
Sequential pattern mining

for ICT risk assessment and management

Michele D’Andreagiovannia, Fabrizio Baiardia, Jacopo Lipilinia,b,

Salvatore Ruggieria, Federico Tonellia,b

aDipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy
bHaruspex S.R.L., Via Vittorio Veneto, 126, 19124, La Spezia, Italy

Abstract

ICT risk assessment and management relies on the analysis of data on the joint behavior of a

target system and its attackers. The tools in the Haruspex suite model intelligent, goal-oriented

attackers that reach their goals through sequences of attacks. The tools synthetically generate

these sequences through a Monte Carlo method that runs multiple simulations of the attacker be-

havior. This paper presents a sequential pattern mining analysis of the attack sequence database

to extract a high-level and succinct understanding of the attacker strategies against the system to

assess. Such an understanding is expressed as a set of sequential patterns that cover, and possibly

partition, the attack sequences. This set can be extracted in isolation, or in contrast with the be-

havior of other attackers. In the latter case, the patterns represent a signature of the behavior of an

attacker. The dynamic tools of the suite use this signature to deploy dynamic counter-measures

that reduce the security risk. We formally motivate the need for using the class of maximal se-

quential patterns in covering attack sequences, instead of frequent or closed sequential patterns.

When contrasting the behavior of different attackers, we resort to distinguishing sequential pat-

terns. We report an extensive experimentation on a system with 36 nodes, 6 attackers, and 600K

attack sequences.

Keywords: Security risk assessment, Attack sequences, Sequential pattern mining, Maximum

coverage problem

1. Introduction

Approaches to assess and manage ICT risk rely on the analysis of data on the joint behavior

of the ICT system of interest, the target system, and its attackers. Most of this data is collected

after the system deployment. This approach has two main drawbacks. First, it cannot assess and

manage risk at design time, but only with a-posteriori sub-optimal remedies. This prevents a5

principled by-design approach in risk analysis and management [1]. Second, the data available

for the analysis is both scarce and biased because one waits for real attacks to occur and they

seldom include extreme events, such as low frequency - high impact attacks.

The Haruspex suite of tools [2] synthetically generate data to assess and manage ICT risk by

simulating the attacker behaviors to predict how they attack the target system even before it is10

deployed. The suite models intelligent, goal-oriented attackers that escalate their privileges or

access rights or, simply rights, by sequentially executing the elementary attacks enabled by the

vulnerabilities of the target system. Each attacker aims to reach a predefined goal, i.e., to acquire

Preprint submitted to JLAMP September 26, 2018

a predefined set of rights. The suite applies a Monte Carlo method that runs multiple simulations

of the attacker behaviors to take into account stochastic factors affecting the success or the failure15

of each elementary attack.

This paper proposes an innovative methodology because currently, just a few analyses of syn-

thetic/real data exploit summaries and patterns of attack sequences to design counter-measures

and deploy dynamic ones. This strategy matches the actual attacks against a predefined, sys-

tem independent pattern to select when to deploy counter-measures for these attacks [3, 4, 5].20

Instead, the proposed methodology aims at extracting a global description of each attacker strat-

egy in building an attack sequence against the target system. This description supports both the

design of counter-measures for the target system and the choice of the time to deploy dynamic

counter-measures for this system. Furthermore, the description, possibly at alternative abstrac-

tion levels, is also useful to understand the “degrees of freedom” of an attacker when building its25

attack sequences.

This paper applies knowledge discovery approaches to extract informative patterns from at-

tack sequences in the form of sequential patterns [6, 7, 8] where a pattern represents a high-level

and declarative understanding of a collection of attack sequences. We propose to select a sub-

set of sequential patterns that describe a number of sequences as large as possible. This is an30

instance of the well-known maximum coverage optimization problem [9]. The selected subsets

should maximize the coverage of the sequences and also have a pairwise minimal intersection.

This results in a set of independent descriptions that globally capture the whole behavior of

an attacker. Also, the length of sequential patterns in the subset should be maximized because

longer patterns convey more information on the abstracted sequences. We formally motivate the35

need for using the class of maximal sequential patterns in covering attack sequences, instead of

frequent or closed sequential patterns.

The behavior of an attacker can be analyzed in isolation, or in contrast with the behavior

of other attackers. In such a case, we resort to distinguishing sequential patterns [10], which

are supported by the sequences of an attacker but not by those of all other ones. A signature40

of an attacker w.r.t. all the others can then be computed from such patterns. Signatures are the

key elements for solving the attribution problem [11], namely for determining the identity of an

attacker and then for the deployment of dynamic counter-measures. Moreover, since signatures

are provided in terms of intelligible representations (sequential patterns), they can be also useful

to design proper countermeasures to reduce ICT risk and to define a risk management strategy45

that applies the most effective counter-measure for each attacker.

We evaluate the proposed methodology with a use case of a target system with 36 nodes and 6

different types of attackers. We describe both the target system and the extensive experimentation

on 600K attack sequences that has considered sequential patterns at different granularity levels

(elementary attacks, nodes attacked). The trade-off between maximal covering, minimal overlap,50

and longest patterns is clarified by varying the minimum support threshold in sequential pattern

extraction.

The paper is organized as follows. Section 2 introduces the Haruspex suite. Section 3 de-

scribes a use case including a sample ICT system and attacker modeling. Classes of sequential

patterns and measures of interest for ICT risk assessment are then introduced in Section 4. Next,55

Section 5 defines a notion of covering for sets of sequential patterns and formally proves that

maximal sequential patterns is the most appropriate class for computing covers. Section 6 dis-

cusses the covers found for attack sequences of the considered use case. Finally, we discuss

related work and summarize the contribution of the paper.

2

S the target system

n a node of S

ag an attacker

at an elementary attack

v a vulnerability

v(at) the vulnerabilities enabling at

pre(at) the rights to execute at

res(at) the resources to execute at

post(at) the rights granted if at succeeds

succ(at) the success probability of at

time(at) the execution time of at

λ(ag) the look-ahead of ag

(a) List of abbreviations.

ag strategy λ(ag)

A0 SmartSubnetFirst 0

A1 maxIncr 1

A2 maxIncr 2

A3 maxProb 1

A4 maxProb 2

A5 maxAtt 2

(b) Attacker in the use case.

Table 1

2. ICT risk assessment: the Haruspex approach60

This section describes the tools of the Haruspex suite [12] that simulate the attacker behaviors

against a target system to produce synthetic attack sequences. In the following, we denote by user

the team that applies the suite tools to assess and manage the ICT risk of a target system that can

be already working or only in its design phase. The suite builds the models of the target system

and of the attackers, to simulate how the latter select the elementary attacks in their sequences in65

the scenario of interest. The accuracy of the simulation depends on the tools that build the model

of the target system and those of the attackers. Table 1a defines the abbreviations we use in the

following. The builder and the descriptor are the Haruspex tools that model, respectively, the

target system and each attacker. Then, the engine uses these models to apply the Monte Carlo

method and to run simulations of the behavior of a number of attackers against the target system.70

2.1. Modeling an infrastructure

The builder is the first tool the user applies to build a model of the target system S . This

model decomposes S into a network of nodes and the resulting nodes into components, i.e., hard-

ware/software modules. Each component may be affected by some vulnerabilities that enable

some elementary attacks [13, 14, 15]. Haruspex covers social engineering attacks by modeling75

users of S as further components with the proper vulnerabilities. If any vulnerability in v(at)

is effective, at is enabled and succeeds with a probability succ(at), otherwise it fails. For each

vulnerability v that affects a node n, the builder computes pre(at) and post(at) for each attack

v enables. These properties drive how an attacker can compose elementary attacks into attack

sequences. The builder computes pre(at) and post(at) by matching predefined patterns against80

the description of v in some de facto standard databases, e.g., the Common Vulnerability Enu-

meration [12, 13]. The information the builder returns in the target system model supports the

simulation of any attack, provided that we know the access rights an attack grants and that we

can evaluate the time to execute it and its success probability. Most collections of vulnerabilities

and weaknesses describe such attack attributes. The model the builder returns should describe85

any attack sequence ag can implement, even if they involve distinct nodes of S . To this purpose,

the user provides to the builder the logical topology of the interconnection structure among the

nodes of S and the components of S that controls it, e.g., firewalls.

3

2.2. Modeling attackers

The descriptor models each attacker ag starting from four properties the user defines for it:90

1. the initial rights;

2. the goal(s);

3. the selection strategy;

4. the value of λ(ag), the look-ahead.

The goal of ag is the set of rights that ag aims to reach. We can assume that these rights result95

in the control of the target node n f . An attacker that reaches a goal results in an impact, i.e., a loss

for the owner of S [16]. ag sequentially selects and executes elementary attacks. ag can attempt

an elementary attack at if it can access the resources in res(at) and it owns the rights in pre(at),

either as initial rights or as rights granted by the previous attacks ag has successfully executed.

succ(at) determines the success or the failure of the execution of at. An attack sequence is100

successful if it reaches n f .

Each ag is paired with a selection strategy that ranks the next attacks ag may execute accord-

ing to its goals, its current set of rights and its preferences. λ(ag) defines the look-ahead of ag,

i.e., the largest number of attacks ag ranks to select those to extend its sequence. The strategy

always selects one of the sequences leading to a goal, if it exists. Otherwise, the strategy ranks105

sequences according to attack attributes only. This may select a sequence with useless attacks,

i.e., they grant rights that ag does not need to reach a goal. In the current version of the suite, the

user pairs ag with one of the following strategies:

1. maxProb: returns the sequence with the best success probability,

2. maxIncr: returns the sequence granting the largest set of rights,110

3. maxEff : returns the sequence with the best ratio between success probability and execu-

tion time of attacks,

4. maxAtt : returns the sequence granting the rights that enable the execution of the largest

number of attacks,

5. SmartSubnetFirst: returns any attack that ag may execute and that increases these rights.115

It prefers attacks that enable ag to enter another subnetwork.

If λ(ag) = 0, then ag can only adopt the SmartSubnetFirst strategy that prefers the attacks

that enable ag to enter a distinct subnetwork. The strategy is Smart because it returns attacks that

ag can execute.

Haruspex models both the time to collect information to select the attacks and the one to120

implement them. Larger values of λ(ag) result in a more accurate selection that may avoid

useless attacks at the expense of the longer time ag spends to acquire information on the target

system.

2.3. Simulation engine

The engine uses the model of S and those of the attackers to apply the Monte Carlo method.125

It executes an experiment with a large number of independent runs that simulate, for a maximum

time period, the attacks of a set of attackers and the discovery of potential vulnerabilities. To

guarantee run independence, the engine re-initializes the state of S and of any attacker before

starting a new run. An experiment ends either after executing the specified number of runs or

when a predefined statistic reaches the required confidence level. Each experiment returns a130

database of attack sequences collected in the runs.

4

In each time step, the engine considers each idle attacker ag that still has to reach a goal and

it considers the current set of rights of ag. Then, engine computes the sequences with, at most,

λ(ag) attacks that ag can implement and it applies ag selection strategy. Then, it simulates at, the

first attack of the sequence the strategy returns and increase the simulated time of time(at) plus135

the selection time. As previously mentioned, the attributes the engine needs to simulate at are

succ(ag) and time(ag) because the simulation neglects any implementation detail. If at succeeds

and ag has reached a goal, the engine updates the corresponding impact too.

2.4. Suite validation

The overall accuracy of the Haruspex suite in forecasting the behavior of attackers against a140

target system has been validated by its adoption in some cyber-defense exercises [17]. In these

exercises, a defender team has applied the suite before a team of human attackers, the red team,

actually targeted the system. As an example, one defender team has applied the suite in two

editions of the NATO Locked Shield exercise1 to rank the software patches to apply in the short

time window before the red team started its attacks. In other validation exercises, the suite has145

accurately predicted the attack sequences implemented by a penetration tester.

3. Use case

This section describes a use case that will be the subject of sequential pattern mining analysis

later on. Fig. 1 shows the topology of the target system network. It consists of 36 nodes (hosts)

plus routers and switches (that do not belong to the model). The node ne = 0 is the entry node,150

i.e., all attack sequences start from it, and the node 34 is the goal node, i.e., n f = 34. An attack

sequence is successful if the attacker acquires the control of n f .

The system vulnerabilities result in 2,859 elementary attacks, belonging to 192 attack types.

Attack types group elementary attacks according to the CVE [12, 13] vulnerability they exploit.

An elementary attack at is specific to a vulnerability at a node, i.e., instances of the same attacks155

that target distinct nodes are counted as distinct elementary attacks.

Example 3.1. An example of an elementary attack that targets distinct nodes is the one that

grants administrative access rights on the software HP Data Protector at node 1. The attack

type is: HP Data Protector Remote Command Execution. An attack of this type that targets

another node is a distinct elementary attack. As another example, an attacker may exploit an160

attack of type MS12020: Vulnerabilities in Remote Desktop Could Allow Remote Code Execution

(2671387) (uncredentialed check) to remotely execute arbitrary code. As a third example, the

Unencrypted Telnet Server type describes an attack to steal sensitive information through the

Telnet protocol.

We assume that the use case aims to assess the ICT risk due to 6 attackers A0-A5. Table 1b165

lists their selection strategies and look-aheads.

We have selected this use case because it is a challenging test for the discovery of attack

patterns because all the attackers share the same attack surface, that of node ne = 0, and they

aim to control the same resource on node n f = 34. Furthermore, due to both the large number of

elementary attacks and the topology of the system network, each attacker can implement a large170

1https://ccdcoe.org/event/cyber-defence-exercises.html

5

Figure 1: Topology of the Use Case.

number of sequences. From this perspective, this is a worst case for the algorithms we discuss in

the following.

The engine returns a database with 100K successful attack sequences for each attacker. Data

collected for each run includes the nodes the attacker has targeted, each attack attempted and

whether it succeeded, the time of each attack, plus other information this paper neglects. Attack175

sequences have a length between 5 and 144, for a total of 23.7M elementary attacks in the

sequences the attackers select in the simulations. The attackers have actually selected only 435

of the 2,859 possible elementary attacks. This may be due both to their selection strategies and

to the lack of access rights.

Example 3.2. A successful attack sequences involves the following nodes: 1, 9, 6, 5, 2, 20, 21,180

18, 35, 34 of the target system in Fig. 1. Initially, this sequence implements an attack of type HP

Data Protector< A.06.20 Multiple Vulnerabilities against node 1. Then, it exploits the attack type

HP Data Protector Remote Command Execution to gain administrative access rights on nodes 9,

6, 5, and 2. Starting from these nodes, the attacker exploits further attack types, e.g., MS12020:

Vulnerabilities in Remote Desktop Could Allow Remote Code Execution (2671387) (uncreden-185

tialed check) and HP System Management Homepage < 7.0 Multiple Vulnerabilities. In the end,

the attacker runs an attack with type Unencrypted Telnet Server against the node 34.

6

4. Sequential pattern mining over attack sequences

This section recalls the framework of sequential pattern mining with reference to the classes

of patterns that will be useful for modeling attack sequences and for reasoning over them. We190

refer the reader to [6, 7, 8] for surveys on sequential pattern mining theory and applications.

Regarding software tools in the open source domain, a large suite of algorithms for extracting

various classes of sequential patterns (frequent, closed, maximal) is the SPMF2 Java library,

described in [18]. A second tool that we will use in our experimentation is the jConSGapMiner3

multi-core Java library [10] for extracting minimal distinguishing sequential patterns.195

4.1. Sequence databases

Let I = {i1, . . . , im} be a fixed set of items, where m > 0. Items can be symbols or, simply,

natural numbers. A sequence S = 〈s1, . . . , sl〉 is an ordered list of items, i.e., si ∈ I for i = 1, . . . , l.

We write l(S) = l to denote the length l ≥ 0 of S . A sequence S 1 = 〈s1, . . . , sl〉 is a sub-sequence

of S 2 = 〈r1, . . . , rk〉 if there exists 1 ≤ π1 < . . . < πl ≤ k such that s1 = rπ1
, . . . , sl = rπl

. In such200

a case, we write S 1 ⊑ S 2. Also, we say that S 2 contains S 1. We write S 1 ⊏ S 2 when S 1 ⊑ S 2

and S 1 , S 2, and say that S 2 strictly contains S 2. A sequence database D = {S 1, S 2, . . . , S n} is

a multiset of sequences. |D| = n is the size of D.

The assessment of the use case can model attack sequences by considering items at different

granularities. We will consider two scenarios among the possible ones.205

Definition 4.1. In scenario AS (for Attack Scenario), items are elementary attacks at, and

sequences are ordered lists of successful elementary attacks.

Example 4.1. The attack sequence of Example 3.2 is modeled in scenario AS as 〈at1, at9, at6,

at5, at2, at20, at21, at18, at35, at34〉, where at j is some successful elementary attack attempted at

node n j. E.g., at9 is the “HP Data Protector Remote Command Execution” at node n9.210

Definition 4.2. In scenario NS (for Node Scenario), items are nodes n, and sequences are

ordered lists of consecutively distinct nodes at which a successful attack took place.

Example 4.2. The sequence of successful attacks in Example 3.2 is modeled in scenario NS as

〈n1, n9, n6, n5, n2, n20, n21, n18, n35, n34〉, where at least one attack occurs in each node.

4.2. Sequential patterns and measures of interest215

Sequences may abstract subsets of D. We denote such abstractions as sequential patterns

to differentiate them from sequences in D. Formally, a sequential pattern SP is a sequence.

The cover of a sequential pattern SP is the set of sequences in D that contain SP. In symbols,

coverD(SP) = {S ∈ D | SP ⊑ S }. The goal of sequential pattern mining is to extract from a

sequence database a set of interesting sequential patterns. An objective measure of interest is220

support. The absolute support (or, simply, support) of SP is the size of its cover: suppD(SP) =

|coverD(SP)|. The relative support of SP is the percentage of its cover over D. We omit the

subscript D when clear from the context.

2http://www.philippe-fournier-viger.com/spmf/
3https://github.com/slide-lig/jConSGapMiner

7

Example 4.3. Consider scenarioAS. An example of a sequential pattern is SP = 〈at9, at2, at21〉.

This pattern covers all the sequences that include the attack at9 (which is, say, at node n9), and225

after zero or more steps attack at2 (at node n2), and after zero or more steps attack at21 (at node

n21). The sample sequence of Example 4.1 is in the cover of SP.

Besides support, the ranking of a collection of sequential patterns may apply other subjective

or domain-dependent measures of interest. The following may be specifically defined in the

context of risk assessment:230

• Length l(SP): the longer a pattern is the more information it provides on a (possibly, suc-

cessful) sequence of attacks of an attacker.

• Score score(SP) = supp(SP) ·2l(SP)−1: is a combination of support and length, where length

is exponentially weighed;

• Success distance success(SP): for a sequence S , the success distance is defined as the235

number of elements in S between the last one matching SP and the last in S . The success

distance success(SP) is the mean success distance over the sequences in the cover of SP.

Intuitively, the smaller the success distance, the higher the probability that an ongoing

sequence matching the pattern will become successful 4 (the attacker reach its goal).

• Right distance right(SP): for a sequence S , the right distance is defined as the number of240

new rights in S acquired between the last element matching SP and the last element in S .

The right distance right(SP) is the mean right distance over the sequences in the cover of

SP. This is a refinement of success distance that considers the number of missing rights

before the success instead of the number of steps before the attacker is successful.

For example, the sequence of Example 4.1 contributes to the success distance of SP in Exam-245

ple 4.3 with a value of 3 because it attempts 3 more attacks after the last match with SP, namely

after at21.

4.3. Classes of sequential patterns

While a measure of interest can prompt useful patterns from an initial collection, the number

of all possible sequential patterns is exponentially large (in the number of items and pattern250

length). It is then important to concentrate on specific collections of sequential patterns. The

pattern mining literature has proposed a large number of collections and efficient (in some cases,

parallel) algorithms to extract them from sequence databases.

Consider a fixed minimum support threshold minsup > 0. A sequential pattern SP is frequent

if supp(SP) ≥ minsup. We denote by FPD the set of frequent sequential patterns for a database255

of sequences D – and write FP when D is clear from the context. Since two frequent sequential

patterns may actually denote the same set of sequences, i.e., they have a same cover, restricting to

patterns with distinct covers is a lossless strategy to reduce the number of extracted patterns and

to avoid duplicate analyses. SP is closed if it is frequent and not strictly contained in a sequential

4One may also consider a dual measure, the average number of elements (in a sequence of the cover of SP) up to the

first matching SP. This would apparently measure how early SP can be detected in a sequence S . Unfortunately, we are

sure that SP occurs in S only when S matches the last element of SP. A fortiori, there is no guarantee that the value of

the measure applies to S , e.g.,to quantify the risk of S .

8

pattern SP′ with the same support, i.e., supp(SP) ≥ minsup ∧ ∄SP′. (SP ⊏ SP′ ∧ supp(SP′) =260

supp(SP)). We denote by CP the set of closed sequential patterns. Closed sequential patterns are

the longest sequential patterns in the class of equivalence of patterns with a same cover. A further

condensed representation consists of restricting to the longest frequent sequential patterns only.

SP is maximal if it is frequent and not strictly contained in another frequent sequential pattern

SP′ i.e., supp(SP) ≥ minsup ∧ ∄SP′. (SP ⊏ SP′ ∧ supp(SP′) ≥ minsup). We denote by MP265

the set of maximal sequential patterns. Maximal sequential patterns are closed, but the converse

does not necessarily hold. In summary, FP ⊇ CP ⊇ MP. For non-trivial sequence databases,

the inclusions are strict.

Next lemma is referred to as the anti-monotonicity property of cover (or, equivalently, of

supp). It is a trivial consequence of transitivity of relation ⊑.270

Lemma 4.1. If SP1 ⊑ SP2 then cover(SP1) ⊇ cover(SP2).

The converse does not hold, not even for maximal sequential patterns.

Example 4.4. Consider the sequence database {〈b, c, a〉, 〈b, a, c〉} and fix minsup = 2. The two

sequential patterns 〈a〉 and 〈b, c〉 are both maximal and they both cover the whole database.

However, they are incomparable w.r.t. the ⊑ relation.275

The pattern mining literature abounds of other methods for restricting the set of sequential

patterns subject to further analysis. They are typically expressed in the form of constraints on the

pattern measures or on the pattern cover. Examples of the former include lower/upper bounds

on pattern length (or, on any other measure of interest), or necessarily appearing/excluded items,

etc. Examples of the latter type include a maximum gap g, i.e., such that any two consecutive280

items in SP occur in any sequence of cover(SP) within a maximum distance of g. The following

other notions will be fundamental for our purposes.

Definition 4.3. Let D̂ be a sequence database, in addition to D. A sequential pattern SP is

distinguishing w.r.t. D̂ if: (1) it is frequent, i.e., suppD(SP) ≥ minsup; (2) and, it has empty cover

in D̂, i.e., suppD̂(SP) = 0.285

SP is minimal distinguishing w.r.t. D̂ if it is distinguishing and no SP′ ⊏ SP is distinguishing.

By Lemma 4.1, minimality means that there is no SP′ more general than SP, in terms of

cover, which satisfies conditions both (1) and (2) .

The original definition of [10] is more general than Definition 4.3. Condition (2) is relaxed to

considering infrequency w.r.t. D̂, i.e., suppD̂(SP) ≤ maxsup for a threshold maxsup. Moreover, a290

maximum gap threshold g is also considered. However, we will not make use of the fully general

notion in this paper. We denote by DPD̂ the set of distinguishing sequential patterns w.r.t. D̂

– and omit D̂ when clear from the context, and by MDD̂ the set of minimal distinguishing

sequential patterns. It turns out that FP ⊇ DP ⊇ MD.

We introduce here maximal distinguishing sequential patterns. They represent the longest295

frequent sequential patterns that have empty cover in D̂.

Definition 4.4. The set of maximal distinguishing sequential patterns isMDPD̂ =MP∩DPD̂.

The following lemma provides us with a means of computing maximal distinguishing pat-

terns from maximal sequential patterns and minimal distinguishing, i.e., without having to look

at the database D̂ nor having to build the larger set of distinguishing patterns DPD̂.300

9

Lemma 4.2. MDPD̂ = {SP ∈ MP | ∃ SP′ ∈ MDD̂. SP′ ⊑ SP}.

Proof. ⊇-part). Let SP ∈ MP and SP′ ∈ MDD̂ such that SP′ ⊑ SP. By Lemma 4.1, ∅ =

coverD̂(SP′) ⊇ coverD̂(SP), and then SP ∈ MP ∩DPD̂ =MDPD̂.

⊆-part). Let SP ∈ MP∩DPD̂. Since SP is distinguishing, some sub-sequence (at least one)

SP′ ⊑ SP of it will be minimal. Hence, the conclusion. �305

5. The covering problem

5.1. Motivation and applications to risk management

Sequential patterns provide a useful abstraction for understanding attackers strategies to reach

a goal. Ranking patterns using one of the measures of interest from Section 4.2 prompts sub-

sequences that occur with high frequency among the successful ones (using support as measure),310

that are characterized in higher detail (using length), or that are close to success (using suc-

cess/right distance). In particular, this last ranking is fundamental to design dynamic counter-

measures, such as blocking an attacker that is following a pattern of successful attack before

it reaches its goal. In this paper, however, we concentrate on a different approach, which tries

and overcome the main limitation of (sequential) patterns, namely the local view each of them315

provides. A global understanding of the behavior of attackers is missing, and we will provide it

through the covering problem described in the next subsection. First, we aim at grasping a set of

strategies that characterize an attacker. Second, we aim at extracting a set of strategies that are

also specific of an attacker because they are not used by the other ones. In this sense, they define

an attacker signature. Such two sets of strategies provide an understanding of how exposed is the320

target system to the attacker strategies, possibly in contrast to other attackers. This understanding

supports what-if analyses and the definition of a strategy that integrates in a cost effective way

both static and dynamic counter-measure. A static countermeasure such as a network redesign

or the adoption of software patches changes the system in a permanent way and it is usually

expensive. Instead, a dynamic countermeasure, such as the dynamic update of message routing325

or filtering rule, is effective when attacks occur. By focusing just on the attacker(s) of interest

that can reach their goals, a strategy minimizes the number of counter-measures to optimize the

cost to prevent and manage risk.

This results in a security by design iterative approach that integrates the Haruspex suite and

sequential pattern mining. At each step, the proposed approach generates sequence databases,330

characterizes attacker strategies, and designs counter-measures. Then, it starts a new step on

the revised system. This iterative process takes into account the adaptive nature of intelligent

attackers that can select distinct attacks as a reaction to the deployment of a counter-measure.

When static counter-measures are unavailable or too expensive, the signature of an attacker

is an input to the tools that fire the deployment of dynamic counter-measures [19]. Suppose that335

the intrusion detection subsystem signals an attack sequence that matches the signature of an

attacker that aims to control a node n f . As soon as the signature is matched, the target system

may deploy a counter-measure that filters out all the communication to n f to isolate it from the

other nodes. This expensive counter-measure will be effective only for the time to deploy a more

cost-effective one. As an example, this counter-measure may only filter out the communications340

to n f from the nodes the attacker uses. Lastly, the signature of an attacker is a critical input for

attack attribution, namely for the discovery of who is attacking the target system and of its final

goals. This is fundamental knowledge for enabling a strategic analysis of an attack against a

critical infrastructure where the attackers will do their best to hide their identities.

10

Algorithm 1 greedy-kcover(k, P).

1: C ← ∅, D′ ← D, P′ ← P

2: while |C| < k and D′
, ∅ and P′ , ∅ do

3: X ← argmaxX∈PsuppD′ (X)

4: C ← C ∪ {X}

5: P′ ← P′ \ {X}

6: D′ ← D′ \ coverD′ (X)

7: end while

8: return C

5.2. The covering problem345

Let us extend the cover notation to sets of sequential patterns.

Definition 5.1. For a set C of sequential patterns, we define: coverD(C) = ∪SP∈CcoverD(SP).

We say that C covers the sequence database D if every sequence in D is covered by some

pattern in C. The problem of finding a set C such that coverD(C) = D is an instance of the well-

known set cover problem [9]. Typically, however, one aims at finding a set C with maximum350

size k (called budget). In the use case, for instance, domain experts may have to examine the

set C. Hence, it needs to be sufficiently small for human inspection. Other constraints may

arise due to the adoption of C as an input to deploy dynamic counter-measures. Since each

attack is matched in real-time against each element of C, a too large number of elements may

result in an unacceptable performance of the matching and, even worse, in long delays before the355

deployment of a counter-measure. A cover of size k may not exist, hence one aims at finding a

set C of size at most k which maximizes |coverD(C)| – the number of covered sequences from D.

This is an instance of the maximum coverage problem [9]. As a final generalization, we assume

that sequential patterns in C are constrained to belong to a pre-determined set P, e.g., frequent,

closed, maximal, or distinguishing sequential patterns.360

Definition 5.2. Let P be a set of sequential patterns, and k ≥ 1. We define the k-cover of P:

Cov(k,P) = argmaxC⊆P∧|C|≤k |cover(C)|.

More than one subset C ⊆ P can maximize the objective function. Hence, we write C ∈

Cov(k,P) to denote any such subset. In addition to being a k-cover, a desirable property of C is

that the sequential patterns in it overlap as little as possible – ideally, the covers of patterns in C365

partition the database of sequences. We measure such a property with the mean size of pairwise

intersections of pattern covers.

Definition 5.3. For a set C, we define:

overlap(C) =
1

|C| · (|C| − 1)
·

∑

SP1,SP2∈C∧SP1,SP2

|cover(SP1) ∩ cover(SP2)|.

Computing the k-cover is an NP-hard problem in general [9]. A greedy algorithm chooses

sequential patterns from P as follows: at each stage, choose the one whose cover contains the370

largest number of sequences uncovered by the already chosen elements. Such a greedy algorithm

achieves an approximation ratio of ≈ 0.632 w.r.t. the optimal cover [9]. Algorithm 1 instantiates

11

the greedy algorithm in the context of sequential patterns. Our implementation of this algorithm

adopts a priority queue for the efficient computation of patterns with maximum support (line 3),

and compressed bitmaps5 for storing and updating covers of patterns (line 6).375

We will now formally show that frequent FP and closed CP sequential patterns are not suit-

able choices for P in the computation of a cover, while maximalMP and minimal distinguishing

MD sequential patterns are. First, we introduce a notation for the minimal elements of a set of

patterns w.r.t. the ⊑ relation.

Definition 5.4. Min(P) = {SP ∈ P | ∄SP′ ∈ P. SP′ ⊏ SP}.380

For instance, we have that Min(DP) = MD, i.e., the minimal elements of distinguishing

sequential patterns are the minimal distinguishing ones. The next key result shows that when

looking for the k-cover of P, one can restrict to select only minimal elements from P.

Theorem 5.1. Let C ∈ Cov(k,P). There exists C′ ∈ Cov(k,Min(P)) such that cover(C) =

cover(C′) and |C| ≥ |C′|.385

Proof. We define C′ as follows. For every SP ∈ C choose any SP′ ∈ Min(P) such that SP′ ⊑ S P.

For a given SP, at least one such a SP′ exists – it could be SP itself, if it is minimal in P. Any of

such SP′’s can be chosen. By construction |C′| ≤ |C| ≤ k (in fact, a same minimal element can be

chosen for two SP’s in C). By Lemma 4.1, cover(SP) ⊆ cover(SP′). As a consequence:

cover(C) = ∪SP∈Ccover(SP) ⊆ ∪SP′∈C′cover(SP′) = cover(C′).

SinceC is a k-cover andP ⊇ Min(P), then |cover(C)| is maximal, which implies that the inclusion390

above is an equality. Finally, observe that a k-cover from Cov(k,Min(P)) cannot cover more

sequences than a k-cover of P, again because P ⊇ Min(P). Since C′ ⊆ Min(P) and |C′| ≤ k and

|cover(C′)| is maximal, we conclude C′ ∈ Cov(k,Min(P)). �

The greedy algorithm, in particular, returns sequential patterns from Min(P).

Lemma 5.1. Assume that Algorithm 1 selects at line 3 an X which maximizes suppD′ (X) and is395

minimal. Then greedy-kcover(k, P) ⊆ Min(P).

The consequence of Theorem 5.1 is considerable. It makes no sense to try and cover a

database of sequences using frequent patterns or closed patterns, as shown in the next examples.

Example 5.1. It is readily checked that the minimal element of frequent sequential patterns FP

is the empty sequence, namely Min(FP) = {〈〉}. Trivially, {〈〉} is a cover of any sequence400

database. By Theorem 5.1, {〈〉} ∈ Cov(k,FP). Unfortunately, the empty sequential pattern

is of no practical help in any application.

Even when restricting to sets of patterns without the empty one, the problem still persists,

making sequential patterns unuseful because a cover consists of singleton sequences.

Example 5.2. Consider non-empty frequent sequential patterns. We have that Min(FP\ {〈〉}) ⊆405

{SP | ∃i ∈ I. SP = 〈{i}〉 ∧ SP ∈ FP}. Then, to find a cover, we can consider only sequential

patterns with one item. In other words, we can avoid extracting sequential patterns at all.

5http://roaringbitmap.org

12

For closed sequential patterns CP, one can reason as in the above example, and reach similar

conclusions6. To find a way out, one may consider Cov(k,P) for P being a set of frequent or

closed sequential patterns with support in a range [minsup,maxsup]. However, which maximal410

threshold maxsup to choose remains unclear. We propose, instead, to use maximal MP and

maximal distinguishing sequential patterns MDP, for three reasons. First, we have already

observed that the longer a sequence of attacks is the better it describes the behavior of the attacker

on a specific target system. Second, such classes (and the minimal distinguishing sequential

patterns) are closed under minimality.415

Lemma 5.2. Min(MP) =MP, Min(MD) =MD, and Min(MDP) =MDP.

The drawbacks highlighted for frequent and closed sequential patterns are then overcome. As

the third reason, albeit a k-cover C ⊆ MP is not a partition of D, for any two sequential patterns

in C the number of sequences they share can be upper-bounded. This is a useful property when

a business action has to be done for each sequential pattern in a cover, but sequences should not420

be subject to several business actions. In particular, in our use case we aim at finding a cover

consisting of sequential patterns which abstract attack strategies alternative to each other, hence

with minimal overlap (see Definition 5.3).

Lemma 5.3. For SP1, SP2 ∈ MP with SP1 , SP2: |cover(SP1) ∩ cover(SP2)| < 2 · minsup − 1.

Proof. Let SP be the longest initial sub-sequence shared by SP1 and SP2. SP ⊏ SP1, since425

SP = SP1 and SP1 , SP2 would imply that SP1 ⊏ SP2, and then SP1 would not be maximal.

Analogously, we have SP ⊏ SP2. Thus, let SP1 = SP · 〈i〉 · ŜP1 and SP2 = SP · 〈 j〉 · ŜP2, where

· is the sequence appending operator, and i , j. Any S ∈ cover(SP1) ∩ cover(SP2) satisfies

at least one of the following conditions: (1) SP · 〈 j, i〉 · ŜP1 ⊑ S ; or (2) SP · 〈i, j〉 · ŜP2 ⊑ S ,

depending on whether j appears before i in S or vice-versa. The number of sequences n1 that430

satisfy (1) must be smaller than minsup, i.e., minsup − 1 ≥ n1, otherwise SP1 would not be

maximal since SP1 ⊏ SP · 〈 j, i〉 · ŜP1. Similarly, the number n2 of sequences that satisfy (2)

is smaller than minsup, i.e., minsup − 1 ≥ n2. We conclude then: |cover(SP1) ∩ cover(SP2)| ≤

n1 + n2 ≤ 2 · minsup − 2 < 2 · minsup − 1. �

As a consequence, a set of maximal (distinguishing) sequential patterns has a controllable435

bound on the overlap measure. This holds in particular for a k-cover and for the set returned by

the greedy Algorithm 1.

Corollary 5.1. Let C ⊆ MP. We have: overlap(C) < 2 · minsup − 1.

5.3. Extended definitions of sequences and sequential patterns

A conservative extended definition of a sequence [20] assumes that S = 〈A1, . . . , Al〉 is an440

ordered list of non-empty itemsets, where an itemset is a set of items, i.e., ∅ ⊂ Ai ⊆ I for

i = 1, . . . , l. A sequence S 1 = 〈A1, . . . , Al〉 is a sub-sequence of S 2 = 〈B1, . . . , Bk〉 if there exists

1 ≤ π1 < . . . < πl ≤ k such that A1 ⊆ Bπ1
, . . . , Al ⊆ Bπl

. This conservatively extends the ⊑

relation as well. The notions of support, sequential patterns, and the various classes (frequent,

6It turns out that Min(CP) = {〈〉}. For non-empty closed sequential patterns, it turns out Min(CP\{〈〉}) ⊆ {[FP]θ | ∃i ∈

I. FP = 〈{i}〉 ∧ SP ∈ FP}, where [FP]θ is the closed sequential pattern in the class of θ-equivalence of S P, namely all

sequential patterns SP′ such that cover(SP′) = cover(SP).

13

closed, maximal, distinguishing) of sequential patterns readily lift from the above definitions (see445

[6, 7, 8] for details). Our key result Theorem 5.1 also generalizes, since it basically exploits the

partial order ⊑ and the anti-monotonicity Lemma 4.1. The only result that must be relaxed is

Lemma 5.3, which we restate next.

Lemma 5.4. Assume the extended definition of sequences. Let SP1, SP2 ∈ MP with SP1 , SP2.

We have: |cover(SP1) ∩ cover(SP2)| < 3 · minsup − 2.450

Proof. Let SP be the longest initial sub-sequence shared by SP1 and SP2. SP ⊏ SP1, since

SP = SP1 and SP1 , SP2 would imply that SP1 ⊏ SP2, and then SP1 would not be maximal.

Analogously, we have SP ⊏ SP2. Thus, let SP1 = SP · 〈A〉 · ŜP1 and SP2 = SP · 〈B〉 · ŜP2, where

A , B are itemsets. Any S ∈ cover(SP1) ∩ cover(SP2) satisfies at least one of the following

conditions: (1) SP · 〈B, A〉 · ŜP1 ⊑ S ; or (2) SP · 〈A, B〉 · ŜP2 ⊑ S ; or (3) SP · 〈A ∪ B〉 · ŜP2 ⊑ S ,455

depending on whether B appears before A in S or vice-versa or they are included in the same

sequence element (this last option is impossible if itemsets are singletons, as in Lemma 5.3). The

proof then proceeds analogously to the proof of Lemma 5.3. �

The extended definition of sequences may enable the analysis of further analysis scenarios

where elements of a sequence are sets of events. For instance, an extension of the AS scenario460

may consider a sequence of the sets of all successful elementary attacks at a given node. An

extension of the NS scenario may consider a sequence of the sets of all nodes consecutively and

successfully attacked by the same attack type. On the other side, however, the extended definition

leads to denser datasets of sequences, and then to a larger number of sequential patterns to extract

and reason about. While efficient algorithms exists for extracting (frequent and closed) sequential465

patterns for relatively low minimum support threshold [18, 21], sequential patterns with itemsets

are slightly less intuitive to interpret for a security expert, since they do not specify an order of

the events in a set. For such reasons, we formulated our framework on sequences of items.

6. Experimental analysis of the use case

This section investigates on covering a database of attack sequences using sequential patterns470

of different types. Maximal sequential patterns represent high-level and condensed abstractions

of the attack sequences of an attacker in isolation. We will look for subsets of patterns that maxi-

mize their cover and minimize their overlap. Minimal distinguishing sequential patterns abstract

attack strategies specific to an attacker and not replicated by the other ones. They represent an

attacker signature with respect to the target system under consideration.475

6.1. Dataset and basic statistics

Recall that the input dataset in the use case consists of 600K successful attack sequences,

100K for each of the six attackers (see Table 1b). The empirical distribution of sequence lengths

is reported in Fig. 2 for both the AS scenario (left plot) and the NS scenario (center plot). The

plots also report the kernel density estimation line. In both plots, we can observe a mixture of480

two distributions. In fact, the lengths of the sequences of A1 and A2 are either 12 or 13. The

lengths of the sequences of the other attackers are well approximated by Gaussian distributions.

Fig. 2 (right) also shows the empirical distribution of support for singleton sequential pat-

terns, namely those of the form 〈at〉 for an elementary attack at in the AS scenario, and of the

form 〈n〉 for a node n in the NS scenario. Singleton sequential patterns are ordered by rank,485

14

0 20 40 60
sequence length

0.00

0.05

0.10

0.15

0.20

fr
e
q
u
e
n
c
y

Attack Scenario

0 20 40 60
sequence length

0.00

0.05

0.10

0.15

0.20

fr
e
q
u
e
n
c
y

Node Scenario

10
0

10
1

10
2

item rank

0K

200K

400K

600K

s
u
p
p
o
rt

Attack Scenario

Node Scenario

Figure 2: Distribution of sequence length (left and center), and support of singleton sequential patterns by rank (right).

from the one with the highest support to the one with the lowest one. Notice that the x-axis is in

logarithmic scale. In the AS scenario, the empirical distribution is well-fitted by an exponential

distribution. In theAS scenario, a few nodes occur very frequently in attack sequences. Looking

at Fig. 1, such nodes include the target node n f = 34 (all sequences end there), and nodes directly

reachable from the entry node ne = 0 (all sequences start from there).490

6.2. Covering with frequent and closed sequential patterns

Let us start considering the cover of the sequences of an attacker. As shown by Theorem 5.1

and in Example 5.2, using frequent or closed sequential patterns, we end up with a max covering

set consisting of the empty sequential pattern or, if excluding it, of singleton patterns only. Con-

sider again Fig. 2 (right). For the NS scenario, there is a single node whose cover is the whole495

database of sequences of all attackers. It is the goal node, i.e., n f = 34 – since we are consider-

ing attack sequences which are successful. It turns out that {〈n f 〉} ∈ Cov(1,Min(FP)), i.e., the

singleton 〈n f 〉 is a complete cover. Moreover, greedy-kcover(1, FP) = {〈n f 〉},i.e., the singleton

is returned by the greedy algorithm. However, it is of little or no utility, because: (1) first, the

singleton sequential pattern 〈n f 〉 cannot enable effective dynamic counter-measures, because if500

the attacker is attempting an attack against n f then it has almost reached its goal; (2) second,

〈n f 〉 gives no hint on the attacker strategies to reach the final node, e.g., on the preferred sub-

networks to follow. For the AS scenario, we reach a similar conclusion, yet now the maximal

cover consists of two elementary attacks, both occurring at node n f .

6.3. Covering with maximal sequential patterns505

Maximal sequential patterns are an appropriate class for the maximal covering problem. Con-

sider the scenario AS. For each attacker, we extract the maximal sequential patterns from the

100K attack sequences of the attacker, and for minsup = 5K, namely 5% relative minimum

support threshold. Starting from the set of maximal sequential patterns, we compute the cover

returned by the greedy Algorithm 1. Fig. 3 shows the fraction of the 100K sequences that C =510

greedy-kcover(k, MP) covers at the variation of k for attackers A0-A5 (left) , the mean overlap

of patterns in C (center), and the average length of patterns in C (right). With the top 20 sequen-

tial patterns, we are able to cover 80% or more of the sequences of each attacker, and almost

100% for A1 and A2. With 40 sequential patterns, we reach almost 100% coverage in all cases.

This means it is sufficient for a domain expert to look at k = 40 maximal sequential patterns for515

a high level condensed characterization of each attacker. The average length of those sequential

patterns ranges from 3.5 to 7, and their overlap ranges from 400 to 700 for distinct attackers. A1

and A2 have the best of such values, namely a low overlap and a large length. Hence, a small

15

0 20 40 60

k

0.2

0.4

0.6

0.8

1.0

c
o
v
e
re

d
 s

e
q
u
e
n
c
e
s

minsupp=5%

A0

A1

A2

0 20 40 60

k

0

500

1000

1500

o
v
e
rl
a
p

minsupp=5%

A0

A1

A2

0 20 40 60
k

4

5

6

7

m
e
a
n
 l
e
n
g
th

minsupp=5%

A0

A1

A2

0 20 40 60

k

0.2

0.4

0.6

0.8

1.0

c
o
v
e
re

d
 s

e
q
u
e
n
c
e
s

minsupp=5%

A3

A4

A5

0 20 40 60

k

0

200

400

600

800

1000

o
v
e
rl
a
p

minsupp=5%

A3

A4

A5

0 20 40 60
k

3.5

4.0

4.5

5.0

m
e
a
n
 l
e
n
g
th

minsupp=5%

A3

A4

A5

Figure 3: Scenario AS, minsupp = 5%, output of greedy-kcover(k, MP). Top: A0-A2. Bottom: A3-A5.

number of sequential patterns characterizes strategies that maximize the set of acquired rights.

These patterns are informative because of their non-trivial length and small overlap.520

Notice that the values for the overlap are much lower than the theoretical bound of Corol-

lary 5.1. Nevertheless, is it possible to compute a k-cover with smaller overlaps? The only

parameter that can control the overlap is the minimum support threshold. Fig. 4 shows the same

plots as Fig. 3, but for minsup = 3K, namely 3% relative minimum support. On the negative

side, the plots of the covered sequences highlight that the number k needed to achieve the same525

fraction of coverage is now larger. E.g., to cover 80% of sequences, we need k = 75 patterns in

the case of A0-A2, and k = 100 for A3-A5. On the positive side, the overlap is more than halved,

which is proportionally more than the lowering of the minimum support threshold. Another pos-

itive aspects is that length of maximal sequential patterns is longer for lower support, hence they

provide more information on the attacker paths over the target system. In a less formal way, the530

trade-off between the number of sequential patterns and their utility can be explained as follows.

On the one hand, the lower the minimum support threshold, the smaller is the cover of a maxi-

mal sequential patterns, and then the larger is the number of them needed to cover a fraction of

sequences. On the other hand, the lower is the minimum support threshold, the longer are max-

imal sequential patterns and the smaller is the overlap between any pair of maximal sequential535

patterns, as stated by Lemma 5.3.

Let us consider now the scenario NS. Here the database of sequences is denser and this

causes a larger number of sequential patterns to be extracted for a given minimum support. Fig. 5

shows the same plots as for scenario AS. Attacker A1 is hard characterizable7 for a minimum

support as high as 5%. All other attackers (A3-A5 not shown in the figure) have a cover close to540

100% for k ≈ 100. The average length of sequential patterns in the cover is rather long (6 to 11).

This means that those patterns are highly informative about the paths of the attackers.

As a final note, we point out that the complexity of the strategies/paths an attacker can im-

plement increases with the number of sequential patterns to reach a certain fraction of covered

7There is only one sequential pattern in the output of the greedy algorithm. This is the reason for no A1 line in the

plots of overlap and mean length.

16

0 25 50 75 100 125

k

0.2

0.4

0.6

0.8

1.0

c
o
v
e
re

d
 s

e
q
u
e
n
c
e
s

minsupp=3%

A0

A1

A2

0 25 50 75 100 125

k

0

200

400

600

800

o
v
e
rl
a
p

minsupp=3%

A0

A1

A2

0 25 50 75 100 125
k

4

5

6

7

m
e
a
n
 l
e
n
g
th

minsupp=3%

A0

A1

A2

0 50 100 150 200

k

0.2

0.4

0.6

0.8

1.0

c
o
v
e
re

d
 s

e
q
u
e
n
c
e
s

minsupp=3%

A3

A4

A5

0 50 100 150 200

k

0

100

200

300

400

500

o
v
e
rl
a
p

minsupp=3%

A3

A4

A5

0 50 100 150 200
k

3.75

4.00

4.25

4.50

4.75

5.00

m
e
a
n
 l
e
n
g
th

minsupp=3%

A3

A4

A5

Figure 4: Scenario AS, minsupp = 3%, output of greedy-kcover(k, MP). Top: A0-A2. Bottom: A3-A5.

0 100 200 300 400

k

0.2

0.4

0.6

0.8

1.0

c
o
v
e
re

d
 s

e
q
u
e
n
c
e
s

minsupp=5%

A0

A1

A2

0 100 200 300 400

k

0

250

500

750

1000

o
v
e
rl
a
p

minsupp=5%

A0

A1

A2

0 100 200 300 400
k

8

10

12
m

e
a
n
 l
e
n
g
th

minsupp=5%

A0

A1

A2

Figure 5: Scenario NS, minsupp = 5%, output of greedy-kcover(k, MP).

sequences. Even the number of counter-measures to deploy to stop the attacker increases with545

the one of sequential patterns. At one extreme, a topology with just a single path produces a

single maximal sequential pattern. The left-hand side plots in Figs. 3-5 evaluate the “degree of

freedom” of an attacker in building its attack sequences against the target system. Hence, we can

conclude that the strategies of A3-A5 against the use case system are more complex than those

of A0-A2.550

6.4. Covering with minimal/maximal distinguishing sequential patterns

Let us consider now the computation of k-covers of distinguishing sequential patterns, where

for a given attacker D is the database of its 100K attack sequences, and D̂ is the database of the

500K attack sequences of the remaining attackers. As discussed in Section 4.3, when computing

a cover, we have two options as classes of sequential patterns: minimal distinguishing MD, and555

maximal distinguishing MDP. Fig. 6 shows the results of the former case in the AS scenario.

Minimal distinguishing patterns can be extracted very efficiently for very low support. Here, we

consider minsupp = 0.1%, namely 100 sequences. Even with such a low threshold, sequences

of A2 require a large k for complete coverage, and those of A3 can only be covered for less than

40%. Furthermore, the overlap is noticeable larger for A0, A4, and A5 and we cannot state any560

theoretical bound for distinguishing sequential patterns such as the one in Corollary 5.1.

17

0 200 400 600 800 1000

k

0.0

0.2

0.4

0.6

0.8

1.0

c
o
v
e
re

d
 s

e
q
u
e
n
c
e
s

minsupp=0.1%

A0

A1

A2

0 200 400 600 800 1000

k

0

10000

20000

30000

40000

o
v
e
rl
a
p

minsupp=0.1%

A0

A1

A2

0 200 400 600 800 1000
k

2

4

6

m
e
a
n
 l
e
n
g
th

minsupp=0.1%

A0

A1

A2

0 100 200 300

k

0.2

0.4

0.6

0.8

1.0

c
o
v
e
re

d
 s

e
q
u
e
n
c
e
s

minsupp=0.1%

A3

A4

A5

0 100 200 300

k

0

2000

4000

6000

8000

o
v
e
rl
a
p

minsupp=0.1%

A3

A4

A5

0 100 200 300
k

3

4

5

6

7

m
e
a
n
 l
e
n
g
th

minsupp=0.1%

A3

A4

A5

Figure 6: Scenario AS, minsupp = 0.1%, output of greedy-kcover(k, MD).

As anticipated, in our challenging use case, all the attackers share the attack surface, ne = 0,

and aim to control the same resource on node n f = 34. This strongly increase the complexity

of defining a signature. Anyway, even in this worst case, the proposed algorithm can discover

a signature for all the attackers but A3. The lack of a signature for an attacker points out to the565

system designer that some attacks could not be attributed. If attribution is critical for a system,

this may require the adoption of some architectural changes to simplify attribution. The proposed

approach enables the system designer to evaluate how alternative changes simplify attribution

before implementing them and to select the most effective one.

The cover of A0 consists of patterns that include at most four attacks, while more than half of570

the patterns include one attack only. Looking at the nodes that the attacks target, most attacks in

the sequential patterns of the cover occur at node 5 and/or 6 (see Fig. 1). Moreover, these attacks

are among the first ones in the sequences of A0. This is highly informative characterization of

A0 vs the other attackers, i.e., it is a signature of A0. The patterns in the cover for A1 and

A2 are longer, on average more than six attacks. This is not surprising because their selection575

strategies maximize the set of rights, which is monotone with the lookahead parameter. Hence,

their sequences can be differentiated only at a finer grain of detail. When contrasting A3 with

A4, the opposite case occurs because it is easier to cover A4 than A3. Both A3 and A4 select

attacks according to their success probability. This is strongly related with the attack properties

rather than with the goals of A1 and of A2. Furthermore, the lookahead of A3 is 1 while the580

one of A4 is 2. This implies that A4 can even select a sequence where the first attack has a

low success probability because this is compensated by the success probability of the second

one. This does not happen for A3. To explain the complexity of covering A3, we analyze the

minimal distinguishing patterns separately for A3 vs each of the other attackers. This analysis

shows that A3 is hardly distinguishable from A0 because in the target system the attacks to pass585

from one subnetwork to another have a larger success probability. Hence, the sequences of A3

and A0 are strongly correlated because their strategies select, for distinct reasons, similar attacks.

This unexpected property of the target system explains the complexity of distinguishing the two

attackers and we have discovered it as a side effect of the computation of the attacker signatures.

18

0 50 100 150

k

0.0

0.2

0.4

0.6

0.8

1.0

c
o
v
e
re

d
 s

e
q
u
e
n
c
e
s

minsupp=3%

A0

A1

A4

A5

0 50 100 150

k

0

200

400

600

800

o
v
e
rl
a
p

minsupp=3%

A0

A1

A4

A5

0 50 100 150
k

4

5

6

7

m
e
a
n
 l
e
n
g
th

minsupp=3%

A0

A1

A4

A5

Figure 7: Scenario AS, minsupp = 3%, output of greedy-kcover(k, MDP).

The property is also rather unexpected and interesting for system design. In fact, usually we590

partition a system into subnetworks also to increase the complexity for the attacker of moving

from one network to another one. This contradicts the large success of attacks to move across

network in the use case system and it can be discovered only through an analysis as the proposed

one.

Finally, we report in Fig. 7 the plots obtained by using maximal distinguishing sequential pat-595

terns. Since they are computed starting from maximal patterns and distinguishing patterns (see

Lemma 4.2), this requires a higher minimum support threshold of 3%. A2 and A3 are absent

because no cover is returned for that support level. Moreover, A1 and A5 are covered only up to

about 50% and 65% respectively. On the positive side, overlap of patterns for A0 is lower and

they are longer than minimal distinguishing patterns. This confirms that maximal (distinguish-600

ing) sequential patterns are an effective way of controlling those two characteristics of covers.

Unfortunately, computing maximal sequential patterns for very low support is infeasible, as there

is a large number of them. As a further example of this limitation, we can extract maximal distin-

guishing sequential patterns in the NS scenario with a support as low as 5% only for A0 (figure

not shown).605

7. Related work

Since the original works [20, 22], sequential patterns and their generalization have been

studied for more than 20 years in the data mining literature [6, 7, 8]. They have been applied in

distinct domains: market basket analysis [20], weblog analysis [23], malware classification [24],

bioinformatics [25], operational risk [26], etc. Numerous sequential, parallel, and distributed610

algorithms have been proposed for extracting sequential patterns from a database of sequences

[21, 27, 28], also for the extended format of Section 5.3. We used here the open source SPMF

Java library for maximal sequential patterns [18], and the jConSGapMiner Java implementation

for minimal distinguishing sequential patterns [10].

Sequential patterns extracted from a database of sequences are ranked on the basis of some615

interestingness measure, typically including support. Most of the approaches extract all patterns

that satisfy some condition on individual interestingness measures, e.g., unexpectedness [29]

or other user-defined constraints [30]. This approach raises the problem of selecting relevant

sequential patterns a-posteriori, and it is subject to the problem of pattern explosion. A few

exceptions [31, 32] consider extracting a small, non-redundant, and interesting set of sequential620

patterns, which, as a whole, satisfy a global interesting criterion – the Minimum Description

Length (MDL) principle. The MDL principle identifies a set of patterns that provide the best

19

lossless compression of the data. This is an alternative notion of “covering” from ours, since we

do not require that a cover is able to reconstruct the database of sequences.

Our adaption of the maximum coverage problem and its greedy algorithm [9] to rank se-625

quential patterns based on their residual coverage is a novel approach. A related one is the

computation of coverage patterns, a class of non-sequential itemsets X, such that the single

items in X cover a specified percentage of transactions and they overlap at most for a specified

threshold [33]. Such covering and non-overlapping requirements are, however, referred to single

itemsets/patterns, while we consider sets of (sequential) patterns.630

Regarding the comparison of sequential patterns across two or more databases of sequences,

in addition to minimal distinguishing patterns, we discuss here contrast sequential patterns and

sequential pattern classification. Contrast sequential patterns [34] are supported in a database of

sequences D with a minimum (contrast) ratio with respect to their support in another database

D̂. In our context, a ratio of ∞ would be required, since we look for sequential patterns with635

zero support in D̂. In this special case, contrast sequential patterns boil down to distinguishing

sequential patterns DP. In sequential pattern classification, sequences in a database are labelled

with a class value C = v. The sequential pattern classification problem consists of extracting rules

SP → C = v (classifier construction), for a sequential pattern SP, and of composing those rules to

predict the class value of a new sequence (classifier prediction). We refer to [35] for the state-of-640

the-art approach. In our case, the database of sequences consists of all 600K attack sequences,

and the class of a sequence is the attacker which originated the sequence, namely C = Ai, for

some i ∈ {0, . . . , 5}. The classifier construction would then produce rules that characterize each

attacker. In general, however, a rule SP → C = v does not have 100% confidence (i.e., all

sequences that include SP have class label C = v). With distinguishing sequential patterns, we645

instead achieve that. Moreover, two rules may overlap, in the sense that a sequence may include

both sequential patterns in the rule premises. The degree of overlap is not controllable by the

user. Our approach instead provides a theoretical bound and, in practice, a very low overlap.

A large number of Intrusion Detection Systems (IDS) have adopted data-driven approaches,

e.g., by learning classifiers [3], association rules [4], and closed sequential patterns [5] from650

event logs. All of them struggle with the lack of data to build accurate models. The adoption of

the Haruspex methodology can both overcome this limitation and apply the approach at system

design-time. Model-driven approaches have been also used in the context of IDS. The behavior

of attackers and defenders can be modeled as a game [36], with the purpose of predicting the

future actions of an attacker, optimizing counter-measures, and evaluating the security of the655

target system. These approaches, however, are orthogonal to our data-driven methodology.

Sequential patterns are not the only formalism that can be used to abstract sequential event

logs. A related approach is process mining, whose goal is “to use event data to extract process-

related information, e.g., to automatically discover a process model” [37]. Process models are

stated in a high-level formalism such as Petri Nets or BPMN. Process mining has been applied660

to detecting anomalous process executions in the context of security monitoring [38]. The ap-

proach first constructs a process model from normal event logs. Then, new transaction logs are

executed against the model for conformance checking. In our context, the discovery of a process

model from attack logs would result in a (high-level) description of the target system S itself. In

fact, the network topology and the node vulnerabilities constrain an attacker’s behavior as they665

determine, respectively, how the attacker can move and which attacks it can execute against a

node. However, the target system is a given input to our problem (see Section 2.1), not an out-

put to be discovered. As a consequence, process mining does not appear readily applicable to

the understanding of an attacker’s behavior and, furthermore, to contrast behaviors of different

20

attackers.670

Finally, this paper significantly extended the preliminary results appeared in [39] along sev-

eral directions. First, we characterize signatures of attackers through minimal distinguishing

sequential patterns. Second, the theoretical framework for reasoning over the cover of a database

of sequences has been enhanced, including now an explicit greedy covering algorithm and for-

mal results about its properties. Third, the experimental section has been largely extended, with675

an extensive study on two granularity of analyses (attack and node scenarios).

8. Conclusions

We have proposed a novel data-driven approach, based on sequential pattern mining, in ICT

risk assessment and management that may reduce risk at design-time. Starting from a sequence

database generated through Monte Carlo simulations, we formally showed that maximal sequen-680

tial patterns are preferable over frequent and closed sequential patterns for use in the maxi-

mal/greedy coverage of a database of sequences. A theoretical bound is stated on the overlap

between any two maximal sequential patterns. We also proposed minimal distinguishing se-

quential patterns and the intersection between maximal sequential patterns and distinguishing

sequential patterns as appropriate classes for covering a database of sequences without intersect-685

ing another database. This theoretical contributions hold in general. Our focus was primarily in

the context of sequences of attacks to an ICT system. A non-trivial use case has shown that a

greedy k-cover based on maximal (distinguishing) sequential patterns can provide an abstraction

to understand the behavior of an attacker in isolation and to contrast this behavior against other

attackers. This abstraction can help the design of counter-measures against specific attackers to690

reduce ICT risk for the target system at hand. Furthermore, it also simplifies the definition of a

strategy to integrate static and dynamic countermeasures to minimize risk.

We outline two lines of future work. First, we struggled with efficiency limitations in com-

puting maximal distinguishing sequential patterns starting from the sets of maximal and dis-

tinguishing ones. We adopted a post-processing approach starting from maximal and minimal695

distinguishing patterns (see Lemma 4.2) which suffers from the computation of a large number of

maximal sequential patterns for moderately low minimum support thresholds. We will consider

variants of the algorithms for the extraction of distinguishing sequential patterns [10] for directly

computing maximal distinguishing sequential patterns from two databases of sequences. Further-

more, a direct extraction algorithm could also integrate constraints on other domain-dependent700

measures of interests (see Section 4.2). For example, success distance is a key measure for

ranking covers or sequential patterns that allow for the early detection of attacks.

The second line of future work generalizes the proposed approach to multi-dimensional se-

quences. In our use case, we dealt with two scenarios of analysis in isolation considering, respec-

tively, sequences of elementary attacks and sequences of attacked nodes. A multi-dimensional705

sequence can contain items at different levels of a hierarchy, e.g., in our case elementary at-

tacks and attacked nodes. Multi-dimensional sequential patterns [40], or the even more general

multi-dimensional relational sequential patterns [41], extend sequential patterns with items over

a hierarchy. Their usage would enable mixing events of both types in the same solution, de-

pending on how well they cover sequences. In other words, the choice of the abstraction level to710

consider has not to be made a-priori, but the right level will result from the covering algorithm.

21

References

[1] Joint Task Force Transformation Initiative Interagency Working Group, SP 800-30 revision 1: Guide for conducting

risk assessments, National Institute of Standards & Technology, 2012.

[2] F. Baiardi, C. Telmon, D. Sgandurra, Haruspex: Simulation-driven risk analysis for complex systems, ISACA715

Journal 3 (2012) 46–51.

[3] W. Lee, S. J. Stolfo, K. W. Mok, Adaptive intrusion detection: A data mining approach, Artif. Intell. Rev. 14 (6)

(2000) 533–567.

[4] R. Katipally, W. Gasior, X. Cui, L. Yang, Multistage attack detection system for network administrators using data

mining, in: Proc. of the Cyber Security and Information Intelligence Research Workshop (CSIIRW 2010), no. 51,720

ACM, 2010.

[5] H. Brahmi, S. B. Yahia, Discovering multi-stage attacks using closed multi-dimensional sequential pattern mining,

in: Proc. of Int. Conf. on Database and Expert Systems Applications (DEXA 2013), Vol. 8056 of LNCS, Springer,

2013, pp. 450–457.

[6] P. Fournier-Viger, J. C.-W. Lin, R. U. Kiran, Y. S. Koh, R. Thomas, A survey of sequential pattern mining, Data725

Science and Pattern Recognition 1 (2017) 54–77.

[7] N. R. Mabroukeh, C. I. Ezeife, A taxonomy of sequential pattern mining algorithms, ACM Comput. Surv. 43 (1)

(2010) 3:1–3:41.

[8] C. Mooney, J. F. Roddick, Sequential pattern mining - approaches and algorithms, ACM Comput. Surv. 45 (2)

(2013) 19:1–19:39.730

[9] D. S. Hochbaum, Approximating covering and packing problems: Set cover, vertex cover, independent set, and

related problems, in: D. S. Hochbaum (Ed.), Approximation Algorithms for NP-hard Problems, PWS Publishing

Co., 1997, pp. 94–143.

[10] X. Ji, J. Bailey, G. Dong, Mining minimal distinguishing subsequence patterns with gap constraints, Knowl. Inf.

Syst. 11 (3) (2007) 259–286.735

[11] Z. Liang, R. Sekar, Fast and automated generation of attack signatures: a basis for building self-protecting servers,

in: ACM Conference on Computer and Communications Security, ACM, 2005, pp. 213–222.

[12] F. Baiardi, F. Corò, F. Tonelli, D. Sgandurra, A scenario method to automatically assess ICT risk, in: Euromicro

Int. Conf. on Parallel, Distributed, and Network-Based Processing (PDP 2014), IEEE Computer Society, 2014, pp.

544–551.740

[13] NIST, National Vulnerability Database, https://nvd.nist.gov/.

[14] MITRE, Common Weakness Enumeration, https://cwe.mitre.org/.

[15] M. Schiffman, Common Vulnerability Scoring System, https://www.first.org/cvss.

[16] F. Baiardi, F. Tonelli, A. Bertolini, Cyvar: Extending Var-At-Risk to ICT, in: Proc. of the Int. Workshop on Risk

Assessment and Risk-driven Testing (RISK 2015), Vol. 9488 of LNCS, Springer, 2015, pp. 49–62.745

[17] F. Baiardi, F. Tonelli, A. D. R. Di Biase, Assessing and managing risk by simulating attack chains, in: PDP, IEEE

Computer Society, 2016, pp. 581–584.

[18] P. Fournier-Viger, A. Gomariz, T. Gueniche, A. Soltani, C. Wu., V. S. Tseng, SPMF: a Java open-source pattern

mining library, Journal of Machine Learning Research 15 (2014) 3389–3393.

[19] F. Baiardi, J. Lipilini, F. Tonelli, Using s-rules to fire dynamic countermeasures, in: 2017 25th Euromicro Interna-750

tional Conference on Parallel, Distributed and Network-based Processing (PDP), 2017, pp. 371–375.

[20] R. Srikant, R. Agrawal, Mining sequential patterns: Generalizations and performance improvements, in: EDBT,

Vol. 1057 of Lecture Notes in Computer Science, Springer, 1996, pp. 3–17.

[21] F. Fumarola, P. F. Lanotte, M. Ceci, D. Malerba, CloFAST: closed sequential pattern mining using sparse and

vertical id-lists, Knowl. Inf. Syst. 48 (2) (2016) 429–463.755

[22] R. Agrawal, R. Srikant, Mining sequential patterns, in: ICDE, IEEE Computer Society, 1995, pp. 3–14.

[23] J. Chen, T. Cook, Mining contiguous sequential patterns from web logs, in: WWW, ACM, 2007, pp. 1177–1178.

[24] M. Norouzi, A. Souri, M. S. SamadZamini, A data mining classification approach for behavioral malware detection,

Journal Comp. Netw. and Communic. 2016 (2016) 8069672:1–8069672:9.

[25] J. Wang, J. Han, C. Li, Frequent closed sequence mining without candidate maintenance, IEEE Trans. Knowl. Data760

Eng. 19 (8) (2007) 1042–1056.

[26] V. Grossi, A. Romei, S. Ruggieri, A case study in sequential pattern mining for it-operational risk, in: ECML/PKDD

(1), Vol. 5211 of Lecture Notes in Computer Science, Springer, 2008, pp. 424–439.

[27] C. Luo, S. M. Chung, Parallel mining of maximal sequential patterns using multiple samples, The Journal of

Supercomputing 59 (2) (2012) 852–881.765

[28] P. Qin, L. Duan, T. Zhang, P. Wang, A parallel algorithm for mining density-aware distinguishing sequential pat-

terns with Spark, in: CBD, IEEE Computer Society, 2016, pp. 144–149.

[29] F. Petitjean, T. Li, N. Tatti, G. I. Webb, Skopus: Mining top-k sequential patterns under leverage, Data Min. Knowl.

Discov. 30 (5) (2016) 1086–1111.

22

[30] V. Grossi, A. Romei, F. Turini, Survey on using constraints in data mining, Data Min. Knowl. Discov. 31 (2) (2017)770

424–464.

[31] M. van Leeuwen, J. Vreeken, Mining and using sets of patterns through compression, in: Frequent Pattern Mining,

Springer, 2014, pp. 165–198.

[32] H. T. Lam, F. Mörchen, D. Fradkin, T. Calders, Mining compressing sequential patterns, Statistical Analysis and

Data Mining 7 (1) (2014) 34–52.775

[33] P. G. Srinivas, P. K. Reddy, A. V. Trinath, B. Sripada, R. U. Kiran, Mining coverage patterns from transactional

databases, J. Intell. Inf. Syst. 45 (3) (2015) 423–439.

[34] Z. Zheng, W. Wei, C. Liu, W. Cao, L. Cao, M. Bhatia, An effective contrast sequential pattern mining approach to

taxpayer behavior analysis, World Wide Web 19 (4) (2016) 633–651.

[35] C. Zhou, B. Cule, B. Goethals, Pattern based sequence classification, IEEE Trans. Knowl. Data Eng. 28 (5) (2016)780

1285–1298.

[36] X. Liang, Y. Xiao, Game theory for network security, IEEE Communications Surveys and Tutorials 15 (1) (2013)

472–486.

[37] W. M. van der Aalst, Process Mining, Springer, 2011.

[38] W. M. P. van der Aalst, A. K. A. de Medeiros, Process mining and security: Detecting anomalous process executions785

and checking process conformance, Electr. Notes Theor. Comput. Sci. 121 (2005) 3–21.

[39] M. D’Andreagiovanni, F. Baiardi, J. Lipilini, S. Ruggieri, F. Tonelli, Sequential pattern mining for ICT risk assess-

ment and prevention, in: SEFM Workshops, Vol. 10729 of Lecture Notes in Computer Science, Springer, 2017, pp.

25–39.

[40] H. Pinto, J. Han, J. Pei, K. Wang, Q. Chen, U. Dayal, Multi-dimensional sequential pattern mining, in: CIKM,790

ACM, 2001, pp. 81–88.

[41] F. Esposito, N. D. Mauro, T. M. A. Basile, S. Ferilli, Multi-dimensional relational sequence mining, Fundam.

Inform. 89 (1) (2008) 23–43.

23

