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Abstract: Lettuce is widely used for its healthy properties, and it is of interest to increase them with

minimal environmental impact. The purpose of this work was to evaluate the effect of the arbuscular

mycorrhizal fungus (AMF) Funneliformis mosseae in lettuce plants (Lactuca sativa L. cv. Salinas)

cultivated in a soilless system with sub-optimal phosphorus (P) compared with non-inoculated

controls at two different P concentrations. Results show that lettuce inoculation with the selected

AMF can improve the growth and the nutritional quality of lettuce even at sub-optimal P. Leaf

content of chlorophylls, carotenoids, and phenols, known as important bioactive compounds for

human health, was higher in mycorrhizal lettuce plants compared with non-mycorrhizal plants. The

antioxidant capacity in AMF plants showed higher values compared with control plants grown at

optimal P nutrition level. Moreover, leaf gas exchanges were higher in inoculated plants than in

non-inoculated ones. Nitrogen, P, and magnesium leaf content was significantly higher in mycorrhizal

plants compared with non-mycorrhizal plants grown with the same P level. These findings suggest

that F. mosseae can stimulate plants growth, improving the nutritional quality of lettuce leaves even

when grown with sub-optimal P concentration.

Keywords: antioxidant capacity; biostimulant; Funneliformis mosseae; Lactuca sativa L. cv Salinas; leaf

gas exchanges; mineral nutrition; nutraceuticals

1. Introduction

Lettuce (Lactuca sativa L.) is one of the most important leaf vegetables, largely con-
sumed because of its healthy properties, which are attributed to a large content of fiber
and antioxidant compounds, such as vitamins C and E, carotenoids, and polyphenols [1,2].
Other pigments such as chlorophylls can contribute to both the sensory and health-
promoting properties of lettuce [2,3]. There is a growing interest for soilless cultivation of
lettuce under greenhouses, which allows higher productivity and better leaf quality as a
result of a strict control of environmental and nutritional conditions [4,5].

In soilless culture, the phosphorus (P) concentration of the nutrient solution (NS)
normally ranges from 1 to 2 mol m−3, which is almost 100 times higher than the P concen-
tration in soil [6]. This essential element is limited and not renewable, and the actual rate
of its extraction from phosphate rocks is higher than the rate of its replenishment [7,8]. In
addition, large use of P may result in significant environmental issues, while P deficiency
is leading to severe reduction in crop yield and vegetable quality, as observed in soilless
culture systems [9,10].

Arbuscular mycorrhizal fungi (AMF) are important beneficial soil microorganisms es-
tablishing mutualistic associations with most food crops. These fungi enhance plant growth
and mineral nutrition, especially increasing the uptake of P and receiving in exchange plant
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carbon compounds [11,12]. AMF obtain P by a fine network of extraradical hyphae, which,
spreading in soil beyond root explored zones, supply up to 100% of plant P requirements
in low P soil, through a fine modulation of plant root P uptake [13]. AMF facilitate host
plants to grow vigorously under low P conditions and other stressful conditions including
drought, salinity, herbivory, temperature, heavy metals, and diseases [14–18], triggering
plant alterations at the physiological, metabolic, and molecular level [19] which lead to the
accumulation of a considerable number of secondary metabolites in host plants.

Therefore, AMF inoculation, which is increasingly considered as a promising tool to
trigger the synthesis of bioactive compounds in plants and for the production of healthy
foods [20], could be usefully combined with soilless cultivation systems in order to reduce
P utilization, possibly enhancing the quality and productivity of crops. Actually, studies
investigating the effects of AMF inoculation on soilless grown lettuce [21–23] reported
contrasting results. For instance, some authors [21–23] showed that AMF enhanced lettuce
growth and nutritional quality, while others [24] found no differences in leaf production
and macronutrient content in lettuce plants inoculated and not inoculated with AMF. These
contrasting results are probably due to the different fungal isolates and lettuce cultivars
utilized. In particular, the lettuce cv. Salinas represents an important commercial crop,
which is highly mycorrhizal and positively responds to P level in soil [25].

The aim of this study was to assess the effects induced by an isolate of the AMF species
Funneliformis mosseae on colonization level, plant growth, leaf gas exchange, content of
mineral nutrients, total chlorophylls, carotenoids, total phenols, and antioxidant capacity
in lettuce (cv. Salinas) plants grown in a soilless system with optimal (1.0 mM) or reduced
(0.5 mM) P concentration in NS.

2. Materials and Methods

2.1. Biological Materials

The experiment was conducted in Pisa, Italy (latitude 43◦43′ N, longitude 10◦23′ E),
using a crisphead lettuce (Lactuca sativa L. var. capitata) cv. Salinas.

The fungal isolate used was Funneliformis mosseae (T. H. Nicolson and Gerd.) C. Walker
and A. Schüssler, isolate IMA1, maintained for several multiplication cycles under identical
growth conditions at the laboratory of Microbiology, Department of Agricultural, Food
and Agro-Environmental Sciences, University of Pisa, Italy. A mycorrhizal inoculum
potential (MIP) bioassay [26] was performed to assess the activity of the AMF using
Cichorium intybus L. as test plant: MIP was 30–40%.

2.2. Growing System and Nutrient Solution

Plants were grown in growth chambers with the following climatic conditions: tem-
perature 25 ◦C ± 2.5; relative humidity 65% ± 15; daily cumulated global radiation
10.80 MJ m−2 with a photosynthetic photon flux density (PPFD) of 250 µmoles m−2 s−1;
photoperiod of 16 h day−1. Irradiance was measured using a portable radiometer (model
LI-185B; LI-COR Inc., Lincoln, NE, USA) equipped with a quantum sensor (LI-190SB) to
give PPFD in µmol photons m−2 s−1. Artificial light was provided by LED lamps (Fu-
tura, C-LED, Imola, Italy) having the following spectrum: 50% red (620–680 nm), 33%
blue (420–480 nm), 17% green (520–560 nm). The light spectrum was measured with a
spectrometer (FLAME-T-XR1-ES S/N: FLMT07829, Ostfildern, Germany).

Plants were supplied with the NS prepared adding appropriate amounts of technical-
grade inorganic salts to tap water. Phosphorus was added as KH2PO4, at optimal
(1.0 mM [27–30] or reduced (0.5 mM) concentration. In order to maintain the same
potassium concentration and electroneutrality in both NSs, the lower concentration of
KH2PO4 (0.5 mM) in the low P NS was compensated by adding 0.25 mM K2SO4.

The concentration of other nutritive elements in both NSs were the following:
12.0 mM N-NO3; 0.5 mM N-NH4; 4.5 mM Ca; 2.0 mM Mg; 1.7 mM Na; 1.0 mM Cl;
30.0 µM Fe; 25.0 µM B; 10.0 µM Mn; 16.2 µM Zn; 3.0 µM Cu; 1.0 µM Mo. The pH and
electrical conductivity (EC) of NSs were 5.5 and 2.4 dS m−1, respectively.
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2.3. Experimental Design and Plant Inoculation

The experiment was arranged as a completely randomized design with three treat-
ments, consisting of non-inoculated (or control) plants grown with optimal (HPC, High
Phosphorus Control) or reduced (LPC, Low Phosphorus Control) P concentration in the
NS, and plants inoculated with F. mosseae and grown with 0.5 mM P concentration (LPM,
Low Phosphorus Mycorrhizal). Each treatment was applied to eight plants: one plant
represented one replicate.

After sterilized lettuce seeds’ germination in Petri dishes, AMF inoculation was per-
formed on selected seedlings in polystyrene plug trays. One lettuce seedling was trans-
ferred in each 16 mL cell, previously filled with 15 mL of crude inoculum, comprised of
spores, mycelium, and fine colonized roots. Control plants were mock inoculated, using
a steam-sterilized crude inoculum (at 121 ◦C for 30 min, on two consecutive days), and
then each mock-inoculated plant was supplied with 4 mL of a sieved soil eluate (through
a 50 µm pore diameter sieve and through Whatman No. 1 paper), obtained using living
AMF inoculum, to ensure a common microbiota. All seedlings were grown in the growth
chamber as described above and irrigated daily with approximately 2–5 mL of a low P
nutrient solution.

After four weeks, each seedling was transplanted in a 1 L pot filled with calcined clay
(OILDRI, Chicago, IL, USA) and inoculated again with AMF, adding the crude inoculum at
the dose of 10% (v/v). Inside the growth chamber, the position of each plant was changed
every two days in order to overcome the chamber effect due to spatial non-uniformity [31].
Lettuce plants were irrigated daily with approximately 100–200 mL of the appropriate NS
until harvest.

Plants were sampled 35 and 53 (final harvest) days after transplanting (DAT). At
each sampling time, leaves of each plant were separated from roots and used for subse-
quent determinations.

2.4. Determinations

Leaves or roots were used for the evaluation of AMF colonization, growth parameters,
leaf antioxidant capacity and concentrations of chlorophylls, carotenoids and total phenols.
Nitrate content in lettuce leaves (NO3

−) and mineral content of both leaves and roots
were determined only at final harvest (53 DAT). Each determination was performed on
four replicates per treatment.

2.4.1. AMF Colonization and Growth Parameters

Root colonization was assessed at transplant, and 35 and 53 days later. Percentages of
AMF colonization were determined under a dissecting microscope using the gridline intersect
method [32], after clearing and staining plant roots with Trypan blue in lactic acid (0.05% w/v).

Leaf area, leaves, and root fresh (FW) and dry weight (DW) were determined at
35 and 53 DAT. Dry weight was measured after drying in a ventilated oven at 70 ◦C until
constant weight. Leaf area was measured using a digital planimeter (MK2, Delta-T Devices,
Cambridge, UK).

2.4.2. Leaf Content of Chlorophylls, Carotenoids, Total Phenols, and Antioxidant Capacity

Five foliar disks (12 mm diameter, 0.5 g approximately) from distinct leaves were sampled
for each replicate plant and extracted with 5 mL of methanol for the determination of the leaf
content of chlorophylls (chlorophyll a and chlorophyll b), carotenoids, total phenols, and the
antioxidant capacity. Samples were sonicated 15 min in ice bath four times and stored overnight
at −20 ◦C. After separation of the supernatant, the extraction was repeated with 5 mL of fresh
methanol. The two supernatant aliquots were pooled and, after proper dilution with methanol,
the absorbance of the extracts was read at 665.2, 652.4, and 470 nm (Shimadzu UV-1280, Tokyo,
Japan). The leaf concentrations of chlorophylls and carotenoids were calculated according to
Lichtentahler and Buschmann [33] and expressed as µg g−1 FW.
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Total phenols were measured in the same methanol extracts using the Folin–Ciocalteau
reagent [34]. The spectrophotometric measurements were carried out at 765 nm and the
total phenol content was calculated using a calibration curve prepared with standard
solutions (0, 50, 100, 150 and 250 mg L−1) of gallic acid (GA); values were expressed as
gallic acid equivalents per g FW (mg GAE g−1 FW)

The antioxidant capacity was determined by the Ferric Reducing Antioxidant Power
(FRAP) assay according to Benzie and Strain [35]. The following solutions were mixed in a
spectrophotometric cuvette: 0.25 M acetate buffer pH 3.6 (2.0 mL); FRAP reagent (900 µL)
containing 2 mM ferric chloride and 1 mM TPTZ (2,4,6-tripyridyl-s-triazine). A calibration
curve was prepared with standard solutions of ferrous ammonium sulphate up to 1000 µM
concentration. The absorbance was detected at 593 nm and the results were expressed as
µmol Fe (II) g−1 FW.

2.4.3. Leaf and Root Mineral Content

Plant samples were dried for 5 days in a 70 ◦C oven to constant weight, then they
were ground in a mortar to a powder. The oven-dried samples were wet digested in
a mixture of nitric and perchloric acids (5:2 v/v) at 230 ◦C for 1 h and the elements K,
Ca, Mg, Na, Fe, Mn, Cu, and Zn were quantified by atomic absorption spectrometry
(Varian Model Spectra AA240 FS, Melbourne, Australia). Phosphorus was determined by
spectrophotometry using the molybdenum blue method [36], and N was determined by
micro-Kjeldahl procedure [37] after sample digestion with sulfuric acid (H2SO4).

Leaf content of soluble nitrates was also determined by extracting 100 mg of pow-
dered dry samples with 20 mL distilled water on an orbital shaker at room temperature
for two hours; the aqueous extract was then analyzed as described [38] and leaf nitrate
concentration was expressed as mg NO3

−kg−1 FW.

2.4.4. Leaf Gas Exchanges

Net photosynthetic rate (Pn), stomatal conductance (gs), intercellular CO2 concen-
tration (Ci), and transpiration rate (E) were determined in fully expanded leaves using a
portable instrument (CIRAS-2 photosynthesis system, PP Systems, Amesbury, MA, USA) at
250 µmoL m−2 s−1 of PPFD, 400 ppm CO2 concentration, 65% relative humidity, and 25 ◦C
leaf temperature, which was close to the growth chamber temperature. Intrinsic water use
efficiency (WUEi) was calculated as the ratio of Pn to gs.

2.5. Statistical Analysis

Data were analyzed by the analysis of variance (ANOVA) and mean values of 4 replicates
were separated using the Least Significant Differences (LSD; p = 0.05). Statistical analysis was
performed using the software Statgraphics Centurion XV.II (Manugistic Co., Rockville, MD, USA).

As the interaction between sampling time and treatment was not significant for all the
measured quantities, only the main effects are reported in the next section.

3. Results

3.1. Mycorrhizal Colonization and Plant Growth, Mineral Content, and Leaf Gas Exchange

Root colonization in AMF inoculated plants (LPM) was 35.1 ± 4.9% at transplant,
21.8 ± 2.5% at the intermediate sampling, and 20.5 ± 3.2% at the final harvest. Control
plants (both LPC and HPC) were not colonized throughout the whole experiment.

Leaf FW and DW, root DW, and leaf area were greater at 53 DAT than at 35 DAT, as
expected, while there were no significant differences between the two sampling times as
regards the root/shoot DW ratio (Table 1). Leaf FW and DW (Table 1) showed no significant
differences between HPC and LPM plants, while they were significantly lower in LPC
plants with respect to other plants (Table 1). On the contrary, LPM plants showed greater
root DW compared with HPC and LPC plants. Root/shoot DW ratio was significantly
greater in LPC than in HPC, with intermediate value in LPM. Conversely, leaf area was
significantly greater in LPM than in LPC, with intermediate value in HPC.
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Table 1. Growth parameters determined at 35 and 53 days after transplant (DAT) in lettuce plants

non-inoculated or inoculated with the arbuscular mycorrhizal fungus Funneliformis mosseae and

grown hydroponically with different phosphorus (P) concentration in the nutrient solution (LPC =

Low Phosphorus Control; HPC = High Phosphorus Control; LPM = Low Phosphorus Mycorrhizal).

Sampling Time
(DAT)

Treatment
Leaf FW

(g Plant−1)
Leaf DW

(g Plant−1)
Root DW

(g Plant−1)
Root/Shoot
DW Ratio

Leaf Area
(cm2 Plant−1)

35 LPC 66.6 ± 6.9 2.94 ± 0.36 0.48 ± 0.17 0.17 ± 0.02 719.1 ± 80.9
35 HPC 104.8 ± 3.5 4.93 ± 0.39 0. 65 ± 0.07 0.13 ± 0.01 1233.3 ± 142.6
35 LPM 155.8 ± 14.4 7.32 ± 0.58 0.88 ± 0.05 0.12 ± 0.01 1674.5 ± 172.7

53 LPC 135.6 ± 10.3 5.46 ± 0.36 0. 93 ± 0.07 0.17 ± 0.01 1524.9 ± 120.4
53 HPC 221.4 ± 38.7 9.34 ± 1.28 1.00 ± 0.05 0.11 ± 0.01 2471.0 ± 418.6
53 LPM 263.9 ± 29.1 10.86 ± 0.90 1.79 ± 0.24 0.16 ± 0.01 2968.7 ± 328.7

MAIN EFFECTS

35 109.1 ± 12.1 b 5.06 ± 0.59 b 0.67 ± 0.06 b 0.14 ± 0.01 a 1208.9 ± 137.9 b
53 206.9 ± 21.9 a 8.55 ± 0.84 a 1.24 ± 0.14 a 0.15 ± 0.01 a 2321.6 ± 244.3 a

LPC 101.1 ± 14.2 b 4.20 ± 0.53 b 0.71 ± 0.09 b 0.17 ± 0.01 a 1122.0 ± 166.5 b
HPC 163.1 ± 28.4 a 7.13 ± 1.04 a 0.82 ± 0.08 b 0.12 ± 0.01 b 1852.1 ± 310.8 ab
LPM 209.9 ± 25.4 a 9.09 ± 0.83 a 1.33 ± 0.21 a 0.14 ± 0.01 ab 2321.6 ± 298.9 a

ANOVA (ns, not significant; **, significant at 1%; ***, significant at 0.1%)

Time *** *** *** ns ***
Treatment *** *** *** ** ***
Interaction ns ns ns ns ns

Mean values (n = 4) ± standard error (SE) followed by different letters are statistically different (p < 0.05) according
to the LSD test.

At the final sampling time (53 DAT), leaf content of N and P was significantly lower in
LPC plants than in HPC and LPM plants (Table 2). Leaf Mg content was significantly lower
in non-mycorrhizal controls, LPC and HPC, than in LPM plants (Table 2). Leaf contents of
other mineral elements were not significantly affected by treatments (Table 2).

Table 2. Leaf mineral content determined at 53 DAT in lettuce plants non-inoculated or inocu-

lated with the arbuscular mycorrhizal fungus Funneliformis mosseae and grown hydroponically with

different P concentration in the nutrient solution (LPC = Low Phosphorus Control; HPC = High

Phosphorus Control; LPM = Low Phosphorus Mycorrhizal).

Treatment N P K Na Ca Mg Fe Cu Mn Zn
(g kg−1 DW) (mg kg−1 DW)

LPC 35.7 ± 3.0 b 3.2 ± 0.2 b 79.7 ± 5.9 a 4.8 ± 0.8 a 16.3 ± 1.4 a 3.1 ± 0.3 b 119.6 ± 19.7 a 10.7 ± 0.6 a 111.5 ± 10.2 a 48.3 ± 2.2 a
HPC 41.5 ± 0.8 a 6.5 ± 0.3 a 70.5 ± 4.7 a 6.0 ± 0.9 a 15.2 ± 1.2 a 2.4 ± 0.3 b 174.5 ± 58.0 a 9.1 ± 0.5 a 111.9 ± 4.9 a 49.1 ± 2.1 a
LPM 42.7 ± 0.5 a 6.4 ± 0.1 a 71.2 ± 6.0 a 4.9 ± 0.4 a 16.9 ± 2.0 a 4.2 ± 0.2 a 127.3 ± 7.8 a 10.7 ± 0.5 a 129.6 ± 11.8 a 76.5 ± 28.0 a

ANOVA (ns, not significant; **, significant at 1%; ***, significant at 0.1%)

Treatment ** *** ns ns ns ** ns ns ns ns

The mean values (n = 4) ± SE followed by different letters are statistically different (p < 0.05) according to the LSD test.

In lettuce roots, N content was not affected by treatments, while the P content was
statistically higher in LPM plants than in LPC and HPC plants.

As for the other elements, only root contents of Fe and Cu were statistically affected
by treatments, with higher values of Fe in LPM plants than in LPC and HPC plants, and
lower values of Cu in HPC plants than in LPC and LPM plants (Table 3).

Likewise, growth traits and leaf gas exchange parameters were not affected by the
interaction between sampling time and treatments, so only the main effects are shown
herein (Figure 1; all results are shown in Table S1). Time had different effects, since
significant increase in leaf gs and E were observed from 35 DAT to 53 DAT, while Pn
and Ci were not affected by sampling time and WUEi decreased significantly at 53 DAT.
Treatments significantly affected all the measured variables, with LPM plants showing
higher values of leaf gs, Ci, and E than non-mycorrhizal controls, and higher values of Pn
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than LPC plants. On the contrary, LPM plants showed significantly lower values of WUEi
than non-mycorrhizal controls (Figure 1).
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Figure 1. Leaf gas exchanges (Pn = net photosynthetic rate, gs = stomatal conductance, Ci = intercel-

lular CO2 concentration, E = transpiration rate, WUEi = intrinsic water use efficiency) determined at

35 and 53 days after transplant (DAT) in lettuce plants non-inoculated or inoculated with the arbuscular

mycorrhizal fungus Funneliformis mosseae and grown hydroponically with different P concentration in

the nutrient solution (LPC = Low Phosphorus Control; HPC = High Phosphorus Control; LPM = Low

Phosphorus Mycorrhizal). Mean values (n = 4) ± SE followed by different letters are statistically different

(p < 0.05) according to the LSD test. Only main effects are shown, as interaction was not significant.

Table 3. Root mineral content determined at 53 DAT in lettuce plants non-inoculated or inocu-

lated with the arbuscular mycorrhizal fungus Funneliformis mosseae and grown hydroponically with

different P concentration in the nutrient solution (LPC = Low Phosphorus Control; HPC = High

Phosphorus Control; LPM = Low Phosphorus Mycorrhizal).

Treatment N P K Na Ca Mg Fe Cu Mn Zn
(g kg−1 DW) (mg kg−1 DW)

LPC 19.3 ± 5.0 a 3.3 ± 0.2 b 27.9 ± 2.0 a 8.4 ± 2.3 a 12.3 ± 1.0 a 12.9 ± 0.6 a 1616.2 ± 199.2 b 12.5 ± 1.2 a 267.9 ± 33.7 a 77.6 ± 6.9 a
HPC 17.7 ± 1.6 a 3.3 ± 0.4 b 26.1 ± 1.7 a 11.7 ± 1.5 a 10.9 ± 0.9 a 15.0 ± 2.9 a 1276.4 ± 173.8 b 7.7 ± 1.1 b 247.3 ± 29.2 a 56.5 ± 4.5 a
LPM 22.9 ± 2.7 a 4.5 ± 0.3 a 32.2 ± 2.9 a 13.4 ± 1.5 a 12.9 ± 1.3 a 16.3 ± 1.2 a 2993.5 ± 554.5 a 13.6 ± 1.4 a 301.7 ± 32.6 a 70.8 ± 4.3 a

ANOVA (ns, not significant; *, significant at 5%)

Treatment ns * ns ns ns ns * * ns ns

The mean values (n = 4) ± SE followed by different letters are statistically different (p < 0.05) according to the LSD test.
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3.2. Content of Pigments, Total Phenols, Antioxidant Capacity, and Nitrates of Leaves

Pigment and total phenol content and antioxidant capacity showed significantly higher
values in LPM plants than in non-mycorrhizal plants (Table 4).

Table 4. Leaf content of chlorophylls, carotenoids, total phenols, and antioxidant capacity (FRAP in-

dex) determined at 35 and 53 DAT in lettuce plants non-inoculated or inoculated with the arbuscular

mycorrhizal fungus Funneliformis mosseae and grown hydroponically with different P concentra-

tion in the nutrient solution (LPC = Low Phosphorus Control; HPC = High Phosphorus Control;

LPM = Low Phosphorus Mycorrhizal).

Sampling Time
(DAT)

Treatment
Chlorophylls
(µg g−1 FW)

Carotenoids
(µg g−1 FW)

Total Phenols (mg
GAE g−1 FW)

FRAP
(µmol Fe(II) g−1 FW)

35 LPC 627.25 ± 14.60 95.14 ± 5.58 2.82 ± 0.23 15.95 ± 0.96
35 HPC 608.80 ± 38.77 95.18 ± 7.80 2.65 ± 0.19 16.07 ± 1.25
35 LPM 845.55 ± 40.26 131.32 ± 2.89 3.49 ± 0.09 21.32 ± 1.51
53 LPC 593.57 ± 46.04 91.95 ± 4.81 2.16 ± 0.08 16.90 ± 0.69
53 HPC 663.04 ± 24.06 93.68 ± 4.37 2.08 ± 0.26 14.15 ± 1.55
53 LPM 888.93 ± 49.48 126.00 ± 6.59 2.98 ± 0.17 20.97 ± 1.20

MAIN EFFECT

35 693.87 ± 36.80 a 107.21 ± 5.96 a 2.99 ± 0.14 a 17.78 ± 1.00 a
53 715.18 ± 43.74 a 103.88 ± 5.48 a 2.41 ± 0.14 b 17.34 ± 1.05 a

LPC 610.41 ± 23.25 b 93.55 ± 3.46 b 2.49 ± 0.17 b 16.42 ± 0.58 b
HPC 635.92 ± 23.48 b 94.43 ± 4.15 b 2.36 ± 0.15 b 15.11 ± 0.99 b
LPM 867.24 ± 30.65 a 128.66 ± 3.48 a 3.24 ± 0.13 a 21.14 ± 0.89 a

ANOVA (ns, not significant; **, significant at 1%; ***, significant at 0.1%)

Time ns ns *** ns
Treatment *** *** *** ***
Interaction ns ns ns ns

Mean values (n = 4) ± SE followed by different letters are statistically different (p < 0.05) according to the LSD test.

Leaf nitrate content, measured only at final harvest (53 DAT), was significantly higher
in HPC plants than in LPC and LPM plants (Figure 2).
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Figure 2. Leaf nitrate content at 53 DAT in lettuce plants non-inoculated or inoculated with the

arbuscular mycorrhizal fungus Funneliformis mosseae and grown hydroponically with different P

concentration in the nutrient solution (LPC = Low Phosphorus Control; HPC = High Phosphorus

Control; LPM = Low Phosphorus Mycorrhizal). Mean values (n = 4) ± SE followed by different

letters are statistically different (p < 0.05) according to the LSD test.
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4. Discussion

Data presented in this work clearly show that the nutritional value of soilless grown
lettuce of cv. Salinas was improved when AMF-inoculated and grown at low P concentra-
tion compared with non inoculated plants grown at low or optimal P concentrations. At the
same time, mycorrhizal plants performed like plants grown at the higher P concentration.

4.1. Mycorrhizal Colonization and Plant Growth, Mineral Content, and Leaf Gas Exchange

Mycorrhizal lettuce plants showed a colonization of approximately 20%, which was
lower than that found in other studies with L. sativa var. capitata grown in different
conditions and inoculated with different AMF [22,39]. This large variability is known for
lettuce genotypes such as those belonging to Lactuca sativa var. crispa, where different levels
of root colonization were reported ranging from 10–15% in cv. Eluarde and Panisse [40]
to 45–65% in cv. Grand Rapids and Lollo Bionda [41], grown in different substrates and
with different AMF. The degree of root colonization depends on the interaction between
host and fungal genotypes and is modulated by environmental conditions, in particular by
temperature [42–44].

Other important factors which can explain the low level of colonization attained in
this work are the P concentration of the NS and the high level of water content of the
soilless substrate. Actually, it is well known that high P supply reduces root colonization
levels [45,46], possibly in concert with other nutrients [47]. In addition, when substrate
moisture increases, root colonization decreases [48,49]. In our work, the P concentration in
the NS was adjusted to avoid both an excessive reduction in colonization and a nutritional
stressful condition. Other authors were able to grow L. sativa var. capitata plants in a
hydroponic system (nutrient film technique or NFT) with the aim of producing fungal
biomass, maintaining a high level of colonization using NS with 20–80 µM P, however they
obtained a very low plant biomass [50]. In another study using non-mycorrhizal L. sativa
var. capitata plants, reducing nutrient supply led to a 14% (at half-strength NS) to 38% (at
quarter-strength NS) decrease in fresh biomass [9].

However, at the level of colonization obtained in our system, LPM plants showed
an increase in all the growth traits compared with LPC plants, while no differences were
observed between LPM plants and HPC plants. During the experiment no evident symp-
toms of nutrient deficiency (e.g., leaf chlorosis or necrosis) were observed in all the plants,
and leaf content of most macroelements and trace elements were similar and within the
adequate ranges reported for lettuce [51].

More specifically, leaf content of both N and P was significantly higher in HPC and
LPM plants than that in LPC plants, showing that AMF inoculation allowed the plants to
cope with the reduction in P in the NS (Table 2) with no important effect on N uptake.

In our work, mycorrhizal plants showed significantly higher levels of Mg in the leaves
(Table 2). Magnesium plays an important role in plant cells, since it appears in the center
of the chlorophyll molecule and many enzymatic reactions require Mg as a co-factor. The
higher level of chlorophylls in mycorrhizal lettuces confirms this. A higher concentration of
Mg in inoculated plants was found in lettuce [22], cucumber [52], and tomato [53]. Moreover,
a higher content of P, Fe, and Cu was found in roots of inoculated lettuces (Table 3).

Our results regarding leaf gas exchanges are in agreement with previous findings,
which demonstrated the positive effects of AMF on leaf photosynthesis [54–57] and suggest
that LPM plants were metabolically similar to HPC plants and more efficient than LPC.
These data, referred to primary metabolism, support the higher growth observed in LPM
with respect to LPC plants. The LPM plants showed lower values of WUEi in comparison
with LPC and HPC plants as a result of higher gs than Pn in LPM plants. This is in
contrast with other studies that showed an increase in WUEi after AMF inoculation [55,58].
Recently, Ref.[59] found lower WUEi in AMF-inoculated wheat (Triticum aestivum L.) plants
in comparison with non-inoculated plants. However, other authors [60] showed that the
plant WUEi was reduced, enhanced, or not influenced by AMF colonization because it is
strictly associated to the symbiosis between the plant and the AMF species applied.
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In conclusion, these findings are in agreement with those obtained in cucumber [57]
and tomato [61] and support the role of AMF in plant response to a reduced P supply,
avoiding a loss of production. Some authors recommended that the P concentration of
the NS should be reduced up to 50% when AMF inoculated plants are cultivated in an
ebb–flow system [62].

4.2. Content of Pigments, Total Phenols, Antioxidant Capacity, and Nitrates of Leaves

Mycorrhizal plants not only showed better or similar growth than non-inoculated
plants, but their leaves contained more chlorophylls, carotenoids, and total phenols, and
had a stronger antioxidant capacity.

Arbuscular mycorrhizal fungi are known to facilitate host plants to grow under
stressful conditions by enhancing leaf photosynthesis and root water uptake and by acting
on hormonal biosynthesis and secondary metabolic pathways [18,63]. The higher mineral
uptake in mycorrhizal plants was significantly correlated with a higher content of bioactive
compounds, thus suggesting a close relationship among the modulation of nutrient uptake
by mycorrhizal symbionts and the biosynthesis of health-promoting molecules by the
host [64], which was not observed in HPC plants compared with LPC plants.

In our study there was a high statistically significant correlation between the FRAP
index and the leaf content of total phenolic compounds (r = 0.654, p = 0.001, n = 24).
Some authors showed a significant rise in phenols and antioxidant activity in lettuce
plants (red and green leaf L. sativa var. crispa) inoculated with R. irregulare compared to
non-mycorrhizal plants [40].

Previous reports on lettuce inoculated with AMF showed an increase in plant growth
and a better leaf nutritional quality due to a greater content of both vitamins and pigments,
although plants were supplied with 1.3 mM P and the substrate contained a substantial
quantity of peat, which conveys further P and organic matter [21]. In another work with
lettuce grown in NFT, plants treated with a commercial microbial inoculant showed a better
growth performance and a higher content of anthocyanin than non-inoculated plants [65].

In addition to the content of secondary metabolites, the quality of lettuce leaves is
determined by the content of nitrates, which can have a harmful effect on human health [66].
For this reason, the EU regulation 1258/2011 fixed the upper limits for iceberg lettuce,
such as cv. Salinas used in this experiment, to 2.000 mg kg−1 in open field and 2.500 mg
kg−1 under cover [67]. In our work, nitrate leaf content was always well below the EU
regulation limits, and was lower in LPM and LPC than in HPC plants. These findings agree
with those reported by [9,66,68,69], who concluded that nitrate accumulation in lettuce
is strongly correlated with the composition of NS and influenced by phosphate nutrition.
As reported in [9], nitrate content decreased by 34.6% in butterhead lettuce grown with
quarter-strength nutrient solution in comparison with the full- and half-strength nutrient
solution. Replacing the nutrient solution with tap water two days before harvest reduced
the nitrate concentration by up to 56% in Lactuca sativa var. acephala [69].

5. Conclusions

Our data show that mycorrhizal inoculation in soilless culture, when symbionts are
reciprocally compatible as in this case, can increase the nutritional quality of L. sativa var.
capitata and allow the cultivation with reduced phosphorus concentration in the nutrient
solution with no yield loss, thus mitigating the environmental impact associated with this
growing system.

The utilization of a lettuce cultivar whose genome has been sequenced [70] may
allow further studies investigating plant/fungus gene expression profiles and biochemical
mechanisms involved in symbiosis beneficial effects aimed at exploiting mycorrhizal fungi
as biostimulants.
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Supplementary Materials: The following supporting information can be downloaded at: https:

//www.mdpi.com/article/10.3390/foods11223612/s1, Table S1: Gas exchange parameters; net

photosynthetic rate (Pn), stomatal conductance (gs), intercellular CO2 concentration (Ci), transpiration

rate (E), and intrinsic water use efficiency (WUEi; Pn/gs) measured in lettuce leaves during the

experiment (1st measurement and 2nd measurement 35 DAT and 53 DAT, respectively).
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