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We present the implementation of excited state Born-Oppenheimer molecular dynamics (BOMD)
within a polarizable QM/MM approach based on a time-dependent Density Functional Theory
(TDDFT) formulation and the AMOEBA force field. The implementation relies on an interface
between Tinker and Gaussian software and it uses an algorithm for the calculation of QM/MM en-
ergy and forces which scales linearly with the number of MM atoms. The resulting code can perform
TDDFT/AMOEBA BOMD simulations on real-life systems on standard computational resources.
As a test case, the method is applied to the study of the mechanism of locally-excited to charge-
transfer conversion in dimethylaminobenzonitrile in a polar solvent. Our simulations confirm that
such a conversion is governed by the twisting of the dimethylamino group which is accompanied by
an important reorentation of the solvent molecules.

1 Introduction
Excited state molecular dynamics is a powerful tool to study pho-
toinduced processes, since it can be used to directly follow the
system along its reaction path upon the initial excitation. For adi-
abatic processes, such simulations can be performed by comput-
ing, with an appropriate level of theory, the excited state energy
and its derivatives with respect to the nuclear coordinates. The
resulting forces can then be used to integrate the classical equa-
tions of motion, and the analysis of the trajectories can provide
important insights on processes such as photochemical reactions,
photoisomerizations, excited state intramolecular proton trans-
fers and charge transfers.1,2 The calculation of excitation ener-
gies is, however, an expensive task from a computational point of
view. Assembling the gradients further aggravates the computa-
tional burden, which can easily become a formidable obstacle to
performing molecular dynamics (MD) simulations. For these rea-
sons, when dealing with large and complex systems, a fully quan-
tum mechanical (QM) description is no longer feasible. This prob-
lem can be mitigated by employing a focused model, in which the
region of interest is described with the QM method of choice,
whereas the rest of the system is described with a much cheaper
classical method, such as molecular mechanics (MM).3–9

Hybrid QM/MM schemes have been extended to molecular dy-
namics simulations, and successfully applied to many different

a Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi
13, 56124 Pisa, Italy
∗ E-mail: filippo.lipparini@unipi.it
† Electronic Supplementary Information (ESI) available: forces in a link-
atom scheme; density analysis of the simulations; trajectory data. See DOI:
10.1039/cXCP00000x/

systems and processes, both in the ground and in the excited
states.10,11 In standard QM/MM MD simulations, the coupling
between the two subsystems is represented in terms of an elec-
trostatic interactions between the set of MM point charges and
the QM charge density which can thus be polarized. However,
the classical subsystem is not able to polarize back in response
to changes in the QM charge density. This limitation can become
serious when photoinduced processes are investigated. A possi-
ble solution to this problem is the use of a polarizable MM de-
scription. There are many schemes available that implement MM
polarization in different ways and that have been coupled to a
QM description (see some recent reviews10,12–14 and reference
therein). Focusing on their extension to MD, a popular choice
relies on induced point dipoles3,12,15–24 (IPD), where polariza-
tion is achieved by endowing each classical atom with a polariz-
ability.24–27 Among IPD formulations, a very popular one is the
AMOEBA force field,28 for which QM/MM implementations have
been developed.29–31

Including polarization effects in the classical description comes
at a cost: polarizable QM/MM schemes are characterized by a
higher computational cost than their non-polarizable counter-
parts. While this is already an issue in “static” QM/MM calcu-
lations, it can become a real barrier when the aim is to perform
MD simulations. It is therefore of fundamental importance to
achieve an implementation which is not only as highly optimized
as possible, but also that presents a linear scaling in computa-
tional cost and memory requirements with respect to the number
of MM atoms.32,33

In this contribution, we present the first implementation of
an excited state Born-Oppenheimer molecular dynamics (BOMD)
that couples TDDFT and the AMOEBA polarizable force-field.
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This is achieved through an interplay of Tinker34,35 and Gaus-
sian36 softwares. This work builds up on the first implementa-
tion of excited state gradients with a polarizable MM embedding
presented by one of the present authors37 but it goes beyond it
in two ways. First of all, it generalizes the gradients to AMOEBA
force field and, more importantly, it is characterized by a com-
putational cost which is linear in the size of the MM subsystem,
thus allowing the method to be applied to large systems with a
cost that is only slightly larger than that of the sole QM part.
The Gaussian–Tinker interface, originally developed by Loco et
al.24,26, has been improved in efficiency and generalized to allow
for excited state BOMD simulations.

This paper is organized as it follows. In section 2.1 we present
the main theoretical aspects of the coupling between a TDDFT
description and the AMOEBA force field going from the energy to
the gradients. In section 2.2 we describe the modifications intro-
duced in Tinker and Gaussian codes to achieve an efficient BOMD
implementation. Finally, in section 3 we present an application
to the characterization of the dimethylaminobenzonitrile excited
state in acetonitrile.

2 Methods & implementation

2.1 Energy and gradients within a TDDFT/AMOEBA formu-
lation

The total energy of a QM system embedded in an AMOEBA en-
vironment can be written as the sum of the purely QM energy,
the bonded contributions from the MM part, and finally the Van
der Waals and electrostatic/polarization contributions. These
last three components account both for interactions within the
AMOEBA environment and between AMOEBA and the QM part.

E QM/AMOEBA = E QM +E ele +E VdW +E Bond (1)

Of all the terms we focus on the electrostatic/polarization compo-
nent, since it plays a central role in both our embedding scheme
and in our linear scaling implementation. In fact all the other
terms are calculated within a purely classical framework using
the potentials originally developed for the AMOEBA force field
and the standard cut-off procedure implemented in Tinker.34,35

The electrostatic interactions are described through an accu-
rate multipolar expansion whereas polarization effects are intro-
duced through induced point dipoles. Each MM atom i bears a set
of fixed partial charge qi, point dipole µµµs

i and point quadrupole
ΘΘΘi, as well as an isotropic polarizability αi.28 A peculiarity of
AMOEBA is that the polarization energy is not variational in the
induced dipoles. In fact, the energy is computed as the interac-
tion of the induced dipoles with a MM electric field EEE p which is
different from the field EEEd responsible for inducing the dipoles
themselves. The two fields are computed according to two sets of
exclusion rules for the neighboring atoms. The non variational
nature of the energy poses a problem when deriving coupled
QM/AMOEBA equations and needs to be considered carefully.
This problem has already been addressed in other works, where
a variational energy functional for the AMOEBA polarization has
been introduced,31,38 so we present directly the variational for-
mulation of the energy, which requires two sets of dipoles induced

by the two different MM fields.

Tµµµd = Ed +EQM

Tµµµ p = Ep +EQM (2)

Here, TTT is the interaction matrix between the dipoles, EEE p and EEEd

are the MM field computed according to the two different exclu-
sion rules and EEEQM is the field from the QM density. Each vector
is the collection of the property at every MM site. The total energy
can be written as the sum of the QM energy,

E ele = E MM +qqq†VVV QM−µµµ
†
s EEEQM +ΘΘΘ

†GGGQM

+
1
2

µµµ
†
dTµµµ p−

1
2
(µµµ†

pppEd +µµµ
†
dEp)−

1
2
(µµµ ppp +µµµd)

†EQM. (3)

In eq. 3, the first term represents the electrostatic interaction of
the fixed multipoles with themselves. The three following terms
are the interaction of the fixed multipoles with the QM density,
where VVV , EEE and GGG are respectively electric potential, field and
field gradient. Finally, the last three terms are the polarization
energy, which includes the self interaction of the dipoles, i.e., the
work needed to induce them, and their interaction with the fixed
multipoles and QM density.

When a self-consistent field (SCF) scheme is used in combi-
nation with AMOEBA, the SCF and polarization equations 2 are
solved self-consistently. At each iteration of the SCF method, we
compute the two sets of induced dipoles (eq. 2), we assemble the
embedding energy (eq. 3) and form the AMOEBA contribution to
the SCF matrix (derivative of eq. 3 with respect to the density):31

∂E ele

∂Pµν

= Fele
µν = qqq†VVV µν −µµµ

†
s EEEµν +ΘΘΘ

†GGGµν −
1
2
(µµµ p +µµµd)

†EEEµν (4)

where Pµν is the µ,ν component of the SCF density matrix (here
expressed on a atomic basis set). The coupling of the SCF problem
to the equations for the induced dipoles (eq. 2) accounts for the
mutual polarization between the QM and MM subsystems.

Once the SCF density and the induced dipoles are converged,
it is possible to assemble the contributions to ground state gradi-
ents as the derivatives of eq. 3 with respect to the position of the
atoms. Here it is convenient to split the case of QM atoms (∂R)
from that of MM atoms (∂r), namely:24,38

∂RE ele = qqq†
∂RVVV QM−µµµ

†
s ∂REEEQM +ΘΘΘ

†
∂RGGGQM− 1

2
(µµµ p +µµµd)

†
∂REEEQM

∂rE
ele = ∂rE

MM−qqq†EEEQM +µµµ
†
s GGGQM−ΘΘΘ

†HHHQM +FFFrot

+
1
2

µµµ
†
d(∂rTTT )µµµ p−

1
2

(
µµµ

†
p∂rEEEd +µµµ

†
d∂rEEE p

)
+

1
2
(µµµ p +µµµd)

†GGGQM

(5)

where HHHQM is the electric field Hessian and FFFrot is a term stem-
ming from the matrices used to rotate the static multipoles from
a reference frame to the lab frame.39

Excited state are here computed within a linear response for-
mulation. Assuming now that the selected SCF method is DFT,
excitation energies and transition densities are the eigenvalues
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and eigenvectors of the Casida’s matrix.40 These are usually com-
puted with an iterative scheme, such as the Davidson diagonal-
ization.41 Since the polarization component of the environment
energy, E ele is quadratic in the density (see eq. 3), it contributes
to the linear response matrices with an explicit term:31

∂ 2E ele

Pµν Pκλ

= V ele
µνκλ

=−EEE†
µν TTT−1EEEκλ . (6)

From a physical point of view, this term models the electronic
response of the environment to the excitation process and can be
considered analogous to a non-equilibrium solvation contribution
in continuum models42, where only the electronic response of the
solvent is considered to be instantaneous. At each iteration of the
solver, given the transition density PPPtr, it is necessary to assemble
its contraction with the term reported in eq. 6.

Gradients of the TDDFT energy, for a given electronic state, can
be computed as derivatives of a time-dependent SCF Lagrangian
Li, as proposed by Furche,43 and later generalized to polarizable
models.37,44,45 Building the TD Lagrangian requires the ZZZ and WWW
Lagrange multipliers which are obtained by solving the Z-vector
equations.46,47 The reader is referred to the work of Menger et
al.37 for all the details of the extension of this method to a polar-
izable embedding formulated in terms of point dipoles. Here, we
only report the contributions due to AMOEBA to the Lagrangian
derivatives:

∂L ele = ∑
µν

P∆
µν ∂Fµν + ∑

µνκλ

Ptr
µν Ptr

κλ
∂V ele

µνκλ
. (7)

The first term is the contraction of the relaxed difference den-
sity PPP∆ with the gradient of eq. 4, the second is the double con-
traction of the transition density PPPtr with the gradient of eq. 6.
The relaxed difference density depends on the eigenvectors of
the Casida’s matrix as well as on the ZZZ vector.43 Both the transi-
tion density and the relaxed difference density are specific of the
chosen electronic state. An important aspect to note is that the
first contraction is analogous to the one performed to assemble
the gradients of the ground state, so it is convenient to assemble
PPPTot = PPPSCF +PPP∆ and compute both the ground state and excited
state gradient contributions at the same time. For the second
term, we separate the QM case from the MM one

∂RV ele =−2µµµ
†
tr∂REEEtr

∂rV
ele = 2GGG†

trµµµ tr +µµµ
†
tr(∂rTTT )µµµ tr (8)

with V ele = ∑µνκλ Ptr
µν Ptr

κλ
V ele

µνκλ
and TTT µµµ tr = EEEtr. Here, there is a

single set of induced dipoles since they do not depend upon the
MM fields EEEd and EEE p. The first expression contains the contrac-
tion of the induced dipoles with the derivative of the transition
field, whereas the second expression contains the contraction of
the induced dipoles with the transition field gradient and a term
containing the derivative of the matrix.

To achieve an efficient implementation, it is necessary to keep
the computational cost linear in the number of MM atoms, as this
can easily become very large. To do so, the polarization equa-
tions have to be solved using iterative schemes, and the electro-

static properties from the MM atoms at the MM atoms have to be
computed using efficient linear scaling algorithms.

The polarization equations have to be solved at each step of the
SCF procedure, to find µµµd and µµµ p, and at each step of the David-
son method, due to the contraction of eq. 6 with the density is
−EEE†

κλ
µµµ tr. For this reason it is crucial to use an efficient method.

The most direct approach would be computing the inverse po-
larization matrix TTT−1 matrix and storing it in memory, however
in this case the computational cost would scale as O(N3

MM) and
the memory requirements as O(N2

MM), therefore the matrix inver-
sion is a viable option only for small systems. A second option is
to use an iterative solver that requires computing matrix–vector
products TTT µµµ on the fly. This is the strategy that we pursue. In par-
ticular, we use a preconditioned conjugate gradient solver, using
the preconditioner developed by Wang and Skeel.48 For iterative
solvers, the computational cost depends on the method used to
compute the matrix–vector product. Note that the effect of the
off-diagonal part of TTT applied to µµµ results in computing the field
of the dipoles at every other MM site, so in a straightforward im-
plementation it scales as O(N2

MM). We overcome this bottleneck
by computing the matrix-vector product using the fast multipole
method (FMM)49 as described in refs. 32 and 33.

The other computational bottlenecks from the environment
contributions arise from the MM electrostatic at the MM atoms
(which are O(N2

MM)). Terms of this kind are the ones contain-
ing the derivative of the matrix ∂TTT in equations 5 and 7 and
the ones appearing in the computation of the fixed multipole en-
ergy E MM (eq. 3) and its gradient ∂rE MM (eq. 5). However, the
same FMM machinery applied to the TTT µµµ product can be applied
to these terms, as explained in ref 33.

2.2 TDDFT/AMOEBA Dynamics within a Gaussian-Tinker In-
terface

The implementation of the TDDFT/AMOEBA BOMD is here
achieved interfacing a locally modified version of Gaussian 16,36

and Tinker.34,35

Tinker drives the dynamics by performing the integration of
the equations of motion, for which it requires the energy of the
system and the forces. Those are assembled in different mod-
ules, each dealing with specific types of interactions; we use the
original Tinker modules for the bonded and dispersion–repulsion
interactions, whereas for the electrostatics and for the QM subsys-
tem we use a custom module. This module sets up the input files
for the QM calculation, calls Gaussian and then reads back the
forces and properties. With respect to the previous implementa-
tion of the Tinker-Gaussian interface developed by some of us for
ground state BOMD,24,26 now the communication between the
two softwares is performed via binary files to achieve better per-
formance. A schematic representation of the interface is reported
in fig. 1.

A user-provided list of QM atoms indicates which interactions
(bonded, dispersion–repulsion, electrostatics) are to be computed
by Tinker and which region is handled by Gaussian.

As it regards bonded interactions, two different cases are pos-
sible. If there are not covalent bonds between the QM and MM
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Fig. 1 Scheme of the Tinker–Gaussian implementation of the excited state BOMD. The dashed arrows represent communication between the two
programs performed through binary files.

subsystems, QM atoms are simply excluded and only interactions
between MM atoms are considered, which is easily achieved by
just skipping atoms in the QM list. If bonds are present between
QM and MM atoms, a pseudobond scheme, as implemented in
previous works,26,50 can be applied or, alternatively, a newly im-
plemented link-atom scheme can be used.7 Here we describe the
implementation of the link-atom scheme only.

Within this framework, specific bonded terms have to be in-
cluded at the interface between the QM and MM parts. Using
the connectivity for guidance, we exclude all the interactions that
involve bonds between two or more QM atoms, as these are al-
ready included in the QM energy. This is easily achieved by count-
ing, for each bonded energy term, how many QM atoms are in-
volved. More specifically, bonded terms are included if between
MM atoms (no QM atom in the pair) or between a MM atom and
the linked QM atom (one QM atom in the pair) and excluded oth-
erwise (two QM atoms in the pair). Following the same logic, we
include bendings if no more than one QM atom is involved, that
is, if the interaction involves either three MM atoms or two MM
atoms and the linked QM atom, and exclude them otherwise. As
for torsional energy terms, that are defined by four atoms, we in-
clude them if no more than two of such atoms belong to the QM
region, i.e., only if the torsion is around a MM bond or the bond
connecting the QM and MM regions. A schematic representation
of the included bonded terms is provided in fig. 2.

The AMOEBA force field includes other interactions such as
out-of-plane bending and improper torsions, that are used to im-
prove the description of partially double bonds and other complex
chemical topologies. We include out-of-plane bendings only if the
linked QM atom is just used as a reference to define the inter-
action and not if it is the atom undergoing pyramidalization, as
we believe that if such an interaction is important, it should be

QM

MM

pyram
dihed 1

bond

angle dihed 2

Fig. 2 Schematic representation of the bonded interactions at the QM–
MM interface. All the possible cases are drawn: pyramidalization with
a QM atom used as reference point, angle, bond, and two dihedrals
comprising one and two QM atoms.

included in the QM subsystem. Analogously, no other advanced
interactions are allowed at the boundary in our implementation.

Moving to dispersion–repulsion interactions, as they are to be
computed not only between MM atoms, but also between QM and
MM atoms, we exclude this type of interaction only when the two
involved atoms belong to the QM subsystem; in this case in fact
the interactions are already accounted for at the QM level. Fi-
nally, no electrostatic nor polarization interactions are computed
by Tinker.

The electrostatic and polarization energy and forces are com-
puted in the interface module, that handles the communication
between the Tinker and Gaussian codes and runs the QM cal-
culation. First, it creates the required input files for the Gaus-
sian calculation, launches the calculations and finally reads the
final energy which includes the QM component and all the elec-
trostatic and polarization contributions, and the corresponding
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forces (and other properties of the QM subsystem if requested).
When a TDDFT dynamics is performed, the energy will corre-
spond to the sum of the SCF energy and the excitation energy to
the selected state.

As already reported, for QM and MM regions connected
through covalent bonds, we implemented the link atom scheme
in a way that it is entirely handled by Tinker. The interface mod-
ule has to add a capping hydrogen for each broken QM/MM bond,
such that the QM part is saturated. When the forces are read from
Gaussian, the ones acting on these additional hydrogens have to
be projected to the real atoms of the system.7 Let rrrQM and RRRMM

be the positions of the two atoms that define the bond that needs
to be cut. The capping hydrogen atom is placed at

rrrH = rrrQM + kd̂ddMM–QM, (9)

where d̂ddMM–QM is a short notation for RRRMM−rrrQM
|RRRMM−rrrQM| and the parame-

ter k is a constant set a priori, which defines the distance between
the capping hydrogen and the QM atom. The QM software com-
putes a force on the capping hydrogen, which can be projected on
the two physical atoms by simply applying a chain rule. The cor-
responding equations can be found in section 1 of the ESI. Some
MM interactions at the interface between the QM and MM parts
have to be included as well: these forces are accounted for in
the bonded modules by implementing the rules described previ-
ously. To avoid artificial effects, the QM–MM electrostatic inter-
actions are removed for all the MM atoms that are within 2 or 3
bonds (as specified by the user) from the QM atom(s) connected
to the added hydrogen(s). The total removed charge is then redis-
tributed on the neighboring heavy MM atoms, in order to recover
neutrality.

We conclude this section by noting that the interface here de-
veloped to perform QM/MM molecular dynamics also allows one
to perform geometry optimizations, using Tinker as the main
driver.

3 A test case: the LE-ICT conversion of DMABN
in acetonitrile solution

Dimethylaminobenzonitrile (DMABN) is a well-known molecule
that exhibits a dual fluorescence phenomenon which strongly de-
pends on the solvent. More in details, the initial excitation pop-
ulates the S2 state but within a few tens of femtoseconds the
system undergoes internal conversion into to the lowest excited
state (S1). Soon after, DMABN shows a (normal) fluorescence
band which, in solvent of sufficiently high polarity, rapidly (on a
scale of ps) decreases in intensity while a red-shifted second band
starts to appear. The intensity ratio of the two bands finally sta-
bilizes to a value which strongly depends on solvent polarity. It
is now widely accepted that the normal fluorescence arises from
a locally excited state (LE), whereas the red-shifted fluorescence
arises from an intramolecular charge-transfer state (ICT).1

The LE–ICT conversion has been largely studied by time re-
solved spectroscopy and computational approaches.51–62 How-
ever, the main geometrical changes involved in such a conversion
have not been fully clarified and different mechanisms have been
proposed (for a detailed review see the recent article by Kochman

pyram

dihed

Fig. 3 DMABN structure showing the two coordinates mostly coupled
with the excitation energy. Left: dihedral between the dimethylamino
moiety and the phenyl ring. Right: pyramidalization at the aromatic
carbon.

and Durbeej62).
The goal here is the characterization of the geometrical and

electronic changes involved in the adiabatic conversion between
LE and ICT. As such, we limit the dynamical description to the
S1 state and completely neglect the ultrafast S2–S1 internal con-
version. On the other hand, in the present analysis, the effect of
a polar solvent (acetonitrile ACN) is taken into explicit account
through the AMOEBA force field.

3.1 Computational details
Initial conditions for the excited state BOMD simulations were
generated by a two step process.

First, we sampled the degrees of freedom of the solvent using
a classical molecular dynamics trajectory using the GPU imple-
mentation of the Amber 18 package.63 The initial configuration
was built by placing DMABN at its optimized structure in a box
made of 5524 acetonitrile (ACN) molecules, using the tleap mod-
ule of the Amber suite. We used the generalized Amber force
field (GAFF)64 for both DMABN and ACN. The system was equi-
librated by 50 ps of NVT dynamics and 1000 ps of NPT dynamics;
the equilibrated box side measured 76 Å. Then, the equilibrated
system was used to perform 60 ns of classical MD in the NPT en-
semble with a temperature of 300 K. The temperature was con-
trolled using Berendsen thermostat,65 and the pressure was con-
trolled using Monte Carlo barostat.66 In all the steps the DMABN
structure was kept frozen using harmonic restraints and we used
a time step of 2 fs in combination with the SHAKE algorithm,67

we used a cut-off of 12 Å for non bonded interactions, and the
particle mesh Ewald method for long range electrostatic.68

In the second step, we extracted 16 frames from the last 10 ns
of the MM trajectory to be used as a starting point for the
DFT/AMOEBA BOMD simulations. For each frame, we kept the
DMABN molecule and all the solvent molecules within 25 Å to
define the initial configurations. A further equilibration step was
performed for all the extracted configurations by performing 3 ps
of DFT/AMOEBA NVT dynamics at 300 K, where the CAM-B3LYP
functional with the 6-31+G(d) basis set was used to describe
the DMABN molecule. Classical parameters for acetonitrile and
dispersion–repulsion parameters for DMABN were taken from the
AMOEBA09 force field included in the Tinker package.69–71

After such preliminary equilibration, we performed 2 ps of
NVE adiabatic dynamics in the first excited state using the ve-
locities and positions of the GS dynamics as starting conditions.
The DMABN molecule was described using TDDFT at the same
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Fig. 4 Properties along an excited state trajectory. The jump in the
state character is highlighted with a vertical dashed line.

level of theory used for the ground state equilibration. For the
QM/AMOEBA simulations we employed a time step of 0.5 fs and
we did not enforce boundary conditions, however we included
a large amount of MM molecules to preserve the density of the
inner region, where the DMABN molecule resides. Considered
the short length of the trajectories, the strategy was successful:
further proof is given in section 2 of the ESI. We remark, how-
ever, that longer simulations and/or simulations including fewer
solvent molecules require boundary conditions, such as a frozen
layer of solvent molecules or a restraining potential.72,73 Analysis
of the dynamics was performed using the python bindings to the
CPPTRAJ tool.74,75

3.2 Results and discussion

Since the time evolution of the 16 trajectories is similar, we an-
alyze here a single trajectory: the others are reported in section
3 of the ESI. As shown in the Fig. 4, at around 1.1 ps the ex-
citation energy and the transition dipole moment suddenly drop
whereas the dimethylamino–phenyl (DMA–Phe) dihedral angle
changes from an almost planar to a twisted conformation. The
same geometrical change is consistently observed in each of the
16 trajectory suggesting a twisted ICT state.

To have a more detailed analysis of the geometrical distor-
tions involved in the LE–ICT conversion, we searched for cor-
relations between some relevant coordinates and the excitation
energy. Two coordinates turned out to be relevant: the expected
DMA–Phe torsion and the pyramidalization at the aromatic car-
bon connected to the DMA group (see Fig. 3). The latter coor-
dinate was already suggested by previous CC2 calculations as an
important one for the evolution of the excited state.54 The in-
vestigated correlations are reported in figure 5 as scatterd plots.
The correlation plots between the excitation energy and the two
selected coordinates shows that the main drop (∼1.5 eV) comes
from the DMA–Phe torsion, but the pyramidalization contributes
with an additional red-shift of up to 0.5 eV. Moreover, from the
correlation between the two coordinates we can see that the pyra-
midalization is unlocked only in the twisted conformation.

The second aspect we addressed is how the changes in the elec-
tronic density and geometry of the DMABN excited state affect the
solvent. To do this we first analyzed the electrostatic properties of
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Fig. 5 Top: 2d histogram of the two investigated coordinates; bottom
left: 2d histogram of the excitation energy and the torsion angle, bottom
right: 2d histogram of the excitation energy and the pyramidalization
angle.

DMABN and then we investigated the solvent distribution along
the dynamics.

A visualization of the changes in DMABN electronic density was
obtained by performing three single point calculations, one for
the ground state, and two for the S1 state at two geometries ex-
tracted from the S1 trajectories. The latter are defined by taking
the subsets of the 16 trajectories before and after the drop in ex-
citation energy, respectively, thus splitting them into a S1–LE and
a S1–ICT trajectories. The geometries where then extracted from
the corresponding trajectories. The electrostatic potential for the
three cases is shown in figure 6. As expected, from the plots it
clearly appears that the dipolar character of DMABN becomes
more and more pronounced going from the ground to the LE
state, and finally to the ICT state. The latter shows a clearly posi-
tive potential on the DMA residue confirming the charge-transfer
character. The magnitude of the dipole moment for the ground
and two excited state structures are 8.7, 13.2 and 19.6 Debye,
respectively.

In order to gain a detailed insight into the configuration of the
ACN molecules in the first solvation shells around DMABN and
its change along the S1 evolution, we computed both radial dis-
tribution functions (RDF) and volume distributions for DMABN
in the ground, S1–LE and S1–ICT states. For the ground state
analysis we used the last part of the GS equilibration, whereas for
the excited state analysis we used the splitted S1–LE and S1–ICT
trajectories, as defined before.

The RDFs computed on the GS are plotted in fig. 7 whereas
those computed on the S1–LE and S1–ICT are plotted in fig. 8.
We computed the distribution of the ACN nitrogen and ACN
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Fig. 6 Visualization of the electrostatic potential mapped on a density
isosurface for ground (GS) and two excited state structures (S1-LE and
S1-CT). The two S1 structures have been extracted at the beginning and
at the end of a S1-BOMD trajectory. The same arbitrary scale has been
used for the three plots: red refers to negative values, blue to positive
values.
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Fig. 7 Radial distribution functions computed on the GS dynamics. The
four plots refer to different combinations of ACN methyl groups and ACN
nitrogen combined with DMABN amino nitrogen and DMABN nitrile ni-
trogen — the correspondence is shown with the two molecular structures.

methyl groups at the DMABN nitrile nitrogen and DMA nitrogen,
for a total of four RDFs. the volume distribution of the solvent
around DMABN nitrile and DMA nitrogens for the three investi-
gated states are instead shown in Fig. 9.

The RDFs and volume distributions suggest a very similar sol-
vent coordination in the ground and S1–LE states: this was ex-
pected due to both the similar dipolar and structural properties
of the two states and the very short permanence of the S1–LE
state before the twisting. As expected from the dipolar char-
acter of DMABN, we observe a preferential distribution of ACN
molecules with the methyl groups pointing towards the DMABN
nitrile (but without a well defined direction) and with the nitrile
group coordinating the DMABN amino nitrogen from above and
below its molecular plane as confirmed by the two lobes in the
solvent volume density (see 9). Moving from the S1–LE to the
S1–ICT state, the nitrile–methyl RDF (top left panel in Fig. 8)
becomes sharper, whereas the DMA–nitrile coordination remains
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Fig. 8 Radial distribution functions computed on the S1–LE state (solid
line) and on the S1–ICT state (dashed line). The four plots refer to
different pairs of atoms used to compute the radial distribution functions
as detailed in fig. 7 caption.

similar (bottom right panel) indicating that the solvent molecules
rapidly rearrange according to the rotated DMABN (see also the
twisted lobes in fig. 9).

In conclusion, the results of the TDDFT/AMOEBA BOMD con-
firm the twisting as the main geometrical distorsion leading to the
ICT state and they show the importance of the rapid reorientation
of the solvent molecules to stabilize the TICT structure.
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Fig. 9 Visualizations of the solvent distribution around DMABN. Blue:
distribution of ACN nitrogen within 4.5 Å of DMABN amino nitrogen.
Black: distribution of ACN methyl groups within 4.5 Å of DMABN nitrile
nitrogen.

4 Summary
In this paper, we have presented the implementation of
TDDFT/MM molecular dynamics within a polarizable embedding
based on the AMOEBA force field.

The implementation relies on the interface between Tinker and
Gaussian softwares. The former propagates the trajectory and
computes forces and energies arising from classical dispersion-
repulsion and bonded interactions. Forces and energies arising
from the QM subsystem and from all the electrostatic and polar-
ization interactions are instead calculated by Gaussian. The main
aspects of novelty of the present implementation can be summa-
rized as follows:

• The extension, for the first time, of the linear scaling machin-
ery presented in ref. 33 to excited states molecular dynam-
ics. This means that all computations, including the purely
MM terms, the mutually polarized SCF contributions, the
response and Z-vector contributions and the explicit force
contributions are computed at a cost that scales linearly with
respect to the number of MM atoms.

• A completely rewritten, efficient implementation of the po-
larizable QM/MM contributions to the TDDFT gradients.

• An improved Gaussian-Tinker interface that, besides using
an optimized I/O protocol, can also treat covalent bonds be-
tween the QM and MM regions using link atoms.

A test application on the LE–ICT conversion of DMABN in ace-
tonitrile solution confirms the potential of such an approach in
investigating molecular systems for which the environment plays
a fundamental role in determining their exited state properties
and dynamics.

All the TDDFT/AMOEBA BOMD simulations described in this
communication were performed on a single computer node,

which demonstrates that the methodology is accessible even
when only moderate computational resources are available,
paving the way for new extensions and applications.
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