study. All C- 
rates mentioned are given with respect to the nominal capacity (Cnom), i. 
e., 60 Ah, with 1C equating to 60 A. Thus, the current is defined as the 
product of the C-rate n (with units of h− 1) times the nominal capacity of 
the cell, resulting in a current corresponding to nCnom. 

The battery testing setup included a climatic chamber (Binder KB 
115), where the battery was placed, connected to a Digatron® battery 
cycler (6 V, 250 A) (Fig. S1). This cycler executed specific load profiles at 
varying ambient temperatures, with details in Table S1, and monitored 
the battery voltage and current. To measure cell surface temperature, 
nine K-type temperature probes were affixed to its lateral surfaces, with 
an additional probe for room air temperature placed in the chamber 
upper section. The climatic chamber ambient conditions were controlled 
to match test requirements, with tests conducted in free air, supported 
by low forced convection from an air fan. 

Capacity tests were performed at C/3 (20 A) to determine the 
accessible capacity using a constant current constant voltage (CCCV) 
(CC phase cut-off at V = 3.65 V, CV phase cut-off current C/20 = 3 A) 
charge and a C/3 discharge protocol resulting in 62 Ah. Multiple step 
test (MST) protocols, also known as galvanostatic intermitted titration 
technique tests (GITT), were conducted to capture the battery electrical 
behaviour in response to a series of discharging current steps. This test 
involved multiple 1C (60 A) current pulses of 6 min duration (6 Ah), 
interspersed with 1-h rest phases, systematically reducing the battery 
state of charge (SOC) by 10 % after each step, starting from a fully 
charged state (Fig. S2). Following the MST, charge (CHA) and discharge 
(DCH) tests were performed to evaluate the battery behaviour under 
standard profiles recommended by the manufacturer. The constant 
current (CC) phase of charge tests was conducted at two rates, C/2 (30 

Table 1 
Characteristic data of the cell.  

Battery specifics Battery internal characterisation 

Chemistry and type: Graphite/LFP - Prismatic No. of active layers Ncell: 176 
Dimensions: 130 × 186 × 36 mm Electrode cross-section area Aact : 

0.0193 m2 

Weight: 1.685 kg Copper current collector 
thickness LCCN : 7.9 μm 

Voltage range: 2.8–3.65 V Aluminium current collector 
thickness LCCP : 11.6 μm 

Nominal voltage: 3.2 V Negative electrode thickness LN: 
72.5 μm 

Max discharge current: 180 A Positive electrode thickness LP: 
76.1 μm 

Max charge current: 90 A Separator thickness LS: 25 μm 
Charging method: CC-CV (CC until 3.65 V, CV 

cut-off current = C/20) 
Graphite particle radius rN: 10.0 
μm 

Operating temperature: − 20 to 50 ◦C 
(discharging @ < 0.3C), 0 to 50 ◦C (charging 
@ < 0.3C) 

LFP particle radius rP: 36.5 nm 

Gravimetric energy: 113 Wh kg− 1 Active volume Vact : 6.577 10− 4 

m3 

Volumetric energy: 220 Wh L− 1 External cooled surface Aext : 
0.0520 m2  
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A) and 1C (60 A), beginning with the battery fully discharged to ensure a 
zero SOC (Fig. S3). The discharging tests involved initially fully charging 
the battery using a CCCV protocol (as per capacity tests), and then a 
single CC phase discharging until the voltage reached 2.8 V, at C/3 (20 
A), C/2 (30 A), 1C (60 A), and 2C (120 A). All tests were repeated at 
three different ambient temperatures: 10, 25, and 40 ◦C. The Worldwide 
Harmonised Light Vehicles Test Cycle (WLTC) protocol was conducted 
to simulate a dynamic vehicular scenario, applying a current profile that 
mirrors an electric vehicle battery performance. The current profile was 
adjusted to stay within the battery operational limits, with a maximum 
discharge current of 115 A. The test began with the battery at 90 % SOC 
and was repeated until the battery reached full discharge (2.8 V mini-
mum voltage threshold), conducted at 10 and 20 ◦C (Fig. S4). 

MSTs calibrated ECM parameters, while C/2 charge tests calibrated 
PBM parameters, ensuring a comparable number of calibration datasets 
for the models (namely, one per temperature). After calibration, all tests 
were simulated using both models for cross-validation, focusing on 
differences in voltage and temperature behaviour predictions. Lastly, 
the WLTC tests evaluated the potential and limits of both models, 
particularly for on-line monitoring applications. 

In short, these tests provided a comprehensive analysis of the battery 
performance under different operational conditions within 
manufacturer-specified limits and safety guidelines. The chosen ranges 
aimed to avoid significant degradation mechanisms not included in the 
current iteration of ECMs and PBMs used in this study. Despite this, the 
approaches presented here can be generalised to broader conditions if 
degradation phenomena are mathematically described and included in 
the modelling frameworks. The results are fundamental for calibrating 
and validating the ECM and PBM, as discussed in Section 3. Table 2 
outlines the details of the electrical tests, including test reference 
number, types, and operational temperatures in the climatic chamber. 

2.2. Equivalent circuit model 

2.2.1. Mathematical framework 
To predict the electrical and thermal behaviour of the battery, two 

coupled equivalent circuit models are required: an Electrical-ECM and a 
Thermal-ECM. These two models can be both calibrated and verified 
experimentally using measurements of parameters like cell output 
voltage, current, and temperature that can be easily obtained without 
causing any harm to the cell itself, considering the latter as a “black 
box”. 

The Electrical-ECMs for Li-ion batteries have been extensively 
documented in various research works [8,9]. A common approach in 
these models is the utilisation of an n-RC network, where n can be 0, 1, 2, 
or more. This network consists of a series of resistor-capacitor (RC) 
parallel circuits, which are instrumental in simulating the dynamic re-
sponses of the battery [52,55]. Among the different ECMs, the most 
prevalent ones fall under the n-RC category, which includes the 0-RC 
model, the 1-RC model, and the 2-RC model. While incorporating 
more RC blocks into the ECM can enhance the accuracy in depicting the 
battery behaviour characteristics, it simultaneously escalates the 
complexity of the mathematical framework. This increase in complexity 
can pose challenges in model parameter identification and SOC 

estimation, which are critical functions of the Battery Management 
System (BMS). Thus, a 2-RC model has been selected for this study as 
commonly found in the literature [56,57]. 

A schematic of the Electric-ECM is reported in Fig. 1a, the latter is 
represented by a one-port electric circuit comprised of an ideal voltage 
generator VOC in series to a longitudinal pure resistance R0 and two 
longitudinal resistance-capacitor parallel blocks (R1,C1 and R2,C2). VOC 
replicates the battery open circuit voltage (i.e., the battery measurable 
voltage when no current is applied), R0 simulates the battery ohmic 
behaviour, i.e., the immediate proportional voltage change as current is 
applied, while R1,C1 and R2,C2 allow the model to capture the battery 
dynamics occurring at different timescales in the order of minutes 
(charge-transfer processes) and tens of minutes (diffusion processes), 
respectively. As a remark, it is important to consider that the electrical 
components vary in function of the physical conditions of the battery 
itself. Indeed, each Electric-ECM element is potentially dependent on 
several variables, such as the battery temperature (T), state of charge 
(SOC), aging and healthy conditions (commonly named as state of 
health, SOH). Here, the Electrical-ECM parameters are assumed to be 2- 
dimension variables only, as function of T and SOC, while the depen-
dence on SOH is neglected. 

The structure of the Thermal-ECM used in this work is represented by 
a lumped temperature model [55,58], whose schematics is reported in 
Fig. 1b. The battery thermal dynamics is simulated via a single tem-
perature value T and a unique battery thermal mass Mcp, where M is the 
battery mass and cp its equivalent specific heat. The heat generated by 
the battery is modelled with the ideal power generator qgen, while qex 

represents the heat exchanged with the surrounding environment Tamb 
through the convective resistance Rconv. 

2.2.2. Parametrisation 
The Electrical-ECM and Thermal-ECM, reported in Fig. 1, are cali-

brated using MST results obtained at 10, 25 and 40 ◦C ambient tem-
perature, where each pulse plus relax-phase is analysed to parametrise 
their components. 

A typical discharging step of the MST, along with the corresponding 
battery SOC and voltage profiles, begins from a stable electrical condi-
tion. The current step, with intensity Iapp (60 A) and duration Δt (6 min), 
results in a change in SOC (10 %), calculated using ampere-hour 
counting based on the battery nominal capacity (Cnom = 60 Ah). The 
battery voltage is monitored until system relaxation, i.e., when the 
voltage is flat, providing the open circuit voltage (OCV) at different SOC 
values, which correspond to VOC in Fig. 1a. 

Notably, electrical parameters derived from a single MST are 
temperature-dependent. To ensure accuracy, the applied current Iapp is 
kept relatively small to avoid significant temperature variations in the 
battery (Fig. S2). Thus, each electrical parameter is calibrated as a 
function of SOC and Tamb = 10, 25, 40 ◦C. The open circuit voltage VOC of 
the battery is evaluated as the collection of datapoints obtained after 
complete relaxation at various SOC levels for each value of Tamb. The 
resulting function is VOC = VOC,ref + EHCcell

(
Tcell − Tref

)
, where Tref =

25◦C and EHCcell =
∂Voc
∂T is the entropic heat coefficient obtained as linear 

interpolation between VOC data centered at 25 ◦C. 
The longitudinal pure resistance R0 is calculated from the instanta-

neous voltage drop (ΔVa) post-current step (Eq. (1)). The remaining 
Table 2 
Electrical test procedures and ambient temperature conditions.  

Test reference number Type of test Ambient temperature (◦C)  

1 Multiple step test (MST)   
2 Charge CC-CV C/2   
3 Charge CC-CV 1C   
4 Discharge CC C/3 10, 25, 40  
5 Discharge CC C/2  
6 Discharge CC 1C  
7 Discharge CC 2C  
8 WLTC 10, 20  Fig. 1. Schematics of the Electrical-ECM (a) and the Thermal-ECM (b).  
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parameters, namely the two parallel RC blocks (R1, C1, R2, C2), are 
extracted from the analysis of the voltage evolution during the relax- 
phase. In such a phase, the battery voltage v is modelled by the 
Electrical-ECM through the sum of the transient decays of the RC blocks 
(Eq. (2)), each with a specific characteristic time τn with n = 1,2 (Eqs. 
(3), (4)), until the energy of every capacitance is dissipated in its 
respective resistor. In Eq. (2) i1 and i2 are the unknown values of the 
current flowing in R1 and R2 respectively, at time equal to t. Notably, in 
the impossibility of knowing any information of how the total dynamic 
voltage drop (ΔVd) is divided among the two RC blocks (Eq. (5)), the 
optimisation routine implemented in the Design Library of Dymola 
software [59] was used, which is also the software used for creating and 
simulating both Electrical and Thermal ECMs. This routine involves 
setting initial guess values for these parameters, initialising the model 
with the starting SOC and Tref , and inputting the experimental current 
step profile. The optimisation iteratively adjusts R1,C1,R2,C2 to mini-
mise the Root Mean Square Error (RMSE) between the simulated and 
experimental voltage curves. 

This procedure is repeated for every step involved in the MST and 
every ambient temperature. After that, the complete set of Electrical- 
ECM parameters is provided, with all the circuital elements defined as 
a function of discrete SOC and temperature values. In this work, the 
model is parameterised with 10 values of SOC equally distributed from 
100 % to 0 %, and three values of ambient temperature that are 10, 25 
and 40 ◦C as reported in Fig. A1 (numerical parametrisation of ECM 
electrical parameters is provided in the Supplementary information 
Tables S2 and S3). 

Regarding the parametrisation of the Thermal-ECM, the equivalent 
specific heat cp for the battery under analysis was already estimated 
experimentally in a previous study of this group [51], so its measure-
ment procedure will not be reported here. Also, it is important to un-
derline that the predicted battery temperature T is meant to represent an 
indication of the average surface cell temperature. Therefore, for cali-
bration purposes of this paper, T will be compared with the average 
value of the measurements of the 9 thermal probes places on the surface 
of the battery itself. In Fig. 1b, the convective resistance Rconv is defined 
by Eq. (6), where Aext is the battery outer surface and h is the convective 
heat coefficient [51,52], both known from the battery geometrical 
properties and the heat exchange capacity of the climatic chamber 
where the battery is placed in. The generated heat qgen is composed by 
two sources, as in Eq. (7). The first one is the irreversible heat qirr (Eq. 
(8)) which corresponds to the total Joule losses in the Electrical-ECM, 
while the second source is the reversible heat qrev (Eq. (9)), also 
named as “entropic heat”, which can be addressed to cell internal 
entropic changes effects, as in [52]. Regarding the modelling of irre-
versible heat, it is necessary to clarify the following. For the ECM 
adopted in this work, the contribution qirr is modelled as the heat pro-
duced by the Joule effect from the resistors of the equivalent circuit of 
Fig. 1a, as in Eq. (8), according to [52,60]. In addition to this modelling 
approach, in the literature the qirr term for ECMs is often modelled as a 
simple product (VOC − V)Iapp, where VOC is the open-circuit voltage of 
the battery and Iapp is the current at the output terminals [61–63]. 
Comparing this latter expression with Eq. (8), the two are equivalent 
only at electrical steady-state, i.e., when the current in the capacitors of 
Fig. 1a is equal to zero, and so i1 = i2 = Iapp. Therefore, the two models 
differ only under transient conditions. A key physical difference between 
the two approaches is that the model qirr = (VOC − V)Iapp suggests there 
are no irreversible losses if the current at the battery terminals is zero, 
and thus in all cases of voltage relaxation. This is believed to be incorrect 
as, even during relaxation, the battery experiences transient internal 
charge transfer phenomena, which cannot be assumed to result in zero 
losses. However, from a qualitative comparison regarding the expected 
difference in cell temperature using either approach, it can be reason-
ably stated that the approach in Eq. (8) estimates a higher average 
generated heat compared to the other, as it accounts for the heat 

dissipated during dynamic relaxation phases as well. From this 
perspective, it can be considered a more conservative method for esti-
mating the maximum temperatures reached. Additionally, while qirr 
contribution is always positive, the sign of qrev depends on the sign of Iapp 

(if the cell is charging, < 0, or discharging, > 0) as well as the sign of 
EHCcell, which varies with the SOC (Table S3). Therefore, qrev can either 
act as an additional cell heating effect (qrev > 0) or as a cooling effect 
(qrev < 0). Further information about all the parameters of the battery 
Thermal-ECM adopted in this work are reported in Appendix A as well as 
in the Supplementary information. Key equations discussed in this sec-
tion are reported in Table 3. 

2.3. Physics-based model 

2.3.1. Mathematical framework 
In this study, the selected physics-based model for battery simulation 

is the Pseudo-2-Dimensional (P2D) framework, firstly introduced by 
Doyle, Fuller, and Newman [27,64]. This model, based on porous 
electrode theory, offers a macroscale homogenous description of charge 
and mass conservation in both the solid phase (s), representing the 
electrode active material, and the liquid phase (ey), which relates to the 
electrolyte. The model treats each unit cell component as a continuum, 
incorporating microstructural information (e.g., volume fraction εi, 
tortuosity factor τi, with i = phase) and particle properties (e.g., radius r, 
specific surface area Aam) through effective transport and kinetic pa-
rameters. As reported in Fig. 2, a battery unit cell comprises current 
collectors (CC), negative (N) and positive (P) electrodes, and a separator 
(S). The unit cell through-thickness coordinate (x) is treated as a 1D 
domain, which is coupled with Li transport within the radial coordinate 
(y) of the active material, introducing an additional pseudo-dimension 
[65,66]. 

In the electrode thickness direction, the model solves the conserva-
tion of mass (Eqs. (10a)–(10b)) and charge (Eqs. (11a)–(11b)) for Li 
ions. This involves solving for their concentration and reduced electro-
chemical potential in the electrolyte, c and μ̃*

+, respectively [25,67]. As 
in Eqs. (10b) and (11b), Jconc and J2 represent the Fick-like diffusional 
flux of Li-ions and the total ionic current density in the electrolyte phase, 
respectively. The coupling of the 1D through-thickness domain with the 
pseudo 1D radial direction in the solid phase is achieved through the 
charge transfer reaction. The latter is depicted by the current density at 
the particle interface Jct (Eqs. (12a)–(12c)), here modelled using a 
Butler-Volmer kinetics. Within the electrode, the potential in the 
electron-conductive phase (el), μ̃*

e (i.e., the reduced electrochemical 
potential of electrons [25]), is determined using Ohm law (Eqs. (13a)– 
(13b)). Then, the Li mass conservation equation in the electrode active 
material solves for the concentration of intercalated Li, cs (Eqs. (14a)– 
(14d)). 

Additional clarification is needed regarding the modelling of Li 
transport within the active materials used in this study. The definition of 
Li flux, Ns, along the particle radius is different between graphite and 
LFP materials. While both materials are known to undergo phase- 
separation during lithiation [31,46,68–71], this study solves phase- 

Table 3 
Mathematical framework of the Electrical-ECM and Thermal-ECM.  

R0 =
ΔVa

ΔI 
(1) 

v(t) = VOC − R1i1(t)e
−

t
τ1 − R2i2(t)e

−
t

τ2 
(2) 

τ1 = R1C1 (3) 
τ2 = R2C2 (4) 
ΔVd = R1

(
SOCn ,Tref

)
i1(t)+ R2

(
SOCn ,Tref

)
i2(t) (5) 

Rconv =
1

hAext 

(6) 

qgen = qirr + qrev (7) 
qirr = R0i2 + R1i21 + R2i22 (8) 
qrev = − icellTcellEHCcell (9)  
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separation via the phase-field approach exclusively for the graphite 
electrode (Eq. (14b)) [72,73]. In this approach, Li flux is driven by the 
gradient of chemical potential μ, which is linked to the equilibrium 
potential of graphite (Ueq,N) and accounts for the interface thickness (a) 
between stable phases, which have been fully characterised in previous 
studies by the authors [3,30]. On the other hand, Li diffusion within LFP 
particles is described according to the traditional Fick’s law, where Ds,P 

is the chemical diffusivity (Eq. (14c)). This simplified approach does not 
capture the full intricacies of phase separation in LFP, nor does it ac-
count for LFP hysteresis [74,75], but it reduces computational time and 
is sufficient for the scope of the PBM, which aims to predict cell-level 
variables such as cell voltage and temperature. Given the small diffu-
sion timescale in nanometric LFP particles [76,77], this approach is 
appropriate for the analysis in this study. 

Aligning with the Thermal-ECM presented in Section 2.2, tempera-
ture change in the battery is considered by enforcing a lumped energy 
conservation equation, as the temperature distribution within the unit 
cell can be approximated as uniform [51,52,78]. Following this 
approach, the cell thermal evolution is simulated via a single tempera-
ture value T which depicts the average temperature of the battery over 
time, and a unique cell thermal mass (Mcp) using Eqs. (15a)–(15b). In 
Eq. (15a), the quantity hAext(T − Tamb) represents the heat removed by 
convection, while q̇V is the total volumetric heat generated in the unit 
cell. The latter is given by the summation of the volumetric heat 
generated in the negative and positive electrodes, and in the separator, 
as in Eq. (15b). Notably, the current collectors volumetric heat gener-
ation has been neglected in this study as its contribution, that is purely 
ohmic, is small compared to that of the other unit cell components given 
the very high electrical conductivity of the current collector materials 
[78,79]. Each volumetric contribution from the unit cell components is 
obtained by integral averaging the specific heat per unit of cross- 
sectional area generated in each domain over the corresponding thick-
ness (Eq. (16a)). Following the well-established framework introduced 

by Bernardi et al. [28], three major heat contributions define the heat 
generated in the unit cell: i. the reversible heat Q̇rev (Eq. (16b)) associ-
ated to the entropic change of charge-transfer phenomena, ii. the irre-
versible heat Q̇rxn (Eq. (16c)) associated to the activation overpotential 
of electrochemical reactions, and iii. the ohmic heat Q̇ohm (Eq. (16d)) 
associated to the Joule dissipations occurring in electrolyte and solid 
phases. By solving the thermal model, the temperature evolution of the 
battery can be coupled to the electrochemical model to update equi-
librium, transport, and kinetics parameters over time during the simu-
lation (Eqs. (17a)–(17d)). 

Since the equations of the P2D thermo-electrochemical model are 
consolidated in the literature, the reader is referred to specific papers 
and textbooks for their derivation [26–28,64,65,80], only a brief 
description of the model key equations (Table 4) and quantities is re-
ported here; detailed boundary conditions for the electrochemical model 
are outlined in Appendix B, and corresponding nomenclature is pro-
vided at the end of the manuscript. 

Fig. 2. Schematics of the P2D mathematical domain for the simulations of the 
cell. The through-thickness 1D direction x reports the thickness of the graphite/ 
LFP cell, which is coupled to the additional pseudo 1D radial direction y for Li 
solid-state diffusion along the radius of the active material particles. 

Table 4 
Governing equations and key quantities of the P2D electrochemical model and 
lumped thermal model.  

Electrochemical model framework 
Electrolyte phase i = N, S, P  

εey,iF
∂c
∂t

+
∂

∂x
(Jconc) = (1 − t+)JV

ct,i 
(10a) 

Jconc = −
εey,i

τey,i
FD̃

∂c
∂x 

(10b) 

∂
∂x

(J2) = JV
ct,i 

(11a) 

J2 = −
εey,i

τey,i
σ

∂μ̃*
+

∂x
+

εey,i

τey,i
σ 2RT

F
(1 − t+)γ±

∂lnc
∂x 

(11b) 

Interfacial equations i = N, P  
JV

ct,i = Jct,iAam,i (12a) 

Jct,i = kct,icα
(

cmax
s,i − cs,i

)α
cs,i

(1− α)
[

exp
(

αF
RT

ηct,i

)

− exp
(

−
(1 − α)F

RT
ηct,i

)]
(12b) 

ηct,i = μ̃*
e,i − μ̃*

+ − Ueq,i (12c) 

Electro-conductive phase i = N, P  
∂

∂x
(
J1,i
)
= − JV

ct,i 
(13a) 

J1,i = − σe,eff ,i
∂μ̃*

e,i

∂x 

(13b) 

Active material phase i = N, P  
∂cs,i

∂t
+

∂
∂y
(
Ns,i
)
= −

2
y
Ns,i 

(14a) 

Ns,N = −
1

RT
Ds,Ncs,N

∂μ
∂y 

valid for N (14b) 

Ns,P = − Ds,P
∂cs,P

∂y
valid for P (14c) 

μ = μeq − RTa2∂2 c̃s,N

∂y2 valid for N 
(14d)  

Lumped thermal model framework 

Mcp
dT
dt

= q̇VVact − hAext(T − Tamb)
(15a) 

q̇V =

(

q̇N + q̇S + q̇P

)
(15b) 

q̇i =
∫
(

Q̇rev,i + Q̇rxn,i + Q̇ohm,i

)
dx
Ltot 

i = N, S, P and Ltot = LN + LS + LP 
(16a) 

Q̇rev,i = JV
ct,i T EHCi i = N, P (16b) 

Q̇rxn,i = JV
ct,iηct,i i = N, P (16c) 

Q̇ohm,i =
εel,i

τel,i
σel,i

⎛

⎝
∂μ̃*

e,i

∂x

⎞

⎠

2

+
εey,i

τey,i
σ

⎛

⎝
∂μ̃*

+

∂x

⎞

⎠

2

−
εey,i

τey,i

2RTσ
F

(1 − t+)γ±
∂lnc
∂x

∂μ̃*
+

∂x 
i =

N, S, P 

(16d) 

Transport, kinetics, and equilibrium parameters  

Ueq,N = E◦

−
μ
F
+
(
T − Tref

)
EHCN 

(17a) 

Ueq,P = Ueq,ref ,P +
(
T − Tref

)
EHCP (17b) 

Ds,i = D◦

s,iexp
(

−
EDs,i

R

(
1
T
−

1
Tref

))

i = N, P 
(17c) 

kct,i = k◦

ct,iexp
(

−
Ekct,i

R

(
1
T
−

1
Tref

))

i = N, P 
(17d)  
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2.3.2. Parametrisation 
The physics-based model is a powerful tool which can provide ac-

curate predictions on battery dynamics; however, it requires an exten-
sive and consistent parametrisation. Building on the specifications 
introduced in Section 2.1, the parametrisation of the thermal- 
electrochemical model for the 60 Ah graphite/LFP battery, comprising 
176 unit cells, follows a systematic approach. The parametrisation 
process starts from the rated capacity (Crated = 62 Ah), derived from 
capacity tests, to calculate the rated capacity per unit cross-sectional 
area for a single unit cell (Ccell = Crated

NcellAact
), resulting in 18.21 Ah m− 2. 

Then, a series of educated guesses, calculations, and fitting of the cali-
bration dataset (i.e., C/2 charging at three different ambient tempera-
tures) are required to provide a complete parametrisation, as described 
in the following. 

For the graphite electrode, geometrical (e.g., electrode thickness L, 
particle average radius r), electrochemical (e.g., maximum Li concen-
tration cmax

s ), equilibrium (Ueq), and transport parameters (e.g., diffusion 

coefficient D
◦

s) are selected based on a comprehensive literature survey 
along with prior studies and measurements [3,30,51,69,78,81,82]. The 
LFP cathode requires similar parameters, which have been evaluated 
starting from the identification of plausible ranges from the literature. 
Such an analysis was carried out using Liiondb, a general database for 
battery materials properties and parameters, to locate papers specif-
ically focusing on LFP, along with specific papers not available in the 
database [10,29,83–92]. 

For both electrodes, active material volume fractions and operative 
states of lithiation are evaluated in this work to match the area-specific 
rated capacity and equilibrium cell potentials at full charge/discharge. 
The microstructural parameters, as the volume fractions and tortuosity 
factors of different phases in the unit cell composites, were not previ-
ously measured for this specific cell. For graphite, the volume fraction of 
the filler phase εfill is assumed to be 0.057, while for LFP it is set to 0.1, 
which includes the electron-conductive phase εel, in agreement with 
literature data [78,83,91,93]. The volume fractions of graphite and LFP 
active materials are derived from the fitting of C/2 charge tests and the 
operative state of lithiation windows ̃cmin/max

s , where ̃cs =
cs

cmax
s 

represents 
the state of lithiation obtained as the ratio between the local cs and 
maximum Li concentration cmax

s in the active material. The operative 
states of lithiation for the electrodes are inferred by setting an open 
circuit voltage of the cell (Voc = Ueq,P − Ueq,N) of 3.42 V for charged state 
and 2.98 V for discharged state. These Voc values, evaluated after 1 h 
relaxation following complete charge and discharge, are measured 
through capacity tests at 25 ◦C (Tref ), while the Ueq,ref and EHC (Eqs. 
(17a)–(17b)) values, used to determine the equilibrium potential of 
electrode materials at each temperature (Ueq,P and Ueq,N, Eqs. (17c)– 
(17d)), are sourced from the literature [3,10,92,94]. As a result, the 
range of operative states of lithiation are evaluated as 0.04–0.73 for the 
negative electrode and 0.03–0.90 for the positive electrode, which lie 
within typical ranges reported in the literature [10,78,84,91,92]. By 
combining the rated specific capacity of 18.21 Ah m− 2 at C/3, the 
maximum concentration of Li in the active material cmax

s [10,30], the 
electrode thickness L [51] (Table 1), and the operative state of lithiation 
range, it is possible to retrieve the volume fraction of the active material 
εam. For the positive electrode εam equals 0.45, while for the negative 
electrode εam is adjusted to 0.463 to match the specific capacity of the 
positive electrode plus a 1 % excess. This adjustment is justified as it 
reduces the risk of Li plating during charging without significantly 
impacting the cell energy density [91]. The volume fraction of the pore 
phase εey is then determined as the complement to one. The tortuosity 
factor of relevant phases is obtained using the Bruggeman relation [65], 
setting the Bruggeman coefficient β = 1.5 for all porous composites. 

From the volume fraction of the active material and the particle radius, 
the active material particle surface area per unit of volume is calculated 
as Aam = 3εam

r , where r is the average radius of active material particles 
[51] (Table 1). 

The transport properties in the electrolyte, such as the transference 
number of Li ions t+, the ionic conductivity σ, the ambipolar diffusivity 
D̃, and the electrolyte thermodynamic factor γ±, are derived from the 
study by Valoen et al. [95]. Effective electrical conductivity σe,eff values 
are used for the electrodes [96]. The transport and kinetic properties of 
the electrode active materials have been fitted to experimental voltage 
and temperature data from C/2 charge tests at 10, 25, and 40 ◦C, which 
have been used as calibration datasets. For the graphite electrode, the 
diffusion coefficient D

◦

s and charge-transfer kinetic constant kct reference 
values were derived from previous works where the temperature was 
held constant at 25 ◦C, meaning that the activation energies EDs and Ekct 

were not determined. Thus, these activation energies have been fitted in 
this study based on the calibration dataset. For the LFP cathode, the 
diffusion coefficient D◦

s and charge-transfer kinetic constant, along with 
their respective activation energies, have been entirely fitted to match 
calibration experimental data. The values obtained for the LFP agree 
with those reported in previous literature papers [10,84,87,88,90,97]. 
As a remark, due to the different approach used to model Li transport in 
the active material, D

◦

s and D◦

s are fundamentally different: the former 
represents the intrinsic diffusion coefficient (for graphite) while the 
latter the chemical diffusion coefficient (for LFP). For more information 
on this topic, the reader is referred to specific literature papers 
[70,71,73,98]. Lastly, parameters required for the lumped thermal 
model, including the effective specific heat cp and the heat transfer co-
efficient h, are directly sourced from a previous study on this battery 
type [51]. 

Table B2 in Appendix A, along with data in the Supplementary in-
formation, summarise the set of geometrical, thermo-electrochemical, 
and transport parameters used to simulate the graphite-LFP battery. 

3. Results 

In this section, the ECM and the PBM are extensively calibrated and 
validated against experimental data derived from electrical tests on the 
reference graphite/LFP battery, as introduced in Section 2.1. Initially, 
the ECM and PBM are calibrated through dedicated tests to fine-tune 
unknown model parameters, providing insights into the required ef-
forts for parameter acquisition (Section 3.1). Subsequently, these cali-
brated models are subjected to a comprehensive cross-validation 
process, involving a broader array of electrical tests, including those 
used during calibration (Section 3.2). This analysis offers a comparative 
perspective on the predictive discrepancies between the two models, 
quantifying their advantages and limitations. Furthermore, the practical 
application of the ECM and PBM is explored in predicting voltage and 
thermal responses of the battery under the WLTC protocol, thereby 
evaluating the current trade-offs inherent to each modelling approach. 
All simulations in this study were conducted using Dymola and COMSOL 
Multiphysics [99] software for the ECM and PBM, respectively. 

3.1. ECM and PBM calibration results 

In this section, the ECM and PBM, presented in Sections 2.2 and 2.3, 
respectively, are calibrated against experimental data derived from 
dedicated tests. The ECM is calibrated utilising MSTs performed at 
varying ambient temperatures of 10, 25, and 40 ◦C (namely test 1 in 
Table 2). The aim is to extract electrical and thermal equivalent circuital 
elements as functions of the battery state of charge (SOC) and cell 
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temperature (T), employing the procedure described in Section 2.2. 
Correspondingly, the PBM is calibrated by fitting the model to experi-
mental data from C/2 charge tests (test 2 in Table 1) at the same three 
ambient temperatures, addressing the model unknown transport and 
kinetics related parameters. This process ensures an equivalent number 
of datasets for the calibration of both models. Specifically, for the ECM, 
MST is essential as it requires relaxation periods to accurately fit the 
resistance (R) and capacitance (C) parameters. For the PBM, the choice 
of using a charge rate of C/2 is strategic as it spans the entire SOC 
spectrum while providing overpotentials sufficiently large to discrimi-
nate between various physical phenomena. 

The calibration accuracy is evaluated by comparing the model pre-
dictions of voltage and temperature with the corresponding experi-
mental measurements acquired during the electrical tests. For each test 
the accuracy is quantified using two error indicators: the root mean 
square error (RMSE) and the maximum absolute error (MAE), as speci-
fied in Eqs. (18) and (19). In these equations, the variable X may 
represent either the battery voltage or temperature, with the subscripts 
‘mod’ and ‘exp’ denoting the modelled and experimental values, 
respectively. The variable N is the total number of datapoints for the test, 
calculated as the ratio of the test duration to the sampling interval, 
which in this study is consistently set at one second, aligning with the 
temporal resolution of the ECM and PBM simulations. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

i=1

(
Xmod,i − Xexp,i

)2

N

√
√
√
√ (18)  

MAE = max∣Xmod − Xexp∣ (19) 

The outcomes of the calibration for both models are graphically 
depicted in Fig. 3. The figure presents a series of subplots (Fig. 3a–f) 
illustrating the voltage (on the left y-axis) and temperature (on the right 

y-axis) of the battery over time, demonstrating the performance of the 
ECM and PBM post-calibration. Fig. 3a–c displays the results for the ECM 
calibration using 1C MSTs at 10, 25, and 40 ◦C, while Fig. 3d–f presents 
the PBM calibration outcomes from C/2 charge tests at the same tem-
peratures. The plots distinguish the datasets with dotted lines for 
experimental data, solid orange lines for ECM predictions, and dashed 
blue lines for PBM predictions. 

From the analysis of Fig. 3a–c, it is evident that the ECM can accu-
rately reproduce the battery behaviour during MSTs, capturing voltage 
and temperature profiles across a range of ambient temperatures. The 
ECM particularly reflects the relaxation phase of each pulse accurately, 
with only minor and localized deviations noted for the third pulse at 
10 ◦C. The ECM predictions align well with the experimental data during 
the pulse application phases, and accurately predicts the voltage evo-
lution from mid to high SOC levels. However, at lower SOC levels, the 
ECM tends to predict a voltage slightly higher than the experimental 
data, with this disparity being more significant at 10 ◦C. The agreement 
between the ECM predictions and experimental data is closer at higher 
temperatures, especially at 40 ◦C. The maximum voltage error MAE is 
obtained at low SOC, registering 288 mV at 10 ◦C, 187 mV at 25 ◦C, and 
88 mV at 40 ◦C. The temperature evolution of the battery is also well- 
captured by the ECM, both during the pulse phase and the subsequent 
cooling during relaxation. Yet, the ECM tends to overestimate heat 
generation at higher ambient temperatures, again noticeable at lower 
SOCs. The maximum temperature MAE is limited, not exceeding 1.6 ◦C, 
and is attained at 40 ◦C. Overall, the ECM offers a satisfactory match 
with the experimental data, with the highest RMSE values for voltage 
and temperature constrained to 16 mV (at 10 ◦C) and 0.4 ◦C (at 40 ◦C), 
respectively. As a final remark, following the execution of MSTs, the 
parameterization of the ECM includes circuit elements that exhibit only 
10 discrete values as a function of SOC, repeated for the 3 temperatures 
tested (as reported in Fig. A1). This inherently makes the model much 

Fig. 3. Calibration results for ECM and PBM across different ambient temperatures. Subplots (a–c) show the ECM performance during MST at 10 ◦C, 25 ◦C, and 40 ◦C, 
with voltage on the left y-axis and surface temperature on the right, over time. Subplots (d–f) depict the PBM response to C/2 charge tests at the same temperatures. 
Experimental data (dotted lines), ECM (solid orange), and PBM (solid blue) are compared. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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more accurate under conditions close to the individual points it was 
calibrated on, while tending to show slight deviations during transitions 
between these operation points. 

The PBM, upon analysis of Fig. 3d–f, also demonstrates an accurate 
reproduction of battery behaviour during the C/2 charge tests, accu-
rately reflecting the voltage and temperature profiles. The model 
effectively captures the characteristic voltage curve of the battery, 
including the plateau-like phases indicative of graphite staging, which 
are particularly evident in Fig. 3e and f. These voltage plateaus are more 
discernible at the higher temperatures of 25 and 40 ◦C; given the low- 
rate conditions of the C/2 charging, this is attributed to the lower 
diffusion and kinetic overpotentials at these temperatures, as opposed to 
the lower temperature of 10 ◦C, leading to a clearer emergence of the 
equilibrium fingerprint of graphite staging in the cell signal. The pre-
dicted voltage by the PBM is generally lower than the experimental 
values, likely due to the chosen open circuit voltage function for LFP and 
the assumption of Fick-like transport within the LFP, which does not 
account for phase separation. In fact, at lower charge rates and higher 
temperatures, the equilibrium phenomena are more apparent, resulting 
in a higher deviation. Such deviations are a consequence of the steepness 
of the equilibrium potential functions at low and high SOC values, 
especially for LFP, so that even minor discrepancies in the estimations of 
the state of lithiation of the active materials escalate to sensible errors in 
the voltage response. Conversely, at the lower temperature of 10 ◦C, 
slower transport in both the solid and electrolyte phases, as well as ki-
netic resistances, tend to overshadow these equilibrium effects on the 
cell signal. Here, the PBM aligns more closely with the experimental 
data during most of the C/2 charge process, except towards the end, 
where it tends to underestimate the voltage. The MAE in voltage of the 
PBM remains below 91.8 mV, typically manifesting at the start or the 
end of charging. The temperature predictions of the PBM at the initial 
stages of charging are well-aligned with the experimental results; 
however, slight deviations are observed as the charge progresses. These 
deviations are linked to the variability in the entropic heat coefficient 
(EHC) functions sourced from the literature, which exhibit significant 

variability among different sources, particularly for LFP electrodes 
[10,84,92,100,101]. This variability profoundly influences the revers-
ible heat generation, which can be either exothermic or endothermic 
depending on the EHC value, which is comparable to irreversible and 
ohmic heat sources at such a moderate charge rate. Nevertheless, the 
MAE for the PBM temperature prediction stays below 1 ◦C, reinforcing 
the model robustness in simulating thermal and voltage dynamics. For 
the PBM, the highest RMSE values for voltage and temperature are 22.8 
mV (at 40 ◦C) and 0.6 ◦C (at 10 ◦C), respectively. 

3.2. ECM and PBM extended validation 

Upon the establishment of the calibration parameters, the ECM and 
the PBM are subjected to an extended validation process. This rigorous 
evaluation extends beyond the calibration tests to encompass a broader 
group of electrical tests, providing a deeper comparative analysis of the 
models under diverse operational conditions. Such a comprehensive 
assessment not only highlights the predictive capacities of each model 
but also assesses their respective limitations and strengths. 

The calibrated ECM and PBM are tested against the complete elec-
trical dataset encompassing Tests 1-7, as previously delineated in Sec-
tion 2.1. This dataset includes MST at 1C, constant current (CC) charge 
(CHA) at C/2 and 1C, and CC discharge (DCH) tests at C/3, C/2, 1C, and 
2C, all conducted at ambient temperatures of 10, 25, and 40 ◦C. It is 
noteworthy that this approach permits the evaluation of the PBM with 
the calibration dataset initially used for the ECM, and vice versa, and 
additionally with experimental data not used in the calibration of each 
model. 

The accuracy of the models is quantitatively assessed using the RMSE 
and MAE indicators, as in the previous section, with the results pre-
sented in Fig. 4. This figure reports the RMSE (Fig. 4a–c) and MAE 
(Fig. 4d–f) values for voltage (denoted in red triangles) and temperature 
(denoted in blue squares) predictions across the varied test conditions at 
the ambient temperature of 10 ◦C (Fig. 4a, d), 25 ◦C (Fig. 4b, e), and 
40 ◦C (Fig. 4c, f). Empty markers show ECM results, whereas filled 

Fig. 4. RMSE (a–c) and MAE (d–f) results for the extended validation of the ECM and PBM for voltage (red) and temperature (blue) predictions at different ambient 
temperatures 10 ◦C (a, d), 25 ◦C (b, e), and 40 ◦C (c, f). Each subplot reports quantitative indication of the accuracy of model predictions under various operative 
conditions delineated by tests 1–7 in Table 2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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markers correspond to PBM results. 
From the analysis of Fig. 4, the PBM displays a relatively consistent 

trend across the test procedures and ambient temperatures, whereas the 
ECM exhibits more fluctuations. Among the RMSE and MAE metrics for 
a given model, RMSE values show clearer trends across operational 
conditions, whereas MAE results do not present discernible patterns, 
except for temperature predictions. In the case of temperature, both 
models demonstrate an increase in MAE corresponding to the increase in 
C-rate for the CHA and DCH procedures. Specifically, as discussed in 
Section 3.1, the maximum error in temperature is generally located at 
early or late times where the voltage drop is more pronounced. 

For MSTs, in terms of voltage RMSE (red in Fig. 4a–c), the ECM 
marginally outperforms the PBM at all ambient temperatures, with the 
difference being more pronounced at 10 ◦C. This observation remains 
fairly consistent for temperature RMSE too (blue in Fig. 4a–c). These 
results are expected, given that the ECM was calibrated specifically on 
the MST datasets, unlike the PBM. Fig. 5 offers a focus on the simulation 
results of both the ECM and PBM for battery voltage and temperature 
during MST at the extremities of the ambient temperature spectrum, 
specifically at 10 and 40 ◦C, to cover the entire range of ambient tem-
perature tests. 

In terms of voltage predictions, the PBM shows a faster response of 
the system during relaxation phases, with the voltage rising more 
rapidly to the corresponding open circuit value, although not always 
congruent with the experimental data, particularly at the last relaxation 
phase at 10 ◦C. Such a faster model response may be associated with a 
general underestimation of diffusion resistance while the misprediction 
at the last relaxation at 10 ◦C is attributed to the variability of the open 
circuit potential functions of the active materials at extreme states of 
lithiation. Notably, the PBM more accurately replicates the voltage in-
crease following the third pulse (red arrow in Fig. 5a), which is likely 
attributable to the staging phenomena of the graphite, an aspect taken 

into account by the physical model via the phase-field implementation. 
Regarding temperature prediction, at 10 ◦C the PBM generally over-
estimates the cooling during the relaxation phase, while providing bet-
ter predictions than the ECM during current pulses at medium SOC 
values. At 40 ◦C, while the PBM still overestimates the initial cooling, it 
enables a more accurate prediction at later stages, closely matching the 
experimental temperature peaks, in contrast to the ECM which tends to 
overestimate heat generation. 

When considering the constant current tests (CHA and DCH pro-
cedures), the analysis of Fig. 4 indicates that the PBM yields better re-
sults in terms of RMSE and MAE for both voltage and temperature 
predictions. As expected, given the calibration of the PBM with C/2 
constant current charge tests, the ECM exhibits comparatively higher 
RMSE and MAE values under such conditions. Nonetheless, when tested 
beyond their respective calibration datasets, the PBM demonstrates a 
more robust and consistent fit to the experimental data compared to the 
ECM. Notably, for the ECM both voltage and temperature RMSE values 
increase significantly with the C-rate, a trend similarly observed with 
MAE results. Fig. 6 highlights the source of such differences between 
ECM (solid orange) and PBM (solid blue) predictions, and experimental 
data (dotted black) during 1C charge (Fig. 6a, b) and discharge (Fig. 6c, 
d) procedures at two ambient temperatures, 10 ◦C (Fig. 6a, c) and 40 ◦C 
(Fig. 6b, d). These test conditions were selected to provide a thorough 
understanding of the battery dynamics at a consistent rate and across a 
significant temperature range to capture the full range of operational 
behaviours. Voltage profiles are plotted on the left y-axis, while tem-
perature profiles are referenced on the right y-axis. 

When examining the voltage predictions, it is evident that the ECM 
prediction exhibits marked deviations from the experimental data, 
particularly during the charging phase at 10 ◦C. The voltage profile 
predicted by the ECM at this lower temperature not only diverges 
quantitatively but also presents an unphysical trend. At 40 ◦C, while the 

Fig. 5. Performance comparison of ECM and PBM predictions for MSTs at different ambient temperatures at 10 ◦C (a, c) and 40 ◦C (b, d). Voltage (a, b) and 
temperature (c, d) subplots compare experimental data (dotted), and ECM (solid orange) and PBM (solid blue) predictions. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 6. Performance comparison of ECM (solid orange) and PBM (solid blue) models predictions for charge (a, b) and discharge (c, d) tests at different ambient 
temperatures of 10 (a, c) and 40 ◦C (b, d) against experimental data (dotted black). Voltage profiles are shown on the left y-axis while temperature profiles on the 
right y-axis. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Comparison between ECM and PBM predictions of WLTC test against experimental data. Voltage (a) and temperature (b) profiles, reporting detailed insets at 
SOC of 80 %, 50 %, and 20 %, comparing experimental data (dotted) with ECM (solid orange) and PBM (solid blue) predictions. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 
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deviation in the ECM voltage prediction slightly diminishes, it still 
maintains a non-monotonic voltage progression during the charge. This 
behaviour reflects the fact that the parameters of ECM, calibrated from 
MST single steps only during discharge, are defined only in discrete and 
limited SOC values, showing in some cases sharp variations with SOC 
(see Appendix A). During continuous current operations, the SOC vari-
ation is wider and the ECM necessarily loses effectiveness. Only during 
continuous discharge, which is the operation mode used in the MST for 
ECM calibration, the ECM recovers a fairly satisfactory predictability 
(Fig. 5c, d). On the other hand, the PBM demonstrates a robust and 
consistent prediction of the voltage across all tests and ambient tem-
peratures. Its voltage profiles not only align closely to the experimental 
data but also upholds the physical trends expected during both charge 
and discharge procedures. This accuracy is indicative of the PBM 
detailed approach to modelling the battery electrochemical processes, 
which allows for a more accurate replication of the battery behaviour 
across varying conditions even beyond the calibration dataset 
(Figs. S5–8). 

Moving on to the analysis of temperature predictions, both models 
utilise a lumped approach; however, the underlying mechanisms for 
heat generation rate calculations differ significantly. The PBM calculates 
heat generation considering specific dynamics of the battery internal 
components, which results in a more rigorous thermal model. 
Conversely, the ECM employs a more simplified description of heat 
generation, which, while capturing the broader trends, lacks the phys-
ical interpretation of the PBM approach. Despite these differences, both 
models generally succeed in following the experimental temperature 
trends. In all the tests investigated, the battery temperature does not 
change significantly compared to the ambient temperature, at most 
increasing by about 10 ◦C (when the ambient temperature is 10 ◦C); 
therefore, it is expected that any plausible thermal model would not give 
major errors if the tests are nearly isothermal. However, the ECM pre-
dictions tend to deviate more from the experimental data, especially at 
the higher ambient temperature of 40 ◦C. The PBM, on the other hand, 
provides consistently more accurate temperature predictions across the 
range of tests and temperatures, corroborating its comprehensive 
modelling capabilities. 

The extended validation concludes with an evaluation of the ECM 
and PBM modelling performance under the WLTC test conditions at 
10 ◦C, a temperature that exacerbates prediction errors, as previously 
discussed. Fig. 7 presents these results, with voltage profiles in Fig. 7a 
and temperature profiles in Fig. 7b. The experimental data is shown in 
dotted black lines, while ECM and PBM predictions are reported with 
solid orange and blue lines, respectively. Insets within Fig. 7 offer a 
detailed examination of voltage and temperature of the battery at key 
SOC levels, 80 %, 50 %, and 20 %, underscoring the comparative pre-
diction accuracy between models during repeated WLTC cycles (Fig. S9) 
until complete battery discharge. 

Before discussing the results, it is important to clarify the simulation 
settings. The PBM required initialisation at each specific SOC (80 %, 50 
% and 20 %) and it was run for a single WLTC cycle at each SOC. This is 
due to its higher computational demands, stemming from the detailed 
modelling of battery physics, particularly the graphite staging process. 
Such detailed modelling of graphite lithiation, crucial for accurate 
predictions, contributes to the extended computation times of the PBM. 
In contrast, the ECM can simulate the full WLTC within a matter of 
minutes. The stark contrast is evident as the PBM requires ca. 20 min of 
computational time for a single WLTC cycle simulation (insets in Fig. 7), 
representing a 2 % SOC variation in 500 s of real time. The decision to 
omit the phase separation modelling of LFP in the PBM (see Section 2.3) 
was a necessary compromise to avoid further computational costs. 

Analysing Fig. 7a, both models replicate the WLTC voltage profile, 
however with notable differences. The ECM predicts the WLTC voltage 
profile with greater accuracy than the PBM, as indicated by the RMSE 
and MAE metrics. When comparing the RMSE/MAE values for the 
voltage, the ECM reports 30.5/101.5 mV against the PBM 37.2/113.5 

mV, averaging results from 80 %, 50 %, and 20 % SOC predictions. 
Notably, the RMSE and MAE values show a trend with SOC levels. For 
the PBM, RMSE/MAE values incrementally rise from 34.2/102.9 mV at 
80 % SOC to 42.3/129.1 mV at 20 % SOC. Similarly, the ECM shows 
consistent metrics at 80 % and 50 % SOC, with 29.6/88.5 mV and 23.5/ 
84.9 mV respectively, before experiencing a significant increase to 38.4/ 
132.1 mV at 20 % SOC. 

At 80 % SOC, the ECM closely matches the experimental data, 
providing better results than the PBM. However, at lower SOCs, both 
models exhibit increased deviations from the experimental data, with 
the PBM showing a consistent trend of overestimating battery voltage 
during charging peaks and slightly underestimating the voltage during 
discharging peaks, indicating a general overestimation of internal re-
sistances. A similar trend is observed for the ECM, albeit to a lesser 
extent and with smaller overshoots at high SOC. Minor variations in 
predicting the open circuit voltage during relaxation phases are also 
noted for both models, with the voltage profiles plateauing and exhib-
iting opposing trends at different SOC levels. While the PBM tends to 
overestimate voltage during relaxation at high SOC, the ECM predicts 
higher voltages at low SOC. These minor differences highlight the 
sensitivity of both models to the equilibrium potential functions they 
implement, which play a crucial role in their performance. 

Further insights into ECM effectiveness in WLTC is gained by 
examining its RMSE and MAE metrics on the full test. The ECM reports a 
RMSE value for voltage of 31 mV and a MAE value of 191 mV. Its better 
performance than PBM in WLTC, as opposed to less robust results in 
higher current (C-rate > 1) CHA and DCH tests discussed above, is 
ascribed to two reasons: i) the dynamic nature of the WLTC, which re-
sembles the MST used to calibrate the ECM, and ii) the ranges of charge/ 
discharge currents within the WLTC, which are relatively small in terms 
of equivalent C-rate. As for the first reason, it is reasonable to presume 
that the ECM can maintain good predictability when tested in a condi-
tion similar to the MST used for its calibration; broadly speaking, both 
MST and WLTC comprise sudden changes in current and no current 
phases, thus sharing a similar dynamic nature. Regarding the second 
reason, a critical factor for the ECM success in WLTC is the applied 
current rates and respective times. In fact, during the WLTC the average 
discharge C-rate is 0.49C (dashed red Fig. S9), while the average 
charging C-rate is 0.34C (dashed green Fig. S9). For the ECM, the RMSE 
and MAE values obtained during the WLTC are consistent with the RMSE 
and MAE results for DCH and CHA tests at 0.5C and C/3 presented in 
Fig. 4. These rates ensure that WLTC operating conditions do not reach 
the high currents that would challenge ECM predictive accuracy, along 
with the fact that, when the applied C-rate is larger than 1C in the WLTC, 
the application time is very short (less than a few seconds, see Fig. S9). 
This explains the ECM robust performance in WLTC, as it operates 
within current rates and times that avoid the accuracy loss shown in 
Figs. 4 and 6. From a quantitative comparison perspective regarding the 
ECM results, it is reported that the average RMSE obtained from the ECM 
on dynamic WLTC validation cycles is 25 mV. This value is entirely 
consistent with the research findings as in [102], which show a range of 
voltage RMSE values obtained from ECMs for lithium batteries using 
different calibration methodologies, applied to various dynamic work-
ing cycles comparable to the WLTC, ranging from around 20 to 70 mV. 

When analysing Fig. 7b, the different settings of ECM and PBM in 
simulating WLTC become evident. The PBM simulates only portions of 
the WLTC, initialising each cycle (i.e., at 80 %, 50 %, 20 % SOC) with the 
experimental temperature at that specific time, effectively resetting its 
temperature history. In contrast, the ECM simulates the entire WLTC, 
potentially carrying a temperature offset derived from the prior history 
of the WLTC segments shown in the figure. Given this context, a fair 
comparison of the two model predictions must focus on the trend of 
temperature change, rather than on absolute values. The ECM predicts 
these temperature trends more accurately despite potential offsets, 
while the PBM tends to overestimate heat generation. This suggests an 
overprediction of internal resistances, as already noted for the voltage 
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peaks, leading to higher generated heat. Under these premises, the ECM 
provides a comparatively better prediction of the temperature trend 
during the WLTC. In any case, it must be observed that the magnitude of 
temperature deviations is small and, overall, the cell temperature re-
mains relatively invariant during the WLTC. 

Hence, while the ECM may not always offer the most precise pre-
dictions in charge and discharge cycles (Fig. 4), it balances computa-
tional efficiency with a reasonable predictive accuracy under operating 
conditions with variable current pulses. This balance renders the ECM 
particularly suitable for real-time assessments of voltage and tempera-
ture behaviours, particularly in dynamic scenarios like WLTC. The ECM 
effectively manages high C-rates, peaking briefly at around 1.9C (6 s), 
when each current load, whether charging or discharging, is applied for 
no >10 s (Fig. S9). This is a crucial factor in the ECM performance since 
the model is best suited for predictions in dynamic protocols with good 
accuracy when the current loads are either sufficiently low or, in cases of 
higher current, the pulses are of short duration. Such conditions are met 
during the WLTC tests, but it is important to note that these conditions 
might not always align with real-world applications where current de-
mands and profiles can vary significantly, such as during continuous and 
fast charging or for prolonged discharging (e.g., when driving an EV in a 
highway or for steady energy supply from a battery to the grid), for 
which the PBM must be preferred. 

4. Conclusion 

In this study, a thorough comparison between the Equivalent Circuit 
Model (ECM) and the Physics-Based Model (PBM) has been conducted 
within the context of Li-ion battery modelling, targeting a 60 Ah pris-
matic graphite/lithium‑iron-phosphate battery as a case study. 

A comprehensive series of tests, including various electrical pro-
tocols (i.e., variable and constant currents from C/3 to 2C) and tem-
perature conditions (from 10 to 40 ◦C), revealed the operational 
strengths and limitations of both models. The validation of these models 
is crucial to the findings, with an average error in voltage predictions 
across the ambient temperature range of 51.5 mV for the ECM and 19.3 
mV for the PBM. For temperature predictions, the average errors were 
0.9 ◦C for the ECM and 0.4 ◦C for the PBM. These measures of accuracy 
demonstrate the reliability of both models under the tested conditions. 

The findings of this study indicate that the ECM is particularly 
effective in dynamic scenarios like the WLTC, offering rapid computa-
tional response and reasonable accuracy within its calibration range, 
especially for low to medium current intensities without prolonged 
charging current pulses. However, its limitations under high current 
demands, where its predictive accuracy diminishes, underline the need 
for a more comprehensive model. Conversely, the PBM provides a more 
detailed representation of battery physics, making it more suitable and 
robust for in-depth analysis of battery behaviour, particularly in 

scenarios involving high-rate operation, as well as in working conditions 
close to SOC extreme values (i.e., 100 and 0 %), where the ECM lacks 
robustness. Despite its time-intensive calibration process and longer 
computation times, the PBM strengths in accurately modelling high-rate 
operations render it indispensable for research purposes and for opti-
misation, including fast charging protocols. 

In conclusion, the practical application of battery modelling requires 
a considered selection between ECM and PBM based on the specific 
demands of the task at hand. ECM and PBM represent complementary 
tools: advancing these models in tandem will enable their application 
across a diverse range of scenarios, ensuring that both rapid, efficient 
performance assessments and thorough, in-depth investigations into 
battery behaviour are effectively addressed. 
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Appendix A 

Appendix A presents a comprehensive graphical overview of the Equivalent Circuit Model (ECM) parameters that were determined during the 
calibration activities described in Section 3.1. These visual representations are crucial for a deeper understanding of the ECM behaviour under various 
operational conditions. They serve as an essential complement to the numerical data provided, offering a more intuitive grasp of the parameter 
variations and trends. For readers interested in the precise numerical values of these ECM parameters, Table S2 and S3 in the Supplementary in-
formation provide detailed tabulations. 
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Fig. A1. ECM parameters dependency with the state of charge (SOC) and temperature. This figure illustrates the dependencies of key ECM components: open circuit 
voltage of the cell Voc (a), resistance R0 (b), resistance R1 (c), capacitance C1 (d), resistance R2 (e), capacitance C2 (f), at different temperatures: 10 ◦C (blue), 25 ◦C 
(green), and 40 ◦C (red). Panel (g) presents a linear interpolation depicting the relationship between Voc and ambient temperature changes. 

Appendix B 

Appendix B includes the boundary conditions (Table B1) and parameterisation (Table B2) for the physics-based model (PBM) detailed in Section 
2.3. Table B1 reports the model boundary condition. Table B2 reports the parameterisation outcomes from the calibration activities discussed in 
Section 3.1. Additionally, specific functions and datasets reported in Table B2 are included in the PBM-dedicated section of the Supplementary 
information.  

Table B1 
Boundary conditions of the PBM.  

Balance of mass – ey phase (Eq. (10a)) Jconc|x=I = 0; Jconc|x=IV = 0 
Balance of charge – ey phase (Eq. (11a)) J2|x=I = 0; J2 |x=IV = 0 
Balance of charge – el phase (Eq. (12a)) 

μ̃*
e,N

⃒
⃒
⃒
⃒
⃒
x=I

= 0; J1,N
⃒
⃒
x=II = 0 

J1,P
⃒
⃒
x=III = 0;

J1,P
⃒
⃒
x=IV =

icell
NcellAact

(CC)

μ̃*
e,P

⃒
⃒
⃒
⃒
⃒
x=IV

= VCV (CV)

Balance of mass – s phase (Eq. (13a)) Js,i
⃒
⃒
y=0 = 0; Js,i

⃒
⃒
y=ri

= Jct,i 
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Table B2 
Geometrical, microstructural, electrochemical and transport parameters of the PBM.  

Parameter Negative electrode (graphite) Separator Positive electrode (LFP) 

Thickness L/[μm] 72.5a 25a 76.1a 

Particle radius r/[μm] 10b [3]  0.0365b [51,103] 
Active material surface area per unit of volume Aam/[m− 1] 1.376 105c  3.699 107c 

Volume fraction ε/[–] am = el = 0.463c 

fill = 0.057b [93] 
ey = 0.480c 

fill = 0.55c 

ey = 0.45b [78] 
am = 0.450c 

fill + el = 0.1b [91] 
ey = 0.450c 

Bruggeman factor β/[–] ← 1.5b [83] → 
Symmetry factor α/[–] 0.5b  0.5b 

Kinetic constant k◦

ct/[A m− 2] Table S6d  Table S6d 

Maximum Li concentration cmax
s /[mol m− 3] 29,920b [30]  22,806b [10,103] 

Open circuit potential Ueq/[V] Eqs. (S1a)–(S1g)b [3]  Eq. (S2)b [92] 
Characteristic interface length a/[μm] 0.316b [3]  – 
Standard potential of intercalated Li E◦ /[V] 0.136b [3]  – 
Entropic heat coefficient EHC/[V K− 1] Table S4b [68]  Table S5b [100] 
Min/Max state of lithiation ̃cmin/max

s /[–] Min = 0.04b 

Max = 0.73b  
Min = 0.03b 

Max = 0.90b 

Solid-phase conductivity σel/[S m− 1] 10b [3]  6.75b [96] 
Solid-phase diffusivity D◦

s/D
◦

s /[m2 s− 1] Table S7d [3]  Table S8d 

Charge-transfer constant activation energy Ekct,i /[J mol− 1] 20,000d  30,000d 

Solid-phase diffusion activation energy EDs,i /[J mol− 1] 45,000d  50,000d 

Initial electrolyte concentration cin/[mol m− 3] ← 1000b [78] → 
Transference number of positive charges t+/[–] ← 0.38b [95] → 
Ambipolar diffusivity D̃/[m2 s− 1] ← Eq. (S3)b [95] → 
Ionic conductivity σ/[S m− 1] ← Eq. (S4)b [95] → 
Thermodynamic factor γ±/[–] ← Eq. (S5)b [95] → 
Heat transfer coefficient h/[W m− 2 K− 1] 20a [51] 
Equivalent specific heat cp/[J kg− 1 K− 1] 1600a [51]  
a Measured. 
b Assumed. 
c Calculated. 
d Fitted to experimental data. 

Appendix C. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.est.2024.112326. 
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Abbreviations 

BMS: Battery management system 
CC: Constant current operation 
CV: Constant voltage operation 
CCCV: Constant current constant voltage operation 
ECM: Equivalent circuit model 
LIB: Li-ion battery 
MST: Multiple step test 
OCV: Open circuit voltage 
P2D: Pseudo-2-dimensional approach 
PBM: Physics-based model 
SOC: State of charge 
SOH: State of health 
WLTC: Worldwide harmonised light vehicles test cycle 

Nomenclature 
Aact : Cross sectional area of the electrodes [m2] 
Aam: Active material surface per unit of electrode volume [m− 1] 
Aext: Battery external surface affected by cooling [m2] 
a: Characteristic interface length [m] 
Cnom: Nominal capacity of the battery [Ah] 
Crated: Rated capacity of the battery at C/3 [Ah] 
Cn: Capacitance of the ECM (n = 1, 2) [F] 
c: Li ions concentration in the electrolyte [mol m− 3] 
cin: Initial Li concentration in the electrolyte [mol m− 3] 
cp: Equivalent specific heat of the battery [J kg− 1 K− 1] 
c̃s : State of lithiation [–] 
cmax

s : Maximum molar concentration of intercalated Li in the active material [mol m− 3] 
c̃min/max

s : Maximum and minimum state of lithiation [–] 
D̃: Ambipolar diffusivity of the electrolyte [m2 s− 1] 
Ds: Chemical diffusion coefficient of intercalated Li in LFP [m2 s− 1] 
Ds: Intrinsic diffusion coefficient of intercalated Li in graphite [m2 s− 1] 
D◦

s : Chemical diffusion coefficient of intercalated Li in LFP at 25 ◦C [m2 s− 1] 
D

◦

s : Intrinsic diffusion coefficient of intercalated Li in graphite at 25 ◦C [m2 s− 1] 
E◦ : Standard equilibrium potential of graphite [V] 
EDs : Activation energy for diffusion coefficient [J mol− 1] 
Ekct : Activation energy for charge transfer kinetic constant [J mol− 1] 
EHC: Entropic heat coefficient [V K− 1] 
F: Faraday constant [C mol− 1] 
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h: Convective heat transfer coefficient [W m− 2 K− 1] 
icell : Applied current [A] 
in: Current through the resistor Rn (n = 1, 2) [A] 
Jconc: Li ion flux in the electrolyte as areal current density [A m− 2] 
Jct : Areal charge-transfer current density [A m− 2] 
JV

ct : Volumetric charge-transfer current density [A m− 3] 
J1: Total areal current density of electron-conducting phase [A m− 2] 
J2: Total current density in the electrolyte phase [A m− 2] 
kct : Charge-transfer kinetic constant [A m5/2 mol− 3/2] 
k◦

ct : Charge-transfer kinetic constant at 25 ◦C [A m5/2 mol− 3/2] 
L: Thickness of the domain [m] 
M: Mass of the battery [kg] 
Ncell : Number of battery unit cells [–] 
Ns: Intercalated Li molar flux [mol m− 2 s− 1] 
Q̇ohm: Ohmic heat generation per unit of component volume [W m− 3] 
Q̇rev: Reversible heat generation per unit of component volume [W m− 3] 
Q̇rxn: Reaction heat generation per unit of component volume [W m− 3] 
qex: Heat removed by convection in the thermal-ECM [W] 
qgen: Ideal power generator for the thermal-ECM [W] 
qirr: Irreversible power generation for the thermal-ECM [W] 
qrev: Reversible power generation for the thermal-ECM [W] 
q̇i: Total heat generation of single component per unit cell volume (i = N, S, P) [W m− 3] 
q̇V: Total heat generation per unit active volume [W m− 3] 
R: Universal gas constant [J mol− 1 K− 1] 
Rconv: Convective thermal resistance used for the thermal-ECM [K W− 1] 
Rn: Resistor of the ECM (n = 1, 2) [Ω] 
r: Average particle radius of the active material [m] 
T: Temperature of the cell [K] 
Tamb: Ambient temperature of the climatic chamber [K] 
Tref : Reference temperature [K] 
t+: Transference number of Li ions [–] 
Ueq: Equilibrium potential of the active material [V] 
Vact : Active volume of the battery [m3] 
VCV: Voltage value for constant voltage operation [V] 
Voc: Open circuit voltage of the cell of the equivalent circuit model [V] 

Voc,ref : Open circuit voltage of the cell of the equivalent circuit model at 25 ◦C [V] 
v: Voltage of the cell for the ECM [V] 

Greek 
α: Symmetry coefficient of Butler-Volmer equation [–] 
β: Bruggeman coefficient [–] 
γ±: Thermodynamic factor of the electrolyte [–] 
ε: Volume fraction [–] 
ηact : Activation overpotential of intercalation reaction [V] 
μ̃*

e : Reduced electrochemical potential of electrons [V] 
μ̃*
+: Reduced electrochemical potential of Li ions [V] 

μ: Chemical potential of Li in graphite [J mol− 1] 
μeq: Equilibrium chemical potential of Li in graphite at 25 ◦C [J mol− 1] 
σ: Ionic conductivity of the electrolyte [S m− 1] 
σe,eff : Effective electrical conductivity of electron-conducting phase [S m− 1] 
τ: Tortuosity factor [–] 
τn: RC time constant [s] 

Subscripts 
0: Pure ohmic resistor of the ECM 
1: Component of the ECM first RC circuit 
2: Component of the ECM second RC circuit 
CC: Current collector phase 
el: Electro-conductive phase 
ey: Electrolyte phase 
fill: Filler phase 
N: Negative electrode 
P: Positive electrode 
ref: Quantity evaluated at T = 25 ◦C 
S: Separator 
s: Active material phase 
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