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Abstract
We consider NLS on T

2 with multiplicative spatial white noise and nonlinearity
between cubic and quartic. We prove global existence, uniqueness and convergence
almost surely of solutions to a family of properly regularized and renormalized approx-
imating equations. In particular we extend a previous result by A. Debussche and H.
Weber available in the cubic and sub-cubic setting.
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1 Introduction

1.1 Statement of themain result

We are interested in the following family of NLS with multiplicative spatial white
noise:

i∂t u = �u + ξu + λu|u|p, u(0, x) = u0(x), (t, x) ∈ R × T
2 (1.1)

where ξ(x, ω) is space white noise, 2 ≤ p ≤ 3, λ ≤ 0, and we identify T
2 with

(−π, π) × (−π, π). We work for simplicity with a defocusing nonlinearity, but the
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results of this paper can be extended to the focusing case under a smallness assumption
on the initial datum. Our main aim is an improvement on the range of the nonlinearity
p, from the case p = 2 achieved by A. Debussche and H. Weber in [4], to the larger
range 2 ≤ p ≤ 3. We basically follow the approach of [4], the main novelty being
the introduction of modified energies in the context of (1.1). These energies allow to
cover a larger set of p in (1.1). They also have the potential to be useful in the future
for the study of the growth of the high Sobolev norms in the context of (1.1).

We assume that ξ(x, ω) is real valued and has a vanishing zero Fourier mode (or
equivalently of mean zero with respect to x). This assumption is however not essential
because one may remove the zero mode of ξ from the equation by the transform

u �→ eit ξ̂ (0)u. Therefore in the sequel, we will assume that ξ(x, ω) is given by the
following random Fourier series:

ξ(x, ω) =
∑

n∈Z2,n �=0

gn(ω) ein·x ,

where x ∈ T
2 and (gn(ω)) are identically distributed standard complex gaussians on

the probability space (�,F , p).We suppose that (gn(ω))n �=0 are independent, modulo
the relation gn(ω) = g−n(ω) (so that ξ is a.s a real valued distribution).

Since the white noise ξ(x, ω) is not a classical function, it is important to properly
definewhat wemean by a solution of (1.1). The nature of the initial datum u0(x) is also
of importance in this discussion but even for u0(x) ∈ C∞(T2) it is not clear what we
mean by a solution of (1.1). Let us therefore suppose first that u0(x) ∈ C∞(T2). Since
it is well known how to solve (1.1) with ξ(x, ω) ∈ C∞(T2) and u0(x) ∈ C∞(T2), it
is natural to consider the following regularized problems:

i∂t uε = �uε + ξεuε + λuε|uε|p , uε(0, x) = u0(x), (1.2)

where ξε(x, ω) = χε(x) ∗ ξ(x, ω), ε ∈ (0, 1) is a regularization of ξ by convolution
with χε(x) = ε−2χ(x/ε), where χ(x) is smooth with a support in {|x | < 1/2} and∫
T2 χdx = 1. Then we have

ξε(x, ω) =
∑

n∈Z2,n �=0

ρ
(
εn

)
gn(ω) ein·x , (1.3)

where ρ = χ̂ is the Fourier transform on R2 of χ .
Unfortunately, we do not know how to pass into the limit ε → 0 in (1.2) (even

for u0(x) ∈ C∞(T2)) and it may be that this limit is quite singular in general. Our
analysis will show that we can only pass into the limit almost surely w.r.t. ω if we take
a well chosen random approximation of the datum u0(x) in (1.2) and if we properly
renormalize the phase of the solution uε(t, x, ω). Following [4] and [8] we introduce
the following smoothed potential Y = �−1ξ and its C∞ regularization Yε = �−1ξε,
namely:

Y (x, ω) = −
∑

n∈Z2,n �=0

gn(ω)

|n|2 ein·x (1.4)
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and

Yε(x, ω) = −
∑

n∈Z2,n �=0

ρ
(
εn

)gn(ω)

|n|2 ein·x . (1.5)

We now consider the regularized problems:

i∂t uε = �uε + ξεuε + λuε|uε|p , uε(0, x) = u0(x)e
Y (x,ω)−Yε(x,ω) (1.6)

where we assume that almost surely w.r.t. ω we have eY (x,ω)u0(x) ∈ H2(T2). Notice
that under this assumption the problem (1.6) has almost surely w.r.t. ω a classical
unique global solution uε(t, x, ω) ∈ C(R; H2(T2)) (see [2, 13]). Here is our main
result.

Theorem 1.1 Assume p ∈ [2, 3], λ ≤ 0 and u0(x) be such that eY (x,ω)u0(x) ∈
H2(T2) a.s. Then there exists an event � ⊂ � such that p(�) = 1 and for every
ω ∈ � there exists

v(t, x, ω) ∈
⋂

γ∈[0,2)
C(R; Hγ (T2))

such that for every T > 0 and γ ∈ [0, 2) we have:

sup
t∈[−T ,T ]

‖e−iCε t eYε(x,ω)uε(t, x, ω) − v(t, x, ω)‖Hγ (T2)

ε→0−→ 0, (1.7)

where Cε = ∑
n∈Z2,n �=0

ρ2(εn)

|n|2 and uε(t, x, ω) are solutions to (1.6). Moreover for
γ ∈ [0, 1) and ω ∈ � we have

sup
t∈[−T ,T ]

∥∥|uε(t, x, ω)| − e−Y (x,ω)|v(t, x, ω)|∥∥Hγ (T2)∩L∞(T2)

ε→0−→ 0. (1.8)

The limits obtained inTheorem1.1 are by definitionwhatwemaywish to call solutions
of (1.1) with datum u0(x). Observe that |uε(t, x, ω)| has a well defined limit, while the
phase of uε(t, x, ω) should be suitably renormalized by the diverging constants Cε in
order to get a limit. We also point out that the meaning of the constants Cε, introduced
along the statement of Theorem 1.1, is explained in Sect. 2, where the renormalization
procedure is presented.

It is worth mentioning that despite (1.7), that works for γ ∈ (0, 2), in (1.8) we
assume γ ∈ (0, 1). This is due to a technical reason since, in order to estimate the
Sobolev norm of the absolute value of a Sobolev function, we use the diamagnetic
inequality which, to the best of our knowledge, works up to the H1 regularity.

In a future work we plan to extend the result of Theorem 1.1 to any p < ∞ by
exploiting the dispersive properties of the Schrodinger equation on a compact spatial
domain established in [2]. In the presentmomentwe are only able to do so for potentials
slightly more regular than the white noise. In fact, we shall not need to exploit the
construction of [2] in its full strength because we will only need an ε-improvement of
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the Sobolev embedding. This means that we will need to make the WKB construction
of [2] for solutions oscillating at frequency h−1 only up to time h2−δ , δ > 0 which
are much shorter than the times h achieved in [2]. As already mentioned, even if we
succeed to incorporate the dispersive effect in the analysis of (1.1) themodified energy
method, used indirectly in the proof of Theorem 1.1 (and more directly in the proof of
Theorem 1.2 below) would be essentially needed in order to get polynomial bounds
on higher Sobolev norms of the obtained solutions, similar to the ones obtained in [11]
in the case without a white noise potential.

In Theorem 1.1 the initial data u0(x) is well-prepared because it is supposed to
satisfy eY (x,ω)u0(x) ∈ H2(T2) a.s. It would be interesting to decide whether a suitable
application of the I -method introduced in [3] may allow to remove this assumption
of well-prepared data. For this purpose, one should succeed to establish the limiting
property by using energies at level Hs , for a suitable s < 1.

1.2 The gauge transform

In the sequel we perform some formal computations that allow us to introduce heuris-
tically a rather useful transformation. Following [4] and [8] we introduce the new
unknown:

v = eY u (1.9)

where u is assumed to be formally solution to (1.1) and Y = �−1ξ . In order to clarify
the relevance of this transformation first notice that by direct computation we have
that the equation solved (at least formally) by v is the following one:

i∂tv = �v − 2∇v · ∇Y + v|∇Y |2 + λe−pY v|v|p, v(0, x) = eY (x,ω)u0(x). (1.10)

Notice that the quantity |∇Y |2 is not well defined since ∇Y , even if is one derivative
more regular than ξ , has still negative Sobolev regularity. However this issue can be
settled by a renormalization (see below and Sect. 2 for more details). On the other
hand (1.10) compared with (1.1) looks more complicated since a perturbation of order
one in the linear part of the equation is added compared with (1.1). Nevertheless, we
have the advantage that the coefficients involved in the new equation are more regular
that the spatial white noise ξ that appears in (1.1).

Another relevant advantage that comes from the new variable v is related to the
conservation of the Hamiltonian. Recall that the conservation laws play a key role in
the analysis of nonlinear Schrödinger equations. In particular in the context of (1.1)
the quadratic part of the conserved energy is given by

∫

T2
(|∇u|2 − |u|2ξ)dx . (1.11)

The key feature in the transformation (1.9) is that there is a cancellation between the
two terms in (1.11) and this cancellation is the main point in the definition of a suitable
self-adjoint realisation of � + ξ (see [7] and the references therein). Indeed, let us
compute (1.11) in the new variable v, hence we have u = e−Y v and (1.11) becomes
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∫

T2
(−e−Y v�(e−Y v̄) − e−2Y |v|2ξ)dx,

which after some elementary manipulations can be written as:

∫

T2
(|∇v|2 + |v|2�Y − |v|2|∇Y |2 − |v|2ξ)e−2Y dx .

Thanks to the choice�Y = ξ we get a cancellation of the white noise potential leading
to

∫

T2
(|∇v|2 − |v|2|∇Y |2)e−2Y dx .

Notice that now the potential energy w.r.t. the new variable v involves the potential
|∇Y (x)|2 which is (morally) one derivative more regular compared with the white
noise.

Motivated by the previous discussion, we observe that if uε(t, x, ω) is a solution to

i∂t uε = �uε + uεξε + λuε|uε|p,

where ξε(x, ω) is defined by (1.3), then the transformed function

vε(t, x, ω) = e−iCε t eYε(x,ω)uε(t, x, ω) (1.12)

satisfies
i∂tvε = �vε − 2∇vε · ∇Yε + vε : |∇Yε|2 : +λe−pYε vε|vε|p.

Here we have Yε(x, ω) given by (1.5) and : |∇Yε|2 : (x, ω) is defined as follows:

: |∇Yε|2 : (x, ω) = |∇Yε|2(x, ω) − Cε (1.13)

where

Cε =
∑

n∈Z2,n �=0

ρ2(εn)

|n|2 (1.14)

is the same constant as the one appearing in Theorem 1.1. One can show that almost
surely w.r.t. ω we have the following convergence, in spaces with negative regularity:

: |∇Yε|2 : (x, ω)
ε→0−→: |∇Y |2 : (x, ω),

where
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: |∇Y |2 : (x, ω) =
∑

(n1,n2)∈Z4

n1 �=0,n2 �=0
n1 �=n2

n1 · n2
|n1|2|n2|2 gn1(ω)gn2(ω) ei(n1−n2)·x

+
∑

n∈Z2,n �=0

|gn(ω)|2 − 1

|n|2 , (1.15)

(see Sect. 2 for details).
The main idea to establish Theorem 1.1 is to look for the convergence of vε as

ε → 0, and hence to get informations on uε by going back via the transformation
(1.12).

Theorem 1.2 Assume p ∈ [2, 3], λ ≤ 0 and u0(x) be such that eY (x,ω)u0(x) ∈
H2(T2) a.s. Then there exists an event � ⊂ � such that p(�) = 1 and for every
ω ∈ � there exists

v(t, x, ω) ∈
⋂

γ∈[0,2)
C(R; Hγ (T2))

such that for every fixed T > 0 and γ ∈ [0, 2) we have:

sup
t∈[−T ,T ]

‖vε(t, x, ω) − v(t, x, ω)‖Hγ (T2)

ε→0−→ 0.

Here we have denoted by vε(t, x, ω) forω ∈ � the unique global solution in the space
C(R; H2(T2)) of the following problem:

i∂tvε = �vε − 2∇vε · ∇Yε + vε : |∇Yε|2 : +λe−pYε vε|vε|p,
vε(0, x) = v0(x) ∈ H2(T2) (1.16)

and v(t, x, ω) denotes for ω ∈ � the unique global solution in the space
C(R; Hγ (T2)), for γ ∈ (1, 2), of the following limit problem:

i∂tv = �v − 2∇v · ∇Y + v : |∇Y |2 : +λe−pY v|v|p,
v(0, x) = v0(x) ∈ H2(T2) (1.17)

where in both Cauchy problems (1.16) and (1.17) v0(x) = eY (x,ω)u0(x), ω ∈ �.

The result of Theorem 1.2 for p = 2, with a weaker convergence, was established in
[4]. Here we still follow the strategy developed in [4] which can be summarized as
follows:

(1) A priori bounds for the H2-norm of vε;
(2) Convergence of the special sequence (v2−k ) a.s. w.r.t. ω in C([−T , T ]; Hγ (T2))

for every T > 0;
(3) Convergence of the whole family (vε) a.s. w.r.t. ω in C([−T , T ]; Hγ (T2)) for

every T > 0;
(4) Pathwise uniqueness of solutions to (1.17).
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In contrast with [4], we do not use the pathwise uniqueness in the convergence pro-
cedure of steps (2) and (3). The main novelty in this paper is that we can extend the
H2 bounds in step (1) to the range of the nonlinearity 2 ≤ p ≤ 3. The key tool com-
pared with [4] is the use of suitable energies in conjunction with the Brezis-Gallouët
inequality. This technique is inspired by [10, 11, 13]. As already mentioned another
difference compared with [4] is that we establish the convergence of solutions to the
regularized problems to the solution of the limit problem almost surely rather than in
the weaker convergence in probability.

It would be interesting to decide whether the modified energy argument developed
in this paper can be useful in order to improve the range of the nonlinearity in [5],
where the NLSwithmultiplicative space white noise on the whole space is considered.
Another question concerns the possibility to implement our approach of modified
energies in the context of the formalism used in [7].

1.3 Notations

Nextwefix somenotations.Wedenote by Lq ,Ws,q , Hγ , the spaces Lq(T2),Ws,q(T2),
Hγ (T2). Let us give the precise definition of Ws,q , we use. The linear operator Ds is
defined by

Ds(ein·x ) = 〈n〉sein·x ,

where 〈n〉 = (1 + |n|2) 1
2 . Then we define Ws,q via the norm

‖ f ‖Ws,p(T2) := ‖Ds( f )‖L p(T2) .

We also use the following notation for weighted Lebesgue spaces: ‖ f ‖qLq (w) =∫
T2 | f |qw dx where w ≥ 0 is a weight. We shall denote by x = (x1, x2) the generic
point in T2 and ∇ will be the full gradient operator w.r.t. the space variables and also
∂i the partial derivative w.r.t. xi . To simplify the presentation we denote by

∫
T2 h the

integral with respect to the Lebesgue measure
∫
T2 h dx .

Starting from Sect. 3, we will denote by C(ω) a generic random variable finite on
the event of full probability defined in Proposition 3.1. The random contant C(ω) will
be allowed to change from line to line in our computations. For every q ∈ [1,∞]
we denote by q ′ the conjugate Holder exponent. We shall use the notation � in order
to denote a lesser or equal sign ≤ up to a positive multiplicative constant C , that in
turn may depend harmlessly on contextual parameters. In some cases we shall drop
the dependence of the functions from the variable (t, x, ω) when it is clear from the
context.

1.4 Plan of the remaining part of the paper

In the next section, we present some stochastic analysis considerations. Section 3 is
devoted to the basic bounds resulting from theHamiltonian structure and some variants
of the Gronwall lemma. Section 4 contains the key bounds at H2 level. The proof of
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the algebraic proposition Proposition 4.1 is postponed to the last section. In Sect. 5, we
present the proof of Theorem 1.2 while Sect. 6 is devoted to the proof of Theorem 1.1.
In the final Sect. 7, we present the proof of Proposition 4.1.

2 Probabilistic results

In this section we collect a series of results concerning the probabilistic object Y and
its regularized version Yε (see (1.5)). Themain point is that all the needed probabilistic
properties are established a.s., which is the key point to establish convergence a.s. in
Theorems 1.1 and 1.2. We shall need in the rest of the paper some special random
constants that will be a combination of the ones involved in Proposition 2.1.

First we justify the introduction of the constantCε in (1.14) as follows. By definition
of Yε(x, ω) (see (1.5)) we have

|∇Yε|2(x, ω) =
∑

(n1,n2)∈Z4

n1 �=0,n2 �=0

ρ
(
εn1

)
ρ(εn2)

n1 · n2
|n1|2|n2|2 gn1(ω)gn2(ω) ei(n1−n2)·x

whose zero Fourier coefficient is the random constant

∑

n∈Z2,n �=0

ρ2(εn)
|gn(ω)|2

|n|2 .

Hence the constant Cε defined in (1.14) is the average on � of the zero Fourier modes
defined above. We shall prove that a.s. w.r.t. ω the functions : |∇Yε|2 : (x, ω) defined
in (1.13) converge as ε → 0, in the topology W−s,q for s ∈ (0, 1) and q ∈ (1,∞), to
the limit object : |∇Y |2 : (x, ω) defined by (1.15).

Next we gather the key probabilistic properties that we need in the rest of the paper.

Proposition 2.1 Let s ∈ (0, 1) and q ∈ (1,∞) be given. There exists an event�0 ⊂ �

such that p(�0) = 1 and for every ω ∈ �0 there exists a finite constant C(ω) > 0
such that:

• we have the following uniform bound:

sup
ε∈(0,1)

{‖e±Yε (x, ω)‖L∞ , ‖e±Yε (x, ω)‖Ws,q , ‖∇Yε(x, ω)‖Lq | ln ε|−1,

‖ : |∇Yε|2 : (x, ω)‖Lq | ln ε|−2, ‖ : |∇Yε|2 : (x, ω)‖W−s,q
}

< C(ω);
• for a suitable κ > 0 we have:

‖Yε(x, ω) − Y (x, ω)‖Ws,q < C(ω)εκ, (2.1)

in particular by choosing sq > 2 we get by Sobolev embedding

‖Yε(x, ω) − Y (x, ω)‖L∞ < C(ω)εκ

123



Stoch PDE: Anal Comp

and also

‖e−pYε(x,ω) − e−pY (x,ω)‖L∞ < C(ω)εκ, ∀p ∈ R;

• for a suitable κ > 0 we have

‖∇Yε(x, ω) − ∇Y (x, ω)‖W−s,q < C(ω)εκ, (2.2)

and
‖ : |∇Yε|2 : (x, ω)− : |∇Y |2 : (x, ω)‖W−s,q < C(ω)εκ . (2.3)

Let us observe that since the condition on s is open, by using the Sobolev embedding
we can include the case q = ∞ in (2.1), (2.2), (2.3).

We shall split the proof of Proposition 2.1 in several propositions. The following
result will be of importance to pass informations from a suitable discrete sequence εN
to the continuous parameter ε. Notice that the independence property of (gn) is not
used in its proof.

Lemma 2.2 Let γ > 0 be fixed, then there exists an event �1 with full measure such
that for every ω ∈ �1 there exists K > 0 such that

|gn(ω)| < K 〈n〉γ , ∀ n ∈ Z
2 \ {0}. (2.4)

Proof We first prove

p
(
{ω ∈ � : sup

n∈Z2,n �=0

(〈n〉−γ |gn(ω)|) ≥ K }
)

K→∞−→ 0. (2.5)

Notice that

p
({ω ∈ � : sup

n∈Z2,n �=0

(〈n〉−γ |gn(ω)|) ≥ K })

≤
∑

n∈Z2,n �=0

p
({ω ∈ � : |gn(ω)| ≥ K 〈n〉γ }).

It remains to observe that by gaussianity

p
({ω ∈ � : |gn(ω)| ≥ K 〈n〉γ }) < Ce−c〈n〉2γ K 2

and we conclude (2.5) by elementary considerations.
Next we introduce

�K = {ω ∈ � : sup
n∈Z2,n �=0

(〈n〉−γ |gn(ω)|) < K }
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and

�1 =
∞⋃

K=1

�K .

Notice that (2.4) holds for ω ∈ �1 for a suitable K , and moreover�1 has full measure
by (2.5). ��
Proposition 2.3 Let s ∈ (0, 1) and q ∈ (1,∞) be fixed. There exists an event �̃ ⊂ �

such that p(�̃) = 1 and for every ω ∈ �̃ there exists C(ω) < ∞ such that:

‖Yε(x, ω) − Y (x, ω)‖Ws,q < C(ω)εκ (2.6)

for a suitable κ > 0. Moreover we have

‖e−pYε(x,ω) − e−pY (x,ω)‖L∞ < C(ω)εκ . (2.7)

Proof First we notice that by (2.6) and Sobolev embedding we have a.s.

‖Yε(x, ω) − Y (x, ω)‖L∞ < C(ω)εκ . (2.8)

Hence (2.7) follows from the following computation

|e−pYε(x,ω) − e−pY (x,ω)| � |Yε(x, ω) − Y (x, ω)|e|p| supε ‖Yε(x,ω)‖L∞

and by noticing that by (2.8) we have a.s. supε ‖Yε(x, ω)‖L∞ < ∞.
Next we split the proof of (2.6) in two steps.
First step: proof of (2.6) for ε = εN = N−1

For every p ≥ q we combine the Minkowski inequality and a standard bound
between the L p and L2 norms of gaussians in order to get:

‖Y (x, ω) − YεN (x, ω)‖L p(�;Ws,q ) = ‖Ds(Y (x, ω) − YεN (x, ω))‖L p(�;Lq )

≤ ‖Ds(Y (x, ω) − YεN (x, ω))‖Lq (T2;L p(�))

� √
p‖Ds(Y (x, ω) − YεN (x, ω))‖Lq (T2;L2(�)) � √

pN−1+s . (2.9)

To justify the last inequality notice that by independence of gn(ω) we have for every
fixed x ∈ T

2 the following estimates:

‖Ds(Y (x, ω) − YεN (x, ω))‖2L2(�)
�

∑

|n|≤N

|1 − ρ(εNn)|2
〈n〉4−2s +

∑

|n|>N

|1 − ρ(εNn)|2
〈n〉4−2s

� N−2
∑

|n|≤N

|n|2
〈n〉4−2s +

∑

|n|>N

1

〈n〉4−2s � N−2+2s
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where we have used the following consequence of the mean value theorem

|1 − ρ(εNn)| = |ρ(0) − ρ(εNn)| � min{(sup |∇ρ|)|N−1|n|, (sup |ρ|)}.

Next by combining (2.9) and Lemma 4.5 of [14], we can write

p
({ω ∈ � : N 1−s

2 ‖Y (x, ω) − YεN (x, ω)‖Ws,q > 1}) ≤ C e−cN1−s
(2.10)

where the positive constants c,C > 0 are independent of N . The right-hand side of
(2.10) is summable in N . Therefore, we can use the Borel-Cantelli lemma to conclude
that there exists a full measure set �2 ⊂ � such that for every ω ∈ �2 there exists
N0(ω) ∈ N such that

‖Y (x, ω) − YεN (x, ω)‖Ws,q ≤ N
s−1
2 = ε

1−s
2

N , ∀N > N0(ω)

and hence

‖Y (x, ω) − YεN (x, ω)‖Ws,q < C(ω)ε
1−s
2

N , ∀N ∈ N. (2.11)

Second step: proof of (2.6) for ε ∈ (0, 1)
Let us set �̃ = �1 ∩�2 (where �2 is given in the first step and �1 in Lemma 2.2),

then p(�̃) = 1 and we will show that for every ω ∈ �̃ we have the desired property.
For every ε ∈ (0, 1) there exists N ∈ N such that

εN+1 < ε ≤ εN (2.12)

where εN = N−1 is as in the previous step. We claim that

‖Yε(x, ω) − YεN (x, ω)‖Ws,q < C(ω)ε1−s−γ , ∀ω ∈ �1 (2.13)

for every γ > 0. Once the estimate above is established then the proof of (2.6) for
ω ∈ �̃ follows by recalling (2.11) and the Minkowski inequality:

‖Yε(x, ω) − Y (x, ω)‖Ws,q ≤ ‖Yε(x, ω) − YεN (x, ω)‖Ws,q

+ ‖YεN (x, ω) − Y (x, ω)‖Ws,q < C(ω)ε1−s−γ + C(ω)ε
1−s
2

N

< C(ω)(ε1−s−γ + ε
1−s
2 ).

Hence we get (2.6) for κ = 1−s
2 provided that we choose γ > 0 small enough.

Next we prove (2.13). Due to (2.4) and the Minkowski inequality for every ω ∈ �1
we have some K > 0 such that:

‖Yε(x, ω) − YεN (x, ω)‖Ws,q � K
∑

n∈Z2

∣∣ρ
(
εn

) − ρ
(
εNn

)∣∣
〈n〉2−s−γ

. (2.14)
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On the other hand by the mean value theorem and (2.12) we get

∣∣ρ
(
εn

) − ρ
(
εNn

)∣∣ � |n|N−2 sup
t∈[0,1]

|∇ρ
(
(tεN + (1 − t)ε)n

)|,

therefore by using the rapid decay of ∇ρ we get for every L > 0 the following bound

∣∣ρ
(
εn

) − ρ
(
εNn

)∣∣ � |n|N−2 min{(sup |∇ρ|), |n|−L N L}. (2.15)

We can now estimate the r.h.s. in (2.14) as follows:

∑

|n|≤N

∣∣ρ
(
εn

) − ρ
(
εNn

)∣∣
〈n〉2−s−γ

+
∑

|n|>N

|ρ(εn) − ρ(εNn)|
〈n〉2−s−γ

� N−2
∑

|n|≤N

1

〈n〉1−s−γ
+ NL−2

∑

|n|>N

1

|n|L−1〈n〉2−s−γ
� N−1+s+γ

Hence going back to (2.14) we get

‖Yε(x, ω) − YεN (x, ω)‖Ws,q < C(ω)N−1+s+γ = C(ω)ε
1−s−γ

N , ∀ω ∈ �1

and we conclude (2.13) since we are assuming (2.12). ��
Proposition 2.4 Let q ∈ (1,∞) be fixed. There exists an event �̃ ⊂ � such that
p(�̃) = 1 and for every ω ∈ �̃ there exists C(ω) < ∞ such that:

‖∇Yε(x, ω)‖Lq < C(ω)| ln ε| (2.16)

and
‖ : |∇Yε(x, ω)|2 : ‖Lq < C(ω)| ln ε|2. (2.17)

Proof It is easy to deduce (2.17) from (2.16). In fact we have the following trivial
estimate

‖ : |∇Yε(x, ω)|2 : ‖Lq ≤ ‖|∇Yε(x, ω)|‖2L2q + Cε < C(ω)| ln ε|2 + Cε

and we conclude by noticing that Cε � | ln ε|. Next, we focus on the proof of (2.16)
that we split in two steps.

First step: proof of (2.16) for ε = εN = N−δ , δ ∈ (0, 1)
Once again, by combining theMinkowski inequality and a standard bound between

the L p and L2 norms of gaussians we get for p ≥ q:

‖∇YεN (x, ω)‖L p(�;Lq ) ≤ ‖∇YεN (x, ω)‖Lq (T2;L p(�))

� √
p‖∇YεN (x, ω)‖Lq (T2;L2(�)) �

√
p| ln εN | (2.18)

123



Stoch PDE: Anal Comp

The last step follows since, by orthogonality of gn(ω), for every x ∈ T
2 we have:

‖∇YεN (x, ω)‖2L2(�)
�

∑

n∈Z2,n �=0

|ρ(
εNn)|2
|n|2

�
∑

n∈Z2,0<|n|<N

1

|n|2 + N 2δL
∑

n∈Z2,|n|≥N

1

|n|2+2L � | ln N |

+ N 2L(δ−1) � | ln εN |

where L > 0 is any number and we used the fast decay of ρ. Using (2.18), we obtain
that

F(ω) = | ln εN |−1/2‖∇YεN (x, ω)‖Lq

satisfies ‖F‖L p(�) ≤ C
√
p and using Lemma 4.5 of [14] (with N = 1, according to

the notations of [14]), we can write

p
({ω ∈ � : | ln εN |−1‖∇YεN (x, ω)‖Lq > λ}) ≤ Ce−c| ln εN |λ2 (2.19)

where the positive constants c,C > 0 are independent of N and λ > 0 is chosen large
enough in such a way that the right-hand side of (2.19) is summable in N . Therefore,
we can use the Borel-Cantelli lemma to conclude that there exists a full measure set
�2 ⊂ � such that for every ω ∈ �2 there exists N0(ω) ∈ N such that

‖∇YεN (x, ω)‖Lq ≤ λ| ln εN |, ∀N > N0(ω)

and hence for every ω ∈ �2 we have

‖∇YεN (x, ω)‖Lq ≤ C(ω)| ln εN |, ∀N ∈ N.

Second step: proof of (2.16) for ε ∈ (0, 1)
Exactly as in the proof of Proposition 2.3 it is sufficient to estimate

‖Yε(x, ω) − YεN (x, ω)‖Lq < C(ω)| ln ε|, (2.20)

where
εN+1 < ε ≤ εN (2.21)

with εN = N−δ , provided that ω belongs to the event �1 given in Lemma 2.2 and
δ > 0 is small enough . By Lemma 2.2 we have that for every ω ∈ �1 there exists a
constant K > 0 such that

‖∇Yε(x, ω) − ∇YεN (x, ω)‖Lq � K
∑

n∈Z2

∣∣ρ
(
εn

) − ρ
(
εNn

)∣∣
〈n〉1−γ

. (2.22)
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Next notice that by combining the mean value theorem with the strong decay of ρ we
get for every fixed L > 0:

∣∣ρ
(
εn

) − ρ
(
εNn

)∣∣ � |n|N−1−δ sup
t∈[0,1]

|∇ρ
(
(tεN + (1 − t)ε)n

)|

� |n|N−1−δ min{(sup |∇ρ|), |n|−L N δL}.

Then we can estimate

∑

n∈Z2

∣∣ρ
(
εn

) − ρ
(
εNn

)∣∣

〈n〉1−γ
� N−1−δ

∑

n∈Z2,0<|n|<N δ

〈n〉γ + N−1−δ+δL
∑

n∈Z2,|n|≥N δ

〈n〉γ−L

� N−1−δN δ(2+γ ) + N−1−δ+δL N δ(γ−L+2) = 2N−1−δN δ(2+γ )

and hence by (2.22) we get

‖Yε(x, ω) − YεN (x, ω)‖Lq < C(ω)εα
N

for a suitable α > 0, provided that we choose δ, γ > 0 small enough. By (2.21) we
get

‖∇Yε(x, ω) − ∇YεN (x, ω)‖Lq < C(ω)εα

and in particular we get (2.20). ��

Proposition 2.5 Let s ∈ (0, 1) and q ∈ (1,∞) be fixed. There exists an event �̃ ⊂ �

such that p(�̃) = 1 and for every ω ∈ �̃ there exists C(ω) < ∞ such that

‖ : |∇Yε|2 : (x, ω)− : |∇Y |2 : (x, ω)‖W−s,q < C(ω)εκ (2.23)

for a suitable κ > 0.

Proof We split again the proof of (2.23) in two steps.
First step: proof of (2.23) for ε = εN = N−δ , δ ∈ (0, 1)
Notice that

: |∇YεN |2 : (x, ω)− : |∇Y |2 : (x, ω)

=
∑

(n1,n2)∈Z4

n1 �=0,n2 �=0
n1 �=n2

[
ρ
( n1
N δ

)
ρ
( n2
N δ

) − 1
] n1 · n2
|n1|2|n2|2 gn1(ω)gn2(ω) ei(n1−n2)·x

+
∑

n∈Z2,n �=0

[
ρ2(

n

N δ
) − 1] |gn(ω)|2 − 1

|n|2 .
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For every p ≥ q, by the Minkowski inequality and using hypercontractivity (see [12])
to estimate the L p norm of a bilinear form of the gaussian vector (gn), we get:

‖ : |∇YεN |2 : (x, ω)− : |∇Y |2 : (x, ω)‖L p(�;W−s,q )

= ‖D−s(: |∇YεN |2 : (x, ω)− : |∇Y |2 : (x, ω))‖L p(�;Lq )

≤ ‖D−s(: |∇YεN |2 : (x, ω)− : |∇Y |2 : (x, ω))‖Lq (T2;L p(�))

� p‖D−s(: |∇YεN |2 : (x, ω)− : |∇Y |2 : (x, ω))‖Lq (T2;L2(�)). (2.24)

Now, we observe that for a complex gaussian g and two nonnegative integers k1, k2,
we have that E(gk1 ḡk2) = 0, unless k1 = k2. Therefore, by the independence of (gn),
modulo gn = g−n , for every fixed x ∈ T

2, we can write:

‖D−s(: |∇YεN |2 : (x, ω)− : |∇Y |2 : (x, ω))‖2L2(�)

�
∑

(n1,n2)∈Z4

n1 �=0,n2 �=0
n1 �=n2

[
ρ
( n1
N δ

)
ρ
( n2
N δ

) − 1
]2 |n1 · n2|2

〈n1 − n2〉2s |n1|4|n2|4

+
∑

n∈Z2,n �=0

[
ρ2( n

N δ

) − 1
]2 1

|n|4 = I + I I ,

where the implicit constant is independent of x . Concerning I I we notice first that by
the mean value theorem

∣∣ρ2( n

N δ

) − 1
∣∣ = ∣∣ρ2( n

N δ

) − ρ2(0))
∣∣ � |n|N−δ

and by interpolation with the trivial bound

∣∣ρ2( n

N δ

) − 1
∣∣ � 1

we get

∣∣ρ2( n

N δ

) − 1
∣∣ � |n|θ N−δθ , θ ∈ (0, 1).

Then we can estimate

I I � N−2δθ
∑

n∈Z2,n �=0

1

|n|4−2θ � N−2δθ .

Next we estimate I . First notice that

ρ
( n1
N δ

)
ρ
( n2
N δ

) − 1 = ρ
( n1
N δ

)[
ρ
( n2
N δ

) − ρ(0)
] + [

ρ
( n1
N δ

) − ρ(0)
]
ρ
(
0)
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and hence by the mean value theorem we get

∣∣ρ
( n1
N δ

)
ρ
( n2
N δ

) − 1
∣∣ � (|n1| + |n2|)N−δ. (2.25)

that by interpolation with the trivial bound

∣∣ρ
( n1
N δ

)
ρ
( n2
N δ

) − 1
∣∣ � 1

implies ∣∣ρ
( n1
N δ

)
ρ
( n2
N δ

) − 1
∣∣ � (|n1| + |n2|)θ N−δθ , θ ∈ (0, 1).

Hence we can evaluate I as follows:

I � N−2δθ
∑

(n1,n2)∈Z4

n1 �=0,n2 �=0

(|n1| + |n2|)2θ
〈n1 − n2〉2s |n1|2|n2|2

� N−2δθ
∑

(n1,n2)∈Z4

n1 �=0,n2 �=0

1

〈n1 − n2〉2s |n1|2−2θ |n2|2−2θ � N−2δθ ,

where we have used

∑

(n1,n2)∈Z4

n1 �=0,n2 �=0

1

〈n1 − n2〉2s |n1|2−2θ |n2|2−2θ < ∞

which in turn follows from the discrete Young inequality provided that 2θ < s. Going
back to (2.24) we get that for δ ∈ (0, 1) and θ ∈ (0, s

2 ) one has the bound

‖ : |∇YεN |2 : (x, ω)− : |∇Y |2 : (x, ω)‖L p(�;W−s,q ) � pN−δθ .

This estimate, in conjunction with Lemma 4.5 of [14] implies

p
({ω ∈ � : N δθ

2 ‖ : |∇YεN |2 : (x, ω)− : |∇Y |2 : (x, ω)‖W−s,q > 1}) ≤ Ce−cN
δθ
2

where the positive constants c,C > 0 are independent of N . Since the r.h.s. is
summable in N we can apply the Borel-Cantelli lemma and deduce the existence of
an event �2 with full measure and such that for every ω ∈ �2 there exists N0(ω) > 0
with the property

‖ : |∇YεN |2 : (x, ω)− : |∇Y |2 : (x, ω)‖W−s,q ≤ N− δθ
2 = ε

θ
2
N , ∀ N > N0(ω)
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and hence

‖ : |∇YεN |2 : (x, ω)− : |∇Y |2 : (x, ω)‖W−s,q < C(ω)ε
θ
2
N , ∀ N ∈ N.

Second step: proof of (2.23) for ε ∈ (0, 1)
We consider a generic ε > 0 and we select N in such a way that εN+1 < ε ≤ εN

where εN = N−δ as in the first step. By the Minkowski inequality and the previous
step it is sufficient to prove

‖ : |∇YεN |2 : (x, ω)− : |∇Yε|2 : (x, ω)‖W−s,q < C(ω)N−α (2.26)

for a suitable α > 0, for ω ∈ �1 where �1 is given in Lemma 2.2. By Lemma 2.2 we
deduce that almost surely there exists a finite constant K > 0 such that (2.4) occurs.
Then we have

‖ : |∇YεN |2 : (x, ω)− : |∇Yε|2 : (x, ω)‖W−s,q

� K 2
∑

(n1,n2)∈Z4

n1 �=0,n2 �=0

∣∣ρ(εNn1)ρ(εNn2) − ρ(εn1)ρ(εn2)
∣∣

〈n1 − n2〉s |n1|1−γ |n2|1−γ
.

By looking at the argument to prove (2.25) we get:

∣∣ρ(εNn1)ρ(εNn2) − ρ(εn1)ρ(εn2)
∣∣ � (|n1| + |n2|)(εN − ε) (2.27)

and hence we can continue the estimate above as follows

‖ : |∇YεN |2 : (x, ω)− : |∇Yε|2 : (x, ω)‖W−s,q

� K 2(εN − ε)
∑

(n1,n2)∈Z4

n1 �=0,n2 �=0
max{|n1|,|n2|}≤N2δ

|n1| + |n2|
〈n1 − n2〉s |n1|1−γ |n2|1−γ

+ K 2
∑

(n1,n2)∈Z4

n1 �=0,n2 �=0
min{|n1|,|n2|}≥N2δ

∣∣ρ(εNn1)ρ(εNn2) − ρ(εn1)ρ(εn2)
∣∣

〈n1 − n2〉s |n1|1−γ |n2|1−γ

+ K 2
∑

(n1,n2)∈Z4

n1 �=0,n2 �=0
min{|n1|,|n2|}≤N2δ

max{|n1|,|n2|}≥N2δ

∣∣ρ(εNn1)ρ(εNn2) − ρ(εn1)ρ(εn2)
∣∣

〈n1 − n2〉s |n1|1−γ |n2|1−γ
. (2.28)
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Concerning the first sum on the r.h.s. in (2.28) (notice that by symmetry we can assume
|n1| < |n2|) we can estimate as follows:

(εN − ε)
∑

(n1,n2)∈Z4

n1 �=0,n2 �=0
|n1|≤|n2|≤N2δ

|n2|
〈n1 − n2〉s |n1|1−γ |n2|1−γ

� N−1−δ
∑

(n1,n2)∈Z4

n1 �=0,n2 �=0
|n1|≤|n2|≤N2δ

|n2|γ � N−1−δN 4δN 2δγ .

For the second sum on the r.h.s. in (2.28) we use the fast decay of ρ and hence for
every L > 0 we have

∑

(n1,n2)∈Z4

n1 �=0,n2 �=0
min{|n1|,|n2|}≥N2δ

∣∣ρ(εNn1)ρ(εNn2) − ρ(εn1)ρ(εn2)
∣∣

〈n1 − n2〉s |n1|1−γ |n2|1−γ

� N 2δL
∑

(n1,n2)∈Z4

n1 �=0,n2 �=0
min{|n1|,|n2|}≥N2δ

1

|n1|1−γ+L |n2|1−γ+L

� N 2δL N 2δ(γ−L+1)N 2δ(γ−L+1) � N 4δγ−2δL+4δ.

By using again the fast decay of ρ we can estimate the third sum on the r.h.s. in (2.28)
as follows (we can assume by symmetry |n1| < N 2δ ≤ |n2|):

∑

(n1,n2)∈Z4

n1 �=0,n2 �=0
|n1|<N2δ≤|n2|

∣∣ρ(εNn1)ρ(εNn2) − ρ(εn1)ρ(εn2)
∣∣

〈n1 − n2〉s |n1|1−γ |n2|1−γ

� N δL
∑

(n1,n2)∈Z4

n1 �=0,n2 �=0
|n1|<N2δ≤|n2|

1

|n1|1−γ |n2|1−γ+L
� N δL N2δ(γ+1)N2δ(γ−L+1) � N−δL+4δγ+4δ.

The proof of (2.26) is now complete provided we choose L large and δ, γ small
enough. ��

We complete this section by noticing that the analysis we performed here may allow
the extension of the results of [9] to a continuous family of approximation problems.
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3 Some useful facts

Next we provide a result that will be useful in the sequel. The proof is inspired by
[4], nevertheless we provide a proof for the sake of completeness. From a technical
viewpoint the minor difference is that our proof involves Sobolev spaces, while the
one in [4] uses Hölder spaces.

Proposition 3.1 Let vε(t, x, ω) be as in Theorem1.2. Then there exists an event� ⊂ �

such that p(�) = 1, � ⊂ �0 where �0 is the event in Proposition 2.1 and for every
ω ∈ � there exists a finite constant C(ω) > 0 such that:

sup
ε∈(0,1),t∈R

‖vε(t, x, ω)‖H1 < C(ω) (3.1)

and
‖eY (x,ω)u0(x)‖H2 < C(ω). (3.2)

Proof We introduce the event � as follows

� = {ω ∈ � : eY (x,ω)u0(x) ∈ H2} ∩ �0 (3.3)

where �0 is the event provided by Proposition 2.1.
We now state the fundamental conservation laws satisfied by vε. We have the mass

conservation
d

dt

∫

T2
e−2Yε |vε(t)|2 = 0 (3.4)

and the energy conservation

d

dt

( ∫

T2
e−2Yε

(|∇vε(t)|2− : |∇Yε|2 : |vε(t)|2 − 2λ

p + 2
e−pYε |vε(t)|p+2)) = 0.

(3.5)
Of course, the conservation laws (3.4) and (3.5) give the key global information in our
analysis. By using (3.4) and Propositions 2.1, we get

∫

T2
|vε(t)|2 ≤ ‖e2Yε‖L∞

∫

T2
e−2Yε |vε(t)|2 < C(ω)

∫

T2
e−2Yε |v(0)|2

< C(ω)‖e−2Yε‖L∞
∫

T2
|v(0)|2 < C(ω)

∫

T2
|v(0)|2. (3.6)

In order to control ‖∇vε(t)‖L2 we first notice that by duality and by Lemma 2.2 in
[9] (see also [6] and the references therein), and by using Proposition 2.1 we get for
s ∈ (0, 1):

∣∣
∫

T2
e−2Yε : |∇Yε|2 : |vε(t)|2

∣∣ ≤ ‖ : |∇Yε|2 : ‖W−s,q‖e−2Yε |vε(t)|2‖Ws,q′

< C(ω)(‖e−2Yε‖Ws,2‖|vε(t)|2‖Lr + ‖e−2Yε‖Ll‖|vε(t)|2‖
Ws, 32

)
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< C(ω)(‖vε(t)‖2L2r + ‖vε(t)‖Lm‖vε(t)‖Hs ),

where 1
q ′ = 1

2 + 1
r = 2

3 + 1
l ,

2
3 = 1

m + 1
2 and q < ∞ is large enough. We now fix

s = 1
2 . By using now interpolation and the Sobolev embedding we get

∣∣
∫

T2
e−2Yε : |∇Yε|2 : |vε(t)|2

∣∣ < C(ω)‖vε(t)‖
H

1
2
‖vε(t)‖H1

< C(ω)‖vε(t)‖
1
2
L2‖vε(t)‖

3
2
H1 .

By combining this estimate with (3.5) (and by using that we are assuming λ ≤ 0) we
get

∫

T2
e−2Yε |∇vε(t)|2 � ‖e−Yε∇vε(0)‖2L2

+ C(ω)(‖vε(t)‖
1
2
L2‖vε(t)‖

3
2
H1 + ‖vε(0)‖

1
2
L2‖vε(0)‖

3
2
H1)

+ ‖e−Yε vε(0)‖p+2
L p+2

which in turn by interpolation, Sobolev embedding and (3.6) implies

∫

T2
(|∇vε(t)|2 + |vε(t)|2) � C(ω)[P(‖vε(0)‖L2)‖vε(t)‖

3
2
H1 + P(‖vε(0)‖H1)]

where P denotes a polynomial function and we have used Proposition 2.1 to estimate
a.s. supε∈(0,1) ‖e−Yε‖L∞ < C(ω). We therefore have the bound

∫

T2
(|∇vε(t)|2 + |vε(t)|2) � C(ω)‖vε(t)‖

3
2
H1 + C(ω),

where the random constant C(ω) is finite for every ω ∈ �. We conclude the proof by
the classical Young inequality. ��

In the sequel we shall need suitable versions of the Gronwall lemma. Although
they are very classical we prefer to state them, in particular we emphasize how the
estimates depend from the constants involved. We also mention that the estimates
below are implicitely used in [4], however for the sake of clarity we prefer to give
below the precise statements that we need.

Proposition 3.2 Let f (t) be a non-negative real valued function such that for t ∈
[0,∞):

f (t) ≤ A + B
∫ t

0
f (s) ln(C + f (s))ds,

where A, B,C ∈ (1,∞). Then we have the following upper bound

f (t) ≤ (A + C)e
Bt

.
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Proof Notice that by assumption

C + f (t) ≤ A + C + B
∫ t

0
(C + f (s)) ln(C + f (s))ds := F(t) . (3.7)

Therefore

F ′(t) = B(C + f (t)) ln(C + f (t)) ≤ BF(t) ln F(t) .

Hence

d

dt

(
ln ln(F(t))

) ≤ B

which implies after integration between 0 and t :

ln ln(F(t)) ≤ ln ln(A + C) + Bt .

By taking twice the exponential we obtain

F(t) ≤ (A + C)e
Bt

.

Coming back to (3.7), we get the needed bound. ��
Proposition 3.3 Let f (t) be a non-negative real valued function for t ∈ [0,∞), such
that:

f ′(t) ≤ A + B f (t), f (0) = 0

where A, B ∈ (0,∞). Then we have the following upper bound:

f (t) ≤ AB−1eBt .

Proof We notice that d
dt (e

−Bt f (t)) ≤ Ae−Bt and hence

f (t) ≤ AeBt
∫ t

0
e−Bsds = A

B
eBt (1 − e−Bt ) ≤ A

B
eBt .

��

4 Modified energy for the gauged NLS on T
2 and H2 a-priori bounds

In the sequel vε(t, x, ω) will denote the unique solution to:

i∂tvε = �vε − 2∇vε · ∇Yε + vε : |∇Yε|2 : +λe−pYε vε|vε|p,
vε(0, x) = v0(x) ∈ H2, (4.1)

where λ ∈ R, p ≥ 2.
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Proposition 4.1 We have the identity

d

dt
(Eε(vε)[t]) = λHε(vε)[t],

where
Eε(vε)[t] = Fε(vε)[t] + λGε(vε)[t]

and the energiesFε,Gε,Hε aredefinedas followsonageneric timedependent function
w(t, x). The kinetic energy is defined by

Fε(w)[t] =
∫

T2
|�w(t)|2e−2Yε

− 4Re
∫

T2
�w(t)∇Yε · ∇w̄(t)e−2Yε

+ 4
2∑

i=1

∫

T2
(|∂iw(t)|2)(∂i Yε)

2e−2Yε

+ 8Re
∫

T2
∂1Yε∂2Yε∂1w(t)∂2w̄(t)e−2Yε

+ 2Re
∫

T2
w(t) : |∇Yε|2 : ∇w̄(t) · ∇(e−2Yε )

+ 2Re
∫

T2
�w(t)w̄(t) : |∇Yε|2 : e−2Yε

+
∫

T2
|w(t)|2(: |∇Yε|2 :)2e−2Yε .

The potential energy is defined by

Gε(w)[t] = −
∫

T2
|∇w(t)|2|w(t)|pe−(p+2)Yε

− 2Re
∫

T2
w(t)∇(|w(t)|p) · ∇w̄(t)e−(p+2)Yε

+ p

4

∫

T2
|∇(|w(t)|2)|2|w(t)|p−2e−(p+2)Yε

+ 2

p + 2

∫

T2
|w(t)|p+2 : |∇Yε|2 : e−(p+2)Yε

+ 2pRe
∫

T2
w(t)|w(t)|p∇Yε · ∇w̄(t)e−(p+2)Yε .

Finally, the lack of exact conservation is measured by the functional
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Hε(w)[t] = −
∫

T2
|∇w(t)|2∂t (|w(t)|p)e−(p+2)Yε

− 2Re
∫

T2
∂tw(t)∇(|w(t)|p) · ∇w̄(t)e−(p+2)Yε

− p

4

∫

T2
|∇(|w(t)|2)|2∂t (|w(t)|p−2)e−(p+2)Yε

+ 2pRe
∫

T2
∂t (w(t)|w(t)|p)∇Yε · ∇w̄(t)e−(p+2)Yε .

Remark 4.2 Notice that in the linear case (namely (4.1) with λ = 0) we get the fol-
lowing exact conservation law:

d

dt
Fε(vε) = 0.

The proof of Proposition 4.1 will be presented in the last section of the paper. Next,
we estimate Hε(vε) and the lower order terms in the energy Eε(vε). They will play a
crucial role in order to get the key H2 a-priori bound for vε. In the sequel we shall
assume that vε solves (4.1) with λ ≤ 0 and p ∈ [2, 3]. In particular we are allowed to
use Proposition 3.1 in order to control a.s. ‖vε(t, x)‖H1 uniformly w.r.t. ε and t .

Proposition 4.3 Let� ⊂ �be the event of full probability, obtained inProposition 3.1.
Then there exists a random variable C(ω) finite on � such that for every ε ∈ (0, 1

2 ):

|Hε(vε)| < C(ω)
(
‖e−Yε�vε‖2L2 ln

p−1
2

(
2 + ‖e−Yε�vε‖L2

) + | ln ε|8
)
.

Proof By using the Hölder inequality, the Leibnitz rule and the diamagnetic inequality
|∂t |u|| ≤ |∂t u| we get that the first three terms inHε(vε) can be estimated by:

∫

T2
|∂tvε||∇vε|2|vε|p−1e−(p+2)Yε ≤ ‖∂tvε‖L2(e−(p+2)Yε )‖∇vε‖2L4(e−(p+2)Yε )

‖vε‖p−1
L∞

which by the Brezis-Gallouet inequality (see [1]) can be estimates as follows:

. . . � ‖∂tvε‖L2(e−(p+2)Yε )‖∇vε‖2L4(e−(p+2)Yε )
‖vε‖p−1

H1

× ln
p−1
2 (2 + ‖vε‖L2 + ‖�vε‖L2)

and by using the equation solved by vε(t, x):

. . . � ‖�vε‖L2(e−(p+2)Yε )
‖∇vε‖2L4(e−(p+2)Yε )

‖vε‖p−1
H1 ln

p−1
2 (2 + ‖vε‖L2 + ‖�vε‖L2 )

+ ‖∇vε · ∇Yε‖L2(e−(p+2)Yε )
‖∇vε‖2L4(e−(p+2)Yε )

‖vε‖p−1
H1 ln

p−1
2 (2 + ‖vε‖L2 + ‖�vε‖L2 )

+ ‖vε : |∇Yε |2 : ‖L2(e−(p+2)Yε )
‖∇vε‖2L4(e−(p+2)Yε )

‖vε‖p−1
H1 ln

p−1
2 (2 + ‖vε‖L2 + ‖�vε‖L2 )
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+ ‖e−pYε vε |vε |p‖L2(e−(p+2)Yε )
‖∇vε‖2L4(e−(p+2)Yε )

‖vε‖p−1
H1 ln

p−1
2 (2 + ‖vε‖L2 + ‖�vε‖L2 )

= I + I I + I I I + I V .

Next we recall a family of estimates that will be useful to control I , I I , I I I , I V .
We shall also use without any further comment Propositions 2.1 and 3.1. We have the
Gagliardo-Nirenberg type inequality

‖∇u‖2L4 ≤ C‖�u‖L2‖∇u‖L2 . (4.2)

Indeed, using the Sobolev embedding H
1
2 ⊂ L4, we can write

‖∇u‖2L4 ≤ C‖∇u‖2
H

1
2

≤ C‖∇u‖H1‖∇u‖L2 .

It remains to observe that

‖∇u‖H1 ≤ C‖�u‖L2 .

Therefore we have (4.2). Now, using (4.2) we get:

‖∇vε‖2L4(e−(p+2)Yε )
< C(ω)‖∇vε‖2L4 < C(ω)‖�vε‖L2‖∇vε‖L2

and also

‖∇vε · ∇Yε‖L2(e−(p+2)Yε ) < C(ω)‖∇vε‖L4‖∇Yε‖L4

< C(ω)‖�vε‖
1
2
L2‖∇vε‖

1
2
L2‖∇Yε‖L4 .

Next notice that

‖vε : |∇Yε|2 : ‖L2(e−(p+2)Yε ) < C(ω)‖vε‖L4‖ : |∇Yε|2 : ‖L4

< C(ω)‖vε‖H1‖ : |∇Yε|2 : ‖L4 ,

where we have used the Sobolev embedding. Again by the Sobolev embedding we
get:

‖e−pYε vε|vε|p‖L2(e−(p+2)Yε ) < C(ω)‖vε‖p+1
L2(p+1) < C(ω)‖vε‖p+1

H1 .

Finally notice that

‖�vε‖L2 ≤ ‖e−Yε�vε‖L2‖eYε‖L∞ < C(ω)‖e−Yε�vε‖L2 .

Based on the estimates above we get:

I < C(ω)‖e−Yε�vε‖2L2 ln
p−1
2

(
2 + C(ω) + C(ω)‖e−Yε�vε‖L2

)
.
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and also

I I < C(ω)‖e−Yε�vε‖
3
2
L2 | ln ε| ln p−1

2 (2 + C(ω) + C(ω)‖e−Yε�vε‖L2)

< C(ω)‖e−Yε�vε‖2L2 + | ln ε|4 ln2(p−1)(2 + C(ω) + C(ω)‖e−Yε�vε‖L2)

< C(ω)(‖e−Yε�vε‖2L2 + 1) + | ln ε|8,

where we used the Young inequality. We conclude with the following estimates:

I I I < C(ω)‖e−Yε�vε‖L2 | ln ε|2 ln p−1
2 (2 + C(ω) + C(ω)‖e−Yε�vε‖L2)

< C(ω)(‖e−Yε�vε‖2L2 + 1) + | ln ε|8

and

I V < C(ω)‖e−Yε�vε‖L2 ln
p−1
2 (2 + C(ω) + C(ω)‖e−Yε�vε‖L2)

< C(ω)(‖e−Yε�vε‖2L2 + 1).

Summarizing we can control the first three terms inHε(vε). Concerning the last term
in the expression of Hε(vε) we can estimate it as follows:

∫

T2
|∂tvε||vε|p|∇Yε||∇vε|e−(p+2)Yε

≤ ‖e−(p+2)Yε‖L∞‖vε‖p
L8p‖∂tvε‖L2‖∇Yε‖L8‖∇vε‖L4

< C(ω)| ln ε|‖∂tvε‖L2‖∇vε‖L4

where we have used Propositions 2.1 and 3.1 in conjunction with the Sobolev embed-
ding to control ‖vε‖L8p . Hence by the Gagliardo-Nirenberg (4.2) inequality and by
using the equation solved by vε we can continue as follows

. . . < C(ω)| ln ε|‖�vε‖L2‖�vε‖
1
2
L2‖∇vε‖

1
2
L2

+ C(ω)| ln ε|‖∇vε · ∇Yε‖L2‖�vε‖
1
2
L2‖∇vε‖

1
2
L2

+ C(ω)| ln ε|‖vε : |∇Yε|2 : ‖L2‖�vε‖
1
2
L2‖∇vε‖

1
2
L2

+ C(ω)| ln ε|‖e−pYε vε|vε|p‖L2‖�vε‖
1
2
L2‖∇vε‖

1
2
L2 .

and by the Sobolev embedding

. . . < C(ω)| ln ε|‖�vε‖
3
2
L2 + C(ω)| ln ε|‖∇vε‖L4‖∇Yε‖L4‖�vε‖

1
2
L2

+ C(ω)| ln ε|‖vε‖L4‖ : |∇Yε|2 : ‖L4‖�vε‖
1
2
L2 + C(ω)| ln ε|‖vε|vε|p‖L2‖�vε‖

1
2
L2
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< C(ω)| ln ε|‖�vε‖
3
2
L2 + C(ω)| ln ε|2‖�vε‖L2 + C(ω)| ln ε|3‖�vε‖

1
2
L2

+ C(ω)| ln ε|‖�vε‖
1
2
L2 .

The conclusion is now straighforward. ��
Proposition 4.4 Let � ⊂ � be the event of full probability, obtained in Proposi-
tions 3.1. For every δ > 0 and ω ∈ � there exists a finite constant C(ω, δ) > 0 such
that for every ε ∈ (0, 1

2 ):

|Fε(vε) −
∫

T2
|�vε|2e−2Yε | < δ‖e−Yε�vε‖2L2 + C(ω, δ)| ln ε|4 (4.3)

and
|Gε(vε)| < δ‖e−Yε�vε‖2L2 + C(ω, δ)| ln ε|4. (4.4)

Proof We estimate the terms involved in the expression Fε(vε) − ∫
T2 |�vε|2e−2Yε .

Since the arguments are quite similar to the ones used along of Proposition 4.3, we
skip the details. Using Propositions 2.1 and 3.1, we can write

∣∣∣∣
∫

T2
�vε∇Yε · ∇v̄εe

−2Yε | ≤ ‖�vε‖L2‖∇Yε‖L4‖∇vε‖L4‖e−2Yε‖L∞

< C(ω)‖�vε‖L2 | ln ε
∣∣ ‖�vε‖

1
2
L2‖∇vε‖

1
2
L2 < C(ω)‖e−Yε�vε‖

3
2
L2 | ln ε

∣∣∣∣

< δ‖e−Yε�vε‖2L2 + C(ω, δ)| ln ε|4.

Next notice that third and fourth term in the energy Fε can be estimated by

‖∇vε‖2L4‖∇Yε‖2L4‖e−2Yε‖L∞

< C(ω)| ln ε|2‖�vε‖L2‖∇vε‖L2 < C(ω)| ln ε|2‖e−Yε�vε‖L2

< δ‖e−Yε�vε‖2L2 + C(ω, δ)| ln ε|4.

By similar arguments and Sobolev embedding we get:

∣∣∣∣
∫

T2
vε : |∇Yε|2 : ∇v̄ε · ∇(e−2Yε )|

≤ 2‖vε‖L8‖ : |∇Yε|2 : ‖L8‖∇vε‖L2‖∇Yε‖L4‖e−2Yε‖L∞ < C(ω)| ln ε

∣∣∣
3
.

Next we estimate the other term to be controlled:
∣∣∣∣
∫

T2
�vεv̄ε : |∇Yε|2 : e−2Yε | ≤ ‖�vε‖L2‖ : |∇Yε|2 : ‖L4‖vε‖L4‖e−2Yε‖L∞

< C(ω)‖e−Yε�vε‖L2 | ln ε|2 < δ‖e−Yε�vε‖2L2 + C(ω, δ)

∣∣∣ ln ε

∣∣∣
4

,
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where we have used the Sobolev embedding. We conclude the proof of (4.3) by the
following estimates:

∣∣∣∣
∫

T2
|vε|2(: |∇Yε|2 :)2e−2Yε | ≤ ‖vε‖2L4‖ : |∇Yε|2 : ‖2L4‖e−2Yε‖L∞ < C(ω)| ln ε

∣∣∣∣
4

,

where we have used again the Sobolev embedding. Next, we prove (4.4). The first,
second and third terms in the definition of Gε(vε) can be estimated essentially by the
same argument. Let us focus on the first one:

∫

T2
|∇vε|2|vε|pe−(p+2)Yε ≤ ‖∇vε‖2L4‖vε‖p

L2p‖e−(p+2)Yε‖L∞

< C(ω)‖�vε‖L2‖∇vε‖L2‖vε‖p
H1 < C(ω)‖e−Yε�vε‖L2 ,

wherewe have used again the Sobolev embedding, theGagliardo-Nirenberg inequality
and Propositions 2.1 and 3.1. Concerning the fourth term in the definition of Gε(vε)

we get by the Hölder inequality and the Sobolev embedding

∫

T2
|vε|p+2 : |∇Yε|2 : e−(p+2)Yε

≤ ‖ : |∇Yε|2 : ‖L4‖vε‖p+2

L
4
3 (p+2)

‖e−(p+2)Yε‖L∞ < C(ω)| ln ε|2

where we have used again Propositions 2.1 and 3.1. Finally we focus on the last term
in the definition of Gε(vε) that can be estimated as follows

∫

T2
|vε|p+1|∇Yε||∇vε|e−(p+2)Yε

≤ ‖vε‖p+1
L4(p+1)‖∇Yε‖L4‖∇vε‖L2‖e−(p+2)Yε‖L∞ < C(ω)| ln ε|

where we have used Propositions 2.1 and 3.1. ��
As already mentioned in the introduction we carefully follow the approach in [4]

along the proof of Theorem 1.2. The main novelty being the following H2 a-priori
bound that we extend to the regime of the nonlinearity 2 ≤ p ≤ 3. Next we shall
focus on the proof of the following Proposition (to be compared with Proposition 4.2
in [4]) which is the most important result of this section.

Proposition 4.5 Let � ⊂ � be the event of full probability, obtained in Proposi-
tions 3.1 and let T > 0 be fixed. Then there exists a random variable C(ω) > 0 finite
for every ω ∈ � and such that for every ε ∈ (0, 1

2 ),

sup
t∈[−T ,T ]

‖vε(t, x)‖H2 < | ln ε|C(ω).
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Proof of Proposition 4.5 We only consider positive times t . The case t < 0 can be
treated similarly. We shall prove the following estimate

‖e−Yε�vε(t)‖2L2 ≤
(
C(ω)(1 + | ln ε|4 + T | ln ε|8)

)eC(ω)t

, ∀t ∈ [0, T ]

for a suitable random constant which is finite a.s., then the conclusion follows by

‖�vε(t)‖2L2 ≤ ‖e−Yε�vε(t)‖2L2‖e2Yε‖L∞ < C(ω)‖e−Yε�vε(t)‖2L2 .

By Proposition 4.1 after integration in time and by using Propositions 4.3 and 4.4
(where we choose δ > 0 small in such a way that we can absorb on the l.h.s. the factor
‖e−Yε�vε(t)‖2L2 ) we can write:

‖e−Yε�vε(t)‖2L2

≤ C(ω)

∫ t

0

[‖e−Yε�vε‖2L2 ln
p−1
2 (2 + ‖e−Yε�vε‖L2) + | ln ε|8]

+ C(ω)| ln ε|4 + Eε(v0) . (4.5)

Notice also that by Proposition 4.4 one can can show the following bound for every
ω belonging to the event given in Proposition 3.1:

|Eε(v0)| < C(ω)(1 + | ln ε|4) .

Hence, by recalling that p−1
2 ≤ 1, we deduce from (4.5) the following bound

‖e−Yε�vε(t)‖2L2 ≤ C(ω)

∫ t

0

[‖e−Yε�vε‖2L2 ln(2 + ‖e−Yε�vε‖L2)
]
ds

+ C(ω)(1 + | ln ε|4 + T | ln ε|8), ∀t ∈ (0, T ).

We can apply Proposition 3.2 and the conclusion follows. ��

5 Proof of theorem 1.2

5.1 Convergence of the approximate solutions

Proposition 5.1 Let T > 0 be fixed and vε(t, x, ω) be as in Theorem 1.2. Then there
exists v(t, x, ω) ∈ C(R; Hγ ) such that

sup
t∈[−T ,T ]

‖vε(t, x, ω) − v(t, x, ω)‖Hγ
ε→0−→ 0, a.s. w.r .t . ω.
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Proof We shall only consider positive times, the analysis for negative times being
similar. Let us fix T > 0. Set

r(t, x) = vε1(t, x) − vε2(t, x), ε2 ≥ ε1 .

Then the equation solved by r is the following one:

i∂t r = �r − 2∇r · ∇Yε1 + r : |∇Yε1 |2 :
− 2∇vε2 · ∇(Yε1 − Yε2 ) + vε2 (: |∇Yε1 |2 : − : |∇Yε2 |2 :)
+ λe−pYε1 r |vε1 |p − λe−pYε1 vε2 (|vε2 |p − |vε1 |p) + λvε2 |vε2 |p(e−pYε1 − e−pYε2 ).

We multiply the equation by e−2Yε1 (x)r̄(t, x) and we consider the imaginary part,
then we get

1

2

d

dt

∫

T2
e−2Yε1 |r(t)|2 = −2Im

∫

T2
e−2Yε1 r̄(t)∇vε2 · ∇(Yε1 − Yε2)

+ Im
∫

T2
e−2Yε1 r̄(t)vε2(t)(: |∇Yε1 |2 : − : |∇Yε2 |2 :)

+ λIm
∫

T2
e−(p+2)Yε1 |r(t)|2|vε1(t)|p

− λIm
∫

T2
e−(p+2)Yε1 r̄(t)vε2(t)(|vε2(t)|p − |vε1(t)|p)

+ λIm
∫

T2
e−2Yε1 r̄(t)vε2(t)|vε2(t)|p(e−pYε1 − e−pYε2 )

= I + I I + I I I + I V + V . (5.1)

From now on we choose ω ∈ � where the event� is defined as in Proposition 3.1. We
estimate I by using duality andLemma2.2 in [9] (see also the proof of Proposition 3.1):

|I | � ‖∇(Yε1 − Yε2 )‖W−s,q ‖e−2Yε1 r̄(t)∇vε2 (t)‖Ws,q′

� ‖∇(Yε1 − Yε2 )‖W−s,q × (‖e−2Yε1 ‖Ws,q1 ‖r(t)‖Lq2 ‖∇vε2 (t)‖Lq3

+ ‖e−2Yε1 ‖Lq1 ‖r(t)‖Ws,q2 ‖∇vε2 (t)‖Lq3 + ‖e−2Yε1 ‖Lq1 ‖r(t)‖Lq2 ‖∇vε2 (t)‖Ws,q3

)

where 1
q ′ = 1

q1
+ 1

q2
+ 1

q3
and s ∈ (0, 1), q ∈ (1,∞). Next notice that by choosing s ∈

(0, 1) small enough, by using Sobolev embedding and by recalling Propositions 2.1,
3.1 and 4.5 we get

|I | < C(ω)εκ
2‖vε2(t)‖H2‖r(t)‖H1 < C(ω)εκ

2 | ln ε2|C(ω).

By a similar argument we can estimate I I as follows:

|I I | � ‖ : |∇Yε1 |2 : − : |Yε2 |2 : ‖W−s,q‖e−2Yε1 r̄(t)vε2(t)‖Ws,q′

� ‖∇(Yε1 − Yε2)‖W−s,q × (‖e−2Yε1 ‖Ws,q1 ‖r(t)‖Lq2 ‖vε2(t)‖Lq3
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+ ‖e−2Yε1 ‖Lq1 ‖r(t)‖Ws,q2 ‖vε2(t)‖Lq3 + ‖e−2Yε1 ‖Lq1 ‖r(t)‖Lq2 ‖vε2(t)‖Ws,q3

)

and hence by using Sobolev embedding and by recalling Propositions 2.1, 3.1 and 4.5
we get for s small enough

|I I | � C(ω)εκ
2‖vε2(t)‖H2 < C(ω)εκ

2 .

The estimate of the term I I I is rather classical and can be done by using the Brezis-
Gallouët inequality (see [1]). More precisely we get:

|I I I | � ‖e− p+2
2 Yε1 r(t)‖2L2‖vε1(t)‖p

L∞

� ‖e− p+2
2 Yε1 r(t)‖2L2(‖vε1(t)‖p

H1 ln
p
2 (2 + ‖vε1(t)‖H2)

< C(ω)‖e− p+2
2 Yε1 r(t)‖2L2 ln

p
2 (2 + ‖vε1(t)‖H2)

where we have used at the last step Proposition 3.1. In order to control ‖vε1(t)‖H2 we
use Proposition 4.5 and we get

|I I I | < C(ω)‖e− p+2
2 Yε1 r(t)‖2L2 ln

p
2 (| ln ε1|C(ω))

< C(ω)‖e−Yε1 r(t)‖2L2 ln
p
2 (| ln ε1|C(ω))

Next, arguing as in the estimate of I I I , we get by combining Propositions 3.1 and 4.5

|I V | � ‖e− p+2
2 Yε1 r(t)‖2L2(‖vε1(t)‖p−1

L∞ + ‖vε2(t)‖p−1
L∞ )‖vε2(t)‖L∞

� ‖e− p+2
2 Yε1 r(t)‖2L2 ln

p
2 (| ln ε1|C(ω)) < C(ω)‖e−Yε1 r(t)‖2L2 ln

p
2 (| ln ε1|C(ω)).

Finally by the Holder inequality, propositions 2.1 and 3.1 we estimate

|V | � ‖e−2Yε1 ‖L∞‖r̄(t)‖L2‖vε2(t)‖p+1
L2(p+1)‖e−pYε1 − e−pYε2 ‖L∞

< C(ω)εκ
2 .

Summarizing we obtain

1

2

d

dt

∫

T2
e−2Yε1 |r(t)|2 < C(ω)εκ

2 | ln ε2|C(ω)

+ C(ω) ln
p
2 (| ln ε1|C(ω))

∫

T2
e−2Yε1 |r(t)|2 . (5.2)

Next we split the proof in two steps.

First step v2−k (t, x, ω)
k→∞−→ v(t, x, ω) for every ω ∈ �.
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We consider r = v2−(k+1) − v2−k . Then by combining Proposition 3.3 and (5.2)
(where we choose ε1 = 2−(k+1) and ε2 = 2−k) we get:

sup
t∈(0,T )

∫

T2
e−2Y2−(k+1) |v2−(k+1) (t) − v2−k (t)|2

<
C(ω)2−kκ | ln 2−k |C(ω)eC(ω) ln

p
2 (| ln 2−(k+1)|C(ω))T

ln
p
2 (| ln 2−(k+1)|C(ω))

By recalling that for every ω ∈ � we have supk ‖e2Y2−(k+1) ‖L∞ < C(ω) < ∞ we
deduce that the bound above implies

sup
t∈(0,T )

∫

T2
|v2−(k+1) (t) − v2−k (t)|2 <

C(ω)2−kκ | ln 2−k |C(ω)eC(ω) ln
p
2 (| ln 2−(k+1)|C(ω))T

ln
p
2 (| ln 2−(k+1)|C(ω))

.

By combining this estimate with interpolation and with Proposition 4.5 we deduce for
every γ ∈ [0, 2) the following bound

sup
t∈(0,T )

‖v2−(k+1) (t) − v2−k (t)‖Hγ

<
C(ω)2−kκ̃ | ln 2−k |C(ω)eC(ω) ln

p
2 (| ln 2−(k+1)|C(ω))T

ln
p̃
2 (| ln 2−(k+1)|C(ω))

.

where κ̃, p̃ > 0 are constants that depend from the interpolation inequality. It is easy
to check that

∑

k

C(ω)2−kκ̃ | ln 2−k |C(ω)eC(ω) ln
p
2 (| ln 2−(k+1)|C(ω))T

ln
p̃
2 (| ln 2−(k+1)|C(ω))

< ∞

and therefore (v2−k ) is a Cauchy sequence in C([0, T ]; Hγ ) and we conclude.

Second step: vε(t, x, ω)
ε→0−→ v(t, x, ω) for every ω ∈ �.

For every ε ∈ (2−(k+1), 2−k)we introduce r = vε −v2−k . Then by combining (5.2)
(where we choose ε1 = ε and ε2 = 2−k) with Proposition 3.3 and arguing as above
we get

sup
t∈(0,T )

‖vε(t) − v2−k (t)‖Hγ <
C(ω)2−kκ̃ | ln 2−k |C(ω)eC(ω) ln

p
2 (| ln ε|C(ω))T

ln
p̃
2 (| ln ε|C(ω))

and hence (recall that ε ∈ (2−(k+1), 2−k))

sup
ε∈(2−(k+1),2−k )

‖vε(t) − v2−k (t)‖Hγ
k→∞−→ 0.
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We conclude by recalling the first step. ��

5.2 Uniqueness for (1.17)

It follows from the analysis of the previous section that vε converges almost surely to
a solution of (1.17). We next prove the uniqueness of this solution.

Proposition 5.2 Let � ⊂ � be the full measure event defined in Proposition 3.1 and
T > 0. For every ω ∈ � there exists at most one solution v(t, x) ∈ C([0, T ]; Hγ ) to
(1.17) for γ > 1.

Proof Assume v1(t, x) and v2(t, x) are two solutions, then we consider the difference
r(t, x) = v1(t, x) − v2(t, x) which solves

{
i∂t r = �r − 2∇r · ∇Y + r : |∇Y |2 : +λe−pY (v1|v1|p − v2|v2|p),
r(0, x) = 0.

Next we multiply the equation by e−2Yε(x)r̄(t, x) where ε ∈ (0, 1), we integrate by
parts and we take the imaginary part, finally we get:

1

2

d

dt

∫

T2
e−2Yε |r(t)|2 = 2

∫

T2
e−2Yε r̄(t)∇r(t) · ∇(Yε − Y )

+ λIm
∫

T2
e−2Yε−pY r̄(t)(v1(t)|v1(t)|p − v2(t)|v2(t)|p)

= I + I I .

By the Sobolev embedding Hγ ⊂ L∞ we get

I I ≤ ‖e−pY ‖L∞‖e−Yεr(t)‖2L2 sup
t∈[0,T ]

(‖v1(t)‖p
Hγ + ‖v2(t)‖p

Hγ )

< C(ω)‖e−Yεr(t)‖2L2 .

For the term I we get by duality and Lemma 2.2 in [9] (see the proof of proposition 3.1
for more details) the following estimate

|I | ≤ ‖∇(Yε − Y )‖W−s,q ‖e−2Yε r̄(t)∇r(t)‖Ws,q′

< C(ω)εκ (‖e−2Yε‖Lq1 ‖r̄(t)‖Lq2 ‖∇r(t)‖Ws,2 + ‖e−2Yε‖Ws,q1 ‖r̄(t)‖Lq2 ‖∇r(t)‖L2

+ ‖e−2Yε‖Lq1 ‖r̄(t)‖Ws,q2 ‖∇r(t)‖L2 )

where s ∈ (0, 1), q ∈ (0,∞), 1
q ′ = 1

q1
+ 1

q2
+ 1

2 and we have used Proposition 2.1
at the second step. By Sobolev embedding, provided that we choose s small enough,
and Proposition 2.1 one can show that

|I | < C(ω)εκ sup
t∈[0,T ]

(‖v1(t)‖2Hγ + ‖v2(t)‖2Hγ ) < C(ω)εκ .
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Summarizing we get

d

dt

∫

T2
e−2Yε |r(t)|2 < C(ω)(

∫

T2
e−2Yε |r(t)|2 + εκ), r(0) = 0.

We deduce by proposition 3.3 that

∫

T2
e−2Yε |r(t)|2 < C(ω)εκeC(ω)t

and hence by passing to the limit ε → 0 we deduce
∫
T2 e−2Y |r(t)|2 = 0. ��

6 Proof of theorem 1.1

The proof of (1.7) follows by combining the transformation (1.12) with Theorem 1.2.
Since now we shall denote by � ⊂ � the event of full probability given by the
intersection of the ones defined in Theorem 1.2 and in Proposition 3.1. In order to
prove (1.8) we first show

sup
t∈[−T ,T ]

∥∥eYε(x,ω)|uε(t, x, ω)| − |v(t, x, ω)|∥∥Hγ (T2)∩L∞(T2)

ε→0−→ 0, ∀ω ∈ �.

(6.1)
Notice that from (1.7) and the Sobolev embedding, we get

sup
t∈[−T ,T ]

‖e−iCε t eYεuε(t) − v(t)‖L2∩L∞
ε→0−→ 0, ∀ω ∈ �

and hence by the triangle inequality in C,

sup
t∈[−T ,T ]

‖eYε |uε(t)| − |v(t)|‖L2∩L∞
ε→0−→ 0, ∀ω ∈ �. (6.2)

Next we prove

sup
t∈[−T ,T ]

‖eYε |uε(t)| − |v(t)|‖Hγ
ε→0−→ 0, ∀ω ∈ �, γ ∈ (0, 1). (6.3)

Since
sup

t∈[−T ,T ]
‖vε(t) − v(t)‖Hγ

ε→0−→ 0, ∀ω ∈ �, γ ∈ [0, 2) (6.4)

we get in particular
sup

t∈[−T ,T ]
‖v(t)‖H1 < ∞, ∀ω ∈ � (6.5)

and hence by the diamagnetic inequality

sup
t∈[−T ,T ]

‖|v(t)|‖H1 < ∞, ∀ω ∈ �. (6.6)
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On the other hand by (6.4) we have

sup
ε∈(0,1),t∈[−T ,T ]

‖vε(t)‖Hγ < ∞, ∀ω ∈ �, γ ∈ [0, 2). (6.7)

Next notice that eYε |uε(t)| = |vε(t)| and hence by the diamagnetic inequality
‖eYε |uε(t)|‖H1 ≤ ‖vε(t)‖H1 and hence summarizing

sup
ε∈(0,1),t∈[−T ,T ]

(
max

{‖eYε |uε(t)|‖H1, ‖|v(t)|‖H1
})

< ∞, ∀ω ∈ �. (6.8)

By interpolation between the uniform bound (6.8) and (6.2) we get (6.3).
Finally we prove (1.8). We show first the following fact

sup
t∈[−T ,T ]

‖eYε |uε(t)| − eY |uε(t)|‖Hγ ∩L∞ ε→0−→ 0, ∀ω ∈ �, γ ∈ (0, 1) (6.9)

which in turn implies by (6.1) the following convergence

sup
t∈[−T ,T ]

∥∥eY |uε(t)| − |v(t)|∥∥Hγ ∩L∞
ε→0−→ 0, ∀ω ∈ �, γ ∈ (0, 1). (6.10)

We shall establish the following equivalent form of (6.9):

‖eY (1 − eYε−Y )|uε(t)|
∥∥
Hγ ∩L∞

ε→0−→ 0, ∀ω ∈ �, γ ∈ (0, 1). (6.11)

We first focus on the case γ = 0. In this case we get (6.11) by combining the following

facts: we have the convergence Yε(x)
ε→0−→ Y (x) for every ω ∈ � in the L∞ topology

(see Proposition 2.1); we have the following bound

‖uε(t)‖L2 = ‖e−Yε vε(t)‖L2 ≤ ‖e−Yε‖L∞‖vε(t)‖L2

and hence ‖uε(t)‖L2 is bounded for every ω ∈ � by (6.7) and Proposition 2.1.
In order to establish (6.11) for γ ∈ (0, 1) it is sufficient to interpolate between the

convergence for γ = 0 (already established above) with the uniform bound

sup
ε∈(0,1),t∈[−T ,T ]

‖eY (1 − eYε−Y )|uε(t)|
∥∥
Hγ < ∞, ∀ω ∈ �.

In order to establish this bound it is sufficient to notice that for every ω ∈ �

sup
ε∈(0,1)

{‖eY ‖Hγ ∩L∞ , ‖1 − eYε−Y ‖Hγ ∩L∞ , ‖|uε(t)|‖Hγ ∩L∞} < ∞ (6.12)

and to recall that Hγ ∩ L∞ is an algebra. We recall that the boundedness of
‖|uε(t)|‖Hγ ∩L∞ comes on one hand by combining (6.7) with

‖|uε(t)|‖L∞ = ‖e−Yε |vε(t)|‖L∞ ≤ ‖e−Yε‖L∞‖vε(t)‖L∞ � ‖vε(t)‖Hs ,
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where s > 1. On the other hand we have the following computation:

‖|uε(t)|‖Hγ = ‖e−Yε(x)|vε(t)|‖Hγ

≤ ‖e−Yε‖L∞∩Hγ ‖|vε(t)|‖L∞∩Hγ � ‖|vε(t)|‖L∞∩Hγ , γ ∈ [0, 1)

where we have used Proposition 2.1 and hence we get the desired uniform bound since
by the diamagnetic inequality

‖|vε(t)|‖L∞∩Hγ ≤ ‖|vε(t)|‖L∞∩H1 � ‖vε(t)‖L∞∩H1

and we conclude by (6.7).
Let us now establish (1.8). Notice that by combining (6.2), (6.3) and (6.11) we

have:

sup
t∈[−T ,T ]

∥∥eY |uε(t)| − |v(t)|∥∥Hγ ∩L∞
ε→0−→ 0, ∀ω ∈ �, γ ∈ (0, 1). (6.13)

Hence (1.8) in the case γ = 0 and the L∞ convergence, follow from (6.13) since
e−Y ∈ L∞ for every ω ∈ � (see Proposition 2.1). To prove (1.8) in the general case
γ ∈ (0, 1) it is sufficient to make interpolation between γ = 0 and the bound

sup
ε

{‖e−Y ‖Hγ ∩L∞ , ‖eY |uε(t)| − |v(t)|‖Hγ ∩L∞} < ∞, ∀ω ∈ � (6.14)

which in turn implies, thanks to the fact that Hγ ∩ L∞ is an algebra, that the quantity
‖|uε(t)| − e−Y |v(t)|‖Hγ is uniformly bounded for every ω ∈ �. The proof of (6.14)
follows by combining: the estimate (6.12), the bound ‖v(t)‖L∞ � ‖v(t)‖Hs < C for
s ∈ (1, 2) where we used (6.7) in the last inequality, by the bound (6.6) and finally by
the properties of Y (see Proposition 2.1). This completes the proof of Theorem 1.1.

7 Proof of proposition 4.1

In the sequel, we use the following simplified notation: v = vε(t, x), Y = Yε(x) and
E = Eε. Moreover we denote by (·, ·) the L2 scalar product. We also drop the explicit
dependence of the functions involved from the variable (t, x), in order to make the
computations more compact.

We are interested to construct a suitable energy with the following structure

E(v) = (�v,�ve−2Y ) + remainder.

By using the equation solved by v we have the following identity:

d

dt
(�v,�ve−2Y ) = 2Re(∂t�v,�ve−2Y ) = 2Re(∂t�v, i∂tve

−2Y )

+ 2Re(∂t�v, 2∇Y · ∇ve−2Y )
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− 2Re(∂t�v, v : |∇Y |2 : e−2Y )

− 2λRe(∂t�v, v|v|pe−(p+2)Y )

= I + I I + I I I + I V . (7.1)

Notice that

I = −2Re(∂t∇v, i∂t∇ve−2Y ) − 2Re(∂t∇v, i∂tv∇(e−2Y ))

= −2Im(∂t∇v, ∂tv∇(e−2Y )). (7.2)

Moreover we have

I I = 2Re(∂t�v, 2∇Y · ∇ve−2Y )

= 2Re(�v, ∂t∇v · ∇(e−2Y )) + 2
d

dt
Re(�v, 2∇Y · ∇ve−2Y ) (7.3)

and using again the equation

I I = 2
d

dt
Re(�v, 2∇Y · ∇ve−2Y ) + 2Re(i∂tv, ∂t∇v · ∇(e−2Y ))

+ 4Re(∇Y · ∇v, ∂t∇v · ∇(e−2Y ))

− 2Re(v : |∇Y |2 :, ∂t∇v · ∇(e−2Y )) − 2λRe(e−pY v|v|p, ∂t∇v · ∇(e−2Y ))

= 2
d

dt
Re(�v, 2∇Y · ∇ve−2Y ) − 2Im(∂tv, ∂t∇v · ∇(e−2Y ))

+ 4Re(∇Y · ∇v, ∂t∇v · ∇(e−2Y )) − 2Re(v : |∇Y |2 :, ∂t∇v · ∇(e−2Y ))

− 2λRe(e−pY v|v|p, ∂t∇v · ∇(e−2Y ))

= 2
d

dt
Re(�v, 2∇Y · ∇ve−2Y ) + 2Im(∂t∇v, ∂tv∇(e−2Y ))

+ 4Re(∇Y · ∇v, ∂t∇v · ∇(e−2Y )) − 2Re(v : |∇Y |2 :, ∂t∇v · ∇(e−2Y ))

− 2λRe(e−pY v|v|p, ∂t∇v · ∇(e−2Y )) (7.4)

and hence by (7.2) we get

I I = 2
d

dt
Re(�v, 2∇Y · ∇ve−2Y ) − I + 4Re(∇Y · ∇v, ∂t∇v · ∇(e−2Y ))

− 2Re(v : |∇Y |2 :, ∂t∇v · ∇(e−2Y )) − 2λRe(e−pY v|v|p, ∂t∇v · ∇(e−2Y ))

= 2
d

dt
Re(�v, 2∇Y · ∇ve−2Y ) − I + 4Re(∇Y · ∇v, ∂t∇v · ∇(e−2Y ))

− 2
d

dt
Re(v : |∇Y |2 :,∇v · ∇(e−2Y )) + 2Re(∂tv : |∇Y |2 :,∇v · ∇(e−2Y ))

− 2λRe(e−pY v|v|p, ∂t∇v · ∇(e−2Y )).
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Summarizing we get from the previous chain of identities

I + I I = 2Re(∂tv : |∇Y |2 :, ∇v · ∇(e−2Y ))

+ 2
d

dt
Re(�v, 2∇Y · ∇ve−2Y ) + 4Re(∇Y · ∇v, ∂t∇v · ∇(e−2Y ))

− 2
d

dt
Re(v : |∇Y |2 :,∇v · ∇(e−2Y )) − 2λRe(e−pY v|v|p, ∂t∇v · ∇(e−2Y )).

(7.5)

On the other hand we can compute

− 2λRe(e−pY v|v|p, ∂t∇v · ∇(e−2Y ))

= 2λRe(∇(e−pY v|v|p), ∂t∇ve−2Y ) + 2λRe(e−pY v|v|p, ∂t�ve−2Y )

= 2λRe(∇(e−pY v|v|p), ∂t∇ve−2Y ) − I V

= 2λRe(e−pY∇v|v|p, ∂t∇ve−2Y ) + 2λRe(e−pY v∇(|v|p), ∂t∇ve−2Y )

+ 2λRe(∇(e−pY )v|v|p, ∂t∇ve−2Y ) − I V (7.6)

and hence

. . . = λRe(∂t (|∇v|2)|v|p, e−(p+2)Y )

+ 2λRe(v∇(|v|p), ∂t∇ve−(p+2)Y ) + 2λRe(∇(e−pY )v|v|p, ∂t∇ve−2Y ) − I V

= λRe(∂t (|∇v|2)|v|p, e−(p+2)Y ) + 2λ
d

dt
Re(v∇(|v|p), ∇ve−(p+2)Y )

− 2λRe(∂tv∇(|v|p),∇ve−(p+2)Y )

− 2λRe(v∇∂t (|v|p),∇ve−(p+2)Y ) + 2λRe(∇(e−pY )v|v|p, ∂t∇ve−2Y ) − I V

= λ
d

dt
Re(|∇v|2|v|p, e−(p+2)Y ) − λRe(|∇v|2∂t (|v|p), e−(p+2)Y )

+ 2λ
d

dt
Re(v∇(|v|p),∇ve−(p+2)Y )

− 2λRe(∂tv∇(|v|p),∇ve−(p+2)Y ) − λp

2
(∂t (∇(|v|2)|v|p−2), ∇(|v|2)e−(p+2)Y )

+ 2λRe(∇(e−pY )v|v|p, ∂t∇ve−2Y ) − I V

= λ
d

dt
Re(|∇v|2|v|p, e−(p+2)Y ) − λRe(|∇v|2∂t (|v|p), e−(p+2)Y )

+ 2λ
d

dt
Re(v∇(|v|p),∇ve−(p+2)Y )

− 2λRe(∂tv∇(|v|p),∇ve−(p+2)Y ) − λp

2
(∂t∇(|v|2)|v|p−2,∇(|v|2)e−(p+2)Y )

− λp

2
(∇(|v|2)∂t (|v|p−2),∇(|v|2)e−(p+2)Y )+2λRe(∇(e−pY )v|v|p, ∂t∇ve−2Y )−I V

= λ
d

dt
Re(|∇v|2|v|p, e−(p+2)Y ) − λRe(|∇v|2∂t (|v|p), e−(p+2)Y )

+ 2λ
d

dt
Re(v∇(|v|p),∇ve−(p+2)Y )
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− 2λRe(∂tv∇(|v|p),∇ve−(p+2)Y ) − λp

4
(∂t (|∇(|v|2)|2)|v|p−2, e−(p+2)Y )

− λp

2
(∇(|v|2)∂t (|v|p−2),∇(|v|2)e−(p+2)Y )+2λRe(∇(e−pY )v|v|p, ∂t∇ve−2Y )−I V

= λ
d

dt
Re(|∇v|2|v|p, e−(p+2)Y ) − λRe(|∇v|2∂t (|v|p), e−(p+2)Y )

+ 2λ
d

dt
Re(v∇(|v|p),∇ve−(p+2)Y )

− 2λRe(∂tv∇(|v|p),∇ve−(p+2)Y ) − λp

4

d

dt
(|∇(|v|2)|2|v|p−2, e−(p+2)Y )

+ λp

4
(|∇(|v|2)|2∂t (|v|p−2), e−(p+2)Y ) − λp

2
(∇(|v|2)∂t (|v|p−2),∇(|v|2)e−(p+2)Y )

+ 2λRe(∇(e−pY )v|v|p, ∂t∇ve−2Y ) − I V . (7.7)

By combining (7.5), (7.6) and (7.7) we get

I + I I + I V = 2Re(∂tv : |∇Y |2 :,∇v · ∇(e−2Y ))

+ 2
d

dt
Re(�v, 2∇Y · ∇ve−2Y ) + 4Re(∇Y · ∇v, ∂t∇v · ∇(e−2Y ))

− 2
d

dt
Re(v : |∇Y |2 :,∇v · ∇(e−2Y ))

+ λ
d

dt
Re(|∇v|2|v|p, e−(p+2)Y ) − λRe(|∇v|2∂t (|v|p), e−(p+2)Y )

+ 2λ
d

dt
Re(v∇(|v|p),∇ve−(p+2)Y )−2λRe(∂tv∇(|v|p),∇ve−(p+2)Y )

− λp

4

d

dt
(|∇(|v|2)|2|v|p−2, e−(p+2)Y )

+ λp

4
(|∇(|v|2)|2∂t (|v|p−2), e−(p+2)Y )

− λp

2
(∇(|v|2)∂t (|v|p−2),∇(|v|2)e−(p+2)Y )

+ 2λRe(∇(e−pY )v|v|p, ∂t∇ve−2Y ). (7.8)

Next notice that

I I I = −2
d

dt
Re(�v, v : |∇Y |2 : e−2Y ) + 2Re(�v, ∂tv : |∇Y |2 : e−2Y ). (7.9)

Summarizing we get

I + I I + I I I + I V

= 2Re(∂tv : |∇Y |2 :,∇v · ∇(e−2Y )) + 2
d

dt
Re(�v, 2∇Y · ∇ve−2Y )

+ 4Re(∇Y · ∇v, ∂t∇v · ∇(e−2Y ))

− 2
d

dt
Re(v : |∇Y |2 :,∇v · ∇(e−2Y )) + λ

d

dt
Re(|∇v|2|v|p, e−(p+2)Y )
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− λRe(|∇v|2∂t (|v|p), e−(p+2)Y ) + 2λ
d

dt
Re(v∇(|v|p),∇ve−(p+2)Y )

− 2λRe(∂tv∇(|v|p),∇ve−(p+2)Y ) − λp

4

d

dt
(|∇(|v|2)|2|v|p−2, e−(p+2)Y )

+ λp

4
(|∇(|v|2)|2∂t (|v|p−2), e−(p+2)Y ) − λp

2
(∇(|v|2)∂t (|v|p−2),∇(|v|2)e−(p+2)Y )

+ 2λ
d

dt
Re(∇(e−pY )v|v|p,∇ve−2Y ) − 2λRe(∇(e−pY )∂t (v|v|p),∇ve−2Y )

− 2
d

dt
Re(�v, v : |∇Y |2 : e−2Y ) + 2Re(�v, ∂tv : |∇Y |2 : e−2Y ). (7.10)

Next by using the equation we compute the first and last term on the r.h.s. in (7.10)
as follows:

2Re(∂tv : |∇Y |2 :,∇v · ∇(e−2Y )) + 2Re(�v, ∂tv : |∇Y |2 : e−2Y )

= 2Re(∂tv : |∇Y |2 :, ∇v · ∇(e−2Y )) + 2Re(2∇v · ∇Y , ∂tv : |∇Y |2 : e−2Y )

− 2Re(v : |∇Y |2 :, ∂tv : |∇Y |2 : e−2Y ) − 2λRe(e−pY v|v|p, ∂tv : |∇Y |2 : e−2Y )

= −4Re(∂tv : |∇Y |2 :, ∇v · ∇Ye−2Y ) + 4Re(∇v · ∇Y , ∂tv : |∇Y |2 : e−2Y )

− 2Re(v : |∇Y |2 :, ∂tv : |∇Y |2 : e−2Y ) − 2λRe(v|v|p, ∂tv : |∇Y |2 : e−(p+2)Y )

= − d

dt
(|v|2 : |∇Y |2 :, : |∇Y |2 : e−2Y ) − 2λ

p + 2

d

dt
Re(|v|p+2, : |∇Y |2 : e−(p+2)Y ).

(7.11)

Finally we show that the third term on the r.h.s. in (7.10) can be written as a total
derivative w.r.t. time variable:

4Re(∇Y · ∇v, ∂t∇v · ∇(e−2Y ))

= −8Re
2∑

i, j=1

∫

T2
e−2Y ∂i Y ∂iv∂t∂ j v̄∂ j Y = −4Re

2∑

i=1

∫

T2
e−2Y ∂t (|∂iv|2)(∂i Y )2

− 8Re
∫

T2
e−2Y ∂1Y ∂1v∂t∂2v̄∂2Y − 8Re

∫

T2
e−2Y ∂2Y ∂2v∂t∂1v̄∂1Y

= −4
d

dt

2∑

i=1

∫

T2
e−2Y (|∂iv|2)(∂i Y )2 − 8Re

∫

T2
e−2Y ∂1Y ∂2Y (∂1v∂t∂2v̄ + ∂2v∂t∂1v̄)

= −4
d

dt

2∑

i=1

∫

T2
e−2Y (|∂iv|2)(∂i Y )2 − 8Re

∫

T2
e−2Y ∂1Y ∂2Y ∂t (∂1v∂2v̄)

= −4
d

dt

2∑

i=1

∫

T2
e−2Y (|∂iv|2)(∂i Y )2 − 8

d

dt
Re

∫

T2
e−2Y ∂1Y ∂2Y ∂1v∂2v̄. (7.12)

We conclude the proof of Proposition 4.1 by combining (7.1), (7.10), (7.11), (7.12).
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