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A recent trend in algorithm design consists of augmenting classic data structures with 
machine learning models, which are better suited to reveal and exploit patterns and 
trends in the input data so to achieve outstanding practical improvements in space 
occupancy and time efficiency. This is especially known in the context of indexing 
data structures for big data where, despite few attempts in evaluating their asymptotic 
efficiency, theoretical results are yet missing in showing that learned indexes are provably 
better than classic indexes, such as B-trees and their variants. In this paper, we present the 
first mathematically-grounded answer to this problem by exploiting a link with a mean 
exit time problem over a proper stochastic process which, we show, is related to the space 
and time complexity of these learned indexes. As a corollary of this general analysis, we 
show that plugging this result in the (learned) PGM-index, we get a learned data structure 
which is provably better than B-trees.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Very recently, the unexpected combination of data structures and Machine Learning (ML) has led to the development of a 
new area of algorithmic research, called learned data structures. The key design idea consists of augmenting — and sometimes 
even replacing — classic building blocks of data structures, such as arrays, trees or hash tables, with ML models, which are 
better suited to reveal and exploit patterns and trends in the input data. This feature, orchestrated with proper algorithms, 
has led to outstanding practical improvements in space occupancy and time efficiency over a plethora of problems and 
applications, such as databases, search engines, operating systems, sorting algorithms [2].

The most successful example of the interplay between data structures and machine learning is the indexable dictionary 
problem, which asks to store a set S of n keys over a universe U (e.g. reals, integers, etc.) in an index structure that efficiently 
supports the following query operations:

• member(x) = true if x ∈ S , false otherwise;
• predecessor(x) = max{y ∈ S | y < x};
• range(x, y) = S ∩ [x, y].

✩ This article extends the work presented at ICML 2020 [1]. The new contributions are detailed at the end of the Introduction.
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Fig. 1. A set S of ten keys stored in a sorted array A and the corresponding set of points D = {(x, rank(x))}x∈S in the Cartesian plane. The linear model f , 
computed using ordinary least squares on D , estimates that x = 49 is in position r = � f (x)� = 4, but the true rank of x is 6 (hence err = 2). We can fix the 
error incurred by f via a binary search on A[r − err, r + err].

For this problem, many learned data structures (or learned indexes, as they are called in this case) have been proposed. 
Examples include the ones in [3–8] and others surveyed in [2]. The common idea is that indexes are models that can be 
trained to map keys to their location in the sorted S , and this mapping is enough to implement the above queries.

To clarify, let us denote by rank(x) the primitive that returns, for any key x ∈ U , the number of keys in S which are 
smaller than x, and let A be the array storing the keys of S in sorted order. Then, member(x) can be implemented by 
checking whether A[rank(x)] = x; predecessor(x) consists of returning A[rank(x) − 1]; and range(x, y) consists of scanning 
the array A from position rank(x) up to the first key larger than y. Given rank, we reformulate the indexable dictionary 
problem as a supervised learning task over a dataset of points {(x, rank(x))}x∈S in which we look for a model f : U →
{0, . . . , n − 1} mapping keys to their position in A that minimises the error | f (x) − rank(x)| over all x ∈ U . The possible 
presence of an error imposes also the design of proper algorithms that subsequently correct f (x) to get the exact rank(x), 
and thus answer correctly the query on x. As an example, we can use a binary search in A in a neighbourhood of size 
err = maxx∈U | f (x) − rank(x)| around the approximate position f (x). An illustrative example is given in Fig. 1.

We observe that this has been a significant step ahead in the design of indexes because the resulting (learned) data 
structure answers queries in O (log err) time plus the cost of computing f , and this might be independent of the number 
of keys in S . However, we have to notice that although f could be made as much sophisticate as needed to minimise the 
error, there is a non-negligible side-effect on the overall efficiency of the learned index: the more complex is f , the worse 
is the query time efficiency and its space occupancy. Consequently, it is not so obvious whether classic index structures, 
such as B-trees and their variants [9,10], are better or worse than learned indexes.

State-of-the-art learned indexes Starting from the premises above, a significant flow of research has investigated the trade-
off among the complexity of the model f , the time to compute and correct the prediction f (x), and the space needed to 
store f . Ao et al. [3] used simple least-squares linear regression. Kraska et al. [4] proposed a fixed hierarchy of ML models 
and found that linear regression models were the most effective ones. Other researchers improved these results by proposing 
dynamic learned indexes based on a Piecewise Linear Approximation (PLA) with a guaranteed maximum error ε ≥ 1 (in 
practice, ε is of the order of hundreds or thousands). In particular, Galakatos et al. [5] orchestrated the segments composing 
the PLA with a classic B+-tree, while Ferragina and Vinciguerra [7] introduced theoretically more efficient recursive schemes 
based on optimal PLAs, i.e. PLAs with the minimum number of segments.

In practice, learned indexes are fast and occupy a space which is up to several orders of magnitude smaller than classic 
data structures on several synthetic and real datasets [4–8,11,12]. However, although the authors in [7] showed that query-
ing the PGM-index is as fast as a B-tree with a disk-page size B , it is not yet known whether its space occupancy is provably 
better than the �(n/B) disk pages required by B-trees. In fact, the only known mathematical relation that ties the number n
of input keys, the error ε and the size s of the PLA-model (i.e. the number of its segments) is s ≤ n/2ε (see [7]). This shows 
that the space occupancy of a learned index is never worse than the one taken by a B-tree with disk-page size B (just take 
ε = �(B)), but it does not theoretically ensure that it is provably more succinct than it.

As a consequence, there is a methodological gap in learned index design between what is evident from experiments on 
several but specific datasets and what research has been able to corroborate with solid mathematical grounds. Bridging this 
gap amounts to explain from a theoretical perspective the “several orders of magnitude smaller” space occupancy achieved 
in practice by learned indexes, which in turn consists of showing a dependence in the space complexity between n and s of 
the form s = O (n/εc), with c > 1.
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Our contribution We make the first step towards explaining why learned indexes are so effective with respect to tradi-
tional indexes.

We obtain this result by considering the gaps between consecutive keys in the sorted input S , and assuming that they 
are drawn according to a given distribution. This corresponds to the general and realistic scenario of time series data. 
Then, since the PLA-model at the core of a learned index consists of a sequence of s segments which are at most ε-away 
(measured along the y-axis) from the points {(x, rank(x))}x∈S , we turn the problem of determining s into a Mean Exit Time 
(MET) problem over a stochastic process which estimates how many gaps i have to be drawn from the given distribution 
until the resulting point (xi, i) is farther than ε from a segment with a properly defined slope. Now, since this is a fixed 
slope whereas the algorithm used in Ferragina and Vinciguerra [7] and due to O’Rourke [13] computes the “best” slope, 
namely the one that induces the longest segment, our result on MET provides a lower bound to the average length of the 
segments computed by the above (optimal) algorithm, and thus it provides also an upper bound to their number s and to 
the space taken by the index.

Surprisingly, we show that for any gap distribution with finite mean and variance, the average segment length scales 
at least quadratically with ε which, in turn, means that s decreases as O (n/ε2). Specifically, the average segment length is 
proved to be κε2, for a constant κ = μ2/σ 2 that depends only on the mean μ and the variance σ 2 of the gap distribution 
(Theorems 1–3). We then strengthen this result by showing that the upper bound on s = O (n/ε2) holds with high prob-
ability (Theorem 4). In addition to these key achievements, on the one hand, we specialise Theorem 1 to five well-known 
distributions (Corollary 1) and, on the other hand, we thoroughly discuss the important case of correlated keys (Section 4). 
Finally, we perform an extensive set of experiments corroborating that all our theoretical achievements are highly precise.

This leads us to conclude that learned indexes are provably better than classic indexing data structures not only in time 
efficiency but also in space occupancy, and thus they constitute a robust and effective indexing choice for modern applications 
on big data, where space compression and query efficiency are mandatory.

As an illustrative example, let us consider the case of an external-memory setting with disk pages of B keys (typically B
is of the order of thousands). Here, a classic B-tree takes �(n/B) space and supports queries in O (logB n) I/Os. Given our 
result, the PGM-index1 of Ferragina and Vinciguerra [7] answers queries as fast as a B-tree while improving its space to 
O (n/B2) with high probability (see Corollary 3).

As a final remark, we note that the preliminary version of this work appeared in [1]. The present contribution includes 
a new result on repeated keys (Corollary 2), a thorough discussion on the important case of correlated keys (Section 4), 
an extended Section 6 with new experiments on moving average processes (Fig. 7) and autoregressive processes (Fig. 8) 
validating the claims of the new Section 4.

2. Preliminaries

We model the sorted input keys x0, x1, . . . as a stream generating the gaps g1, g2, . . . between consecutive keys so that 
the ith input key is xi = ∑i

j=1 g j (for convenience, we fix x0 = 0). We assume that the sequence gaps {gi}i∈N is a realisation 
of a random process {Gi}i∈N , where the Gi s are positive, independent and identically distributed (iid) random variables with 
probability density function (pdf) fG , mean E[Gi] = μ and variance Var[Gi] = σ 2. Then, we define the random variables 
modelling the cumulative sum as Xi = ∑i

j=1 G j (for i = 1, 2, . . . ) and fix X0 = 0.
In this setting, our problem is to find a linear model that approximates the points (0, 0), (X1, 1), (X2, 2), . . . in the 

Cartesian plane within a given maximum error ε ≥ 1, measured along the y-axis.
Now, let us consider the two parallel lines y = mx ± ε, for an m to be chosen later, and the strip S of height 2ε between 

them, i.e. S = {(x, y) | mx − ε < y < mx + ε}. As motivated in Section 1, among all the possible choices of the linear model 
(i.e. values of m), we want the one that maximises |S|. Hence, we are interested in the slope m that maximises the smallest 
i such that the corresponding point (Xi, i) is outside S . Formally, we are interested in maximising the following random 
variable:

i∗ = min{i ∈N | (Xi∗ , i∗) /∈ S}. (1)

Since i∗ is a random variable, we will find its expected value over different realisations of the sequence {Xi}i∈N as a 
function of ε, m, μ, σ 2. An example of a realisation is depicted in Fig. 2a.

3. Main results

We recall that the value of i∗ depends on the choice of the slope m and the objective of the algorithm is to maximise 
the expected value of i∗ . Our main result is that, in a suitable limit, this maximum is achieved when m = 1/μ, and in this 
case the number of keys covered scales as �(ε2).

More precisely, we can prove the following theorems and corollaries characterising i∗ on general or specific distributions 
of the gaps between consecutive keys in S .

1 https://pgm .di .unipi .it.
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Fig. 2. An example of random walk (a) and the corresponding transformed random walk (b).

Theorem 1. Given any ε ≥ 1 and a sorted set S of n input keys, suppose that the gaps between consecutive keys in S are a realisation 
of a random process consisting of positive, independent and identically distributed random variables with mean μ and variance σ 2 . 
Then, if ε is sufficiently larger than σ/μ, the expected number of keys covered by a segment with slope m = 1/μ and maximum error 
ε is

μ2

σ 2
ε2.

The following theorem shows that a segment with slope m = 1/μ is on average the best possible choice in terms of the 
number of ε-approximated keys.

Theorem 2. Under the assumptions of Theorem 1, the largest expected number of keys covered by a segment with maximum error ε is 
achieved with slope 1/μ.

The variance of the length of the segment with slope m = 1/μ can also be written in closed-form.

Theorem 3. Under the assumptions of Theorem 1, the variance of the number of keys covered by a segment with slope 1/μ and 
maximum error ε is

2

3

μ4

σ 4
ε4.

By instantiating some common probability distributions in Theorem 1, it follows the next key corollary.

Corollary 1. Under the assumptions of Theorem 1, the expected number of keys covered by a segment is:

• 3 (a+b)2

(b−a)2 ε2 if the gaps are iid and uniformly distributed with minimum a and maximum b.

• α(α − 2)ε2 if the gaps are iid and Pareto (power law) distributed with minimum value k > 0 and shape parameter α > 2.
• ε2/(eσ 2 − 1) if the gaps are iid and lognormally distributed with mean μ and variance σ 2 .
• ε2 if the gaps are iid and exponentially distributed with rate λ > 0.
• kε2 if the gaps are iid and gamma distributed with shape parameter k > 0 and scale parameter θ > 0.

As the next result shows, the number of keys covered by a segment scales as �(ε2) even when S contains repeated 
keys, i.e. when some gaps are equal to zero.

Corollary 2. Given any ε ≥ 1 and a sorted set S of input keys, suppose that the gap between any two consecutive keys in S is zero with 
probability p, and that, with the remaining probability (1 − p), the gap is drawn from a distribution with mean μ and variance σ 2 . 
Define

κ2 = (1 − p)μ2

2 2
.

σ + pμ
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If ε is sufficiently larger than 1/κ , the expected number of keys covered by a segment with slope m = 1/(μ(1 − p)) and maximum 
error ε is κ2ε2 .

Finally, we can show that the number of segments s which have slope m = 1/μ and guarantee a maximum error ε on a 
stream of length n is very concentrated around �(n/ε2).

Theorem 4. Under the assumptions of Theorem 1, the number of segments s needed to cover a stream of length n with error at most ε
converges almost surely to

σ 2

μ2

n

ε2
,

and the relative standard deviation of s converges to zero as 1/
√

n when n → ∞.

In the following, given this last result, we will say that the number of segments s is O (n/ε2) “with high probability” [14].
The above theorems are based on the assumption that gaps are independent and identically distributed. In applications 

this condition might not be true, and thus it is important to assess whether our results hold, even in some asymptotic 
regime, when gaps are autocorrelated. We answer this question affirmatively in Section 4.

3.1. Proof of Theorem 1

Let us consider the Cartesian plane introduced in Section 2. By swapping abscissas and ordinates of the plane, the 
equation of the two parallel lines becomes y = (x ± ε)/m (x and y are the new coordinates), and the sequence of points 
becomes {(i, Xi)}i∈N . This sequence describes a discrete-time random walk with iid increments Gi = Xi − Xi−1. The main 
idea of the proof is to determine the Mean Exit Time (MET) of the random walk out of the strip delimited by the two lines 
above, i.e. the mean of

i∗ = min

{
i ∈N

∣∣∣ Xi >
i

m
+ ε

m
∨ Xi <

i

m
− ε

m

}
. (2)

To simplify the analysis, we consider the following transformed random walk, where we use the equality Xi = ∑i
j=1 G j

and set W j = G j − 1/m:

Zi = Xi − i

m
=

i∑
j=1

(
G j − 1

m

)
=

i∑
j=1

W j .

The objective (2) can be thus rewritten as

i∗ = min {i ∈N | Zi > ε/m ∨ Zi < −ε/m} ,

which is the exit time of the transformed random walk {Zi}i∈N whose increments W j are iid with mean E[W j] =
E[G j] − 1/m = μ − 1/m, variance Var[W j] = Var[G j] = σ 2 and pdf f W (w) = fG(w + 1/m).

An example of this transformed random walk is depicted in Fig. 2b above.
Let T (z0) = E[i∗] | Z0 = z0 be the MET if the random walk {Zi}i∈N starts from z0. In our case, it starts from z0 =

y0 − 0/m = 0 (since y0 = 0). It is well known [15,16] that T (z) satisfies the Fredholm integral equation of the second kind 
T (z0) = 1 + ∫ ε/m

−ε/m f W (z − z0) T (z) dz, which for our problem can be rewritten as

T (z0) = 1 +
ε/m∫

−ε/m

fG

(
z − z0 + 1

m

)
T (z) dz. (3)

While solving exactly the integral equation (3) is in general impossible, it is possible to give a general limiting result 
when ε is sufficiently large. More specifically, when m = 1/μ, the transformed random walk Zi has increments with zero 
mean and variance equal to σ 2, and the boundaries of the strip are at ±εμ. When σ 
 εμ or equivalently ε � σ/μ, the 
Central Limit Theorem tells us that the distribution of the position of the random walker is Normal because many steps are 
necessary to reach the boundary. In this case, the transformed random walk converges to a Brownian motion (or Wiener 
process) in continuous time [17].2

2 A mathematical more precise but equivalent statement can be done using the Donsker’s theorem [18].
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Now, it is well known [17] that for a driftless Wiener process the MET out of an interval [−δ/2, δ/2] is

T (x) = (δ/2)2 − x2

σ 2
, (4)

where x ∈ [−δ/2, δ/2] is the value of the process at the initial time. In our case, x = 0 and δ = 2ε/m = 2εμ, thus we finally 
have the statement of the theorem.

3.2. Proof of Theorem 2

Using an approach similar to the one in Section 3.1, if m �= 1/μ, the transformed random walk Zi = Xi −1/m = ∑i
j=1 W j

has increments with mean d ≡ E[W j] = μ − 1/m and variance σ 2 (see the previous section). For large ε the process 
converges to a Brownian motion with drift. The MET out of an interval [−δ/2, δ/2] for a Brownian motion with drift 
coefficient d �= 0 and diffusion rate σ can be proved to be

T (0) = δ

2d

[
edδ/σ 2 + e−dδ/σ 2 − 2

edδ/σ 2 − e−dδ/σ 2

]
. (5)

To show this, we use the known fact (see [17, §5.2.7]) that the MET T (x) out of an interval [−δ/2, δ/2] of a Brownian 
motion with drift d and diffusion rate σ starting at position x satisfies the differential equation

d
dT (x)

dx
+ σ 2

2

d2T (x)

dx2
= −1,

with the boundary conditions

T (δ/2) = T (−δ/2) = 0.

The solution of this Cauchy problem is

T (x) = δ − 2x

2d
+ δ

d

[
e−dδ/σ 2 − e−2dx/σ 2

edδ/σ 2 − e−dδ/σ 2

]
.

If the random walker starts at x = 0, this expression becomes T (0) of Equation (5).
Clearly, by taking the limit d → 0 (i.e. μ → 1/m) in (5), one obtains Equation (4). As in the proof of Theorem 1, we have 

δ = 2ε/m, thus substituting it in the equation above we get

T (0) = ε

md
tanh

(
εd

mσ 2

)
.

It is easy to see that the maximum of T (0) is achieved for d = 0, i.e. when m = 1/μ, which is exactly the setting considered 
in Theorem 1.

3.3. Proof of Corollary 2

Under the assumptions of the corollary, the gaps G j have mean value μ̃ = (1 − p)μ and variance σ̃ 2 = (1 − p)(σ 2 +
μ2) − (1 − p)2μ2, thus the increments W j = G j − 1/m = G j − μ̃ of the transformed random walk have zero mean and 
variance σ̃ 2. Using Theorem 1 and Theorem 2, we conclude that the optimal slope is m = 1/μ̃ and the expected number of 
keys is (μ̃2/σ̃ 2) ε2, i.e. the thesis.

3.4. Proof of Theorem 3

Following Gardiner [17, Equation 5.2.156], the second moment T2(x) of the exit time of a Brownian motion with diffusion 
rate σ starting at x is the solution of the partial differential equation

−2T (x) = σ 2

2
∂2

x T2(x),

where T (x) is the MET out of an interval [−δ/2, δ/2] (see Equation (4)), with boundary conditions T2(±δ/2) = 0. Solving 
for T2(x), we get

T2(x) = x4 − 2δ2x2/3 + 5δ4/16

3σ 4
.

Setting x = 0 and δ = 2ε/m = 2εμ, we find that the second moment of the exit time starting at x = 0 is
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T2(0) = 5

3

μ4

σ 4
ε4,

thus

T2(0) − [T (0)]2 = 2

3

μ4

σ 4
ε4.

3.5. Proof of Theorem 4

Consider a process that starts a new segment j + 1 as soon as the current one j cannot cover more than i∗j keys without 
exceeding the error ε (see Equation (2)). We define the total number of segments s on a stream of length n as

s(n) = sup{k ≥ 1 | Sk ≤ n},
where Sk = i∗1 + i∗2 + · · · + i∗k .

We notice that {s(n)}n≥0 is a renewal counting process of non-negative integer random variables i∗1, . . . , i∗k , which are 
independent due to the lack of memory of the random walk. Let E[i∗j ] = 1/λ and Var[i∗j ] = ς2. It is well known [19, 

§2.5.2] that E[s(n)] = λn + O (1) as n → ∞, Var[s(n)] = ς2λ3n + o(n) as n → ∞, and that s(n)/n a.s.−→ λ. In our case (see 
Theorems 1 and 3), it holds

1

λ
= μ2

σ 2
ε2 and ς2 = 2

3

μ4

σ 4
ε4,

hence s(n)/n a.s.−→ λ = (σ /(μ ε))2. Finally, the following ratio converges to zero as n → ∞:

√
Var[s(n)]
E[s(n)] →

√
ς2λ

n
=

√
2

3

με

σ

1√
n
.

4. A conjecture for the case of correlated keys

In this section, we study the case in which the independence assumption of Section 3 is waived. Specifically, we study 
a random process {Gi}i∈N generating gaps that consist of positive and identically distributed random variables with mean 
E[Gi] = μ, variance Var[Gi] = σ 2, and covariances C(�) = Cov[Gi, Gi+�] = E[Gi Gi+�] − μ2 for any lag � ≥ 1. As usual, we 
define the random variables modelling the ith input key Xi as the cumulative sum Xi = ∑i

j=1 G j (for i = 1, 2, . . . ) and fix 
X0 = 0. It is easy to see that their mean is E[Xi] = iμ and their variance is

Var[Xi] =
i∑

j=1

i∑
k=1

Cov[G j, Gk]

=
i∑

j=1

Var[G j] + 2
∑
j<i

Cov[G j, Gi]

= iσ 2 + 2 [(i − 1)C(1) + (i − 2)C(2) + · · · + C(i − 1)]

= iσ 2 + 2
i−1∑
�=1

(i − �)C(�)

= iσ 2

[
1 + 2

i−1∑
�=1

(
1 − �

i

)
ρ(�)

]
, (6)

where ρ(�) ≡ C(�)/σ 2 is the autocorrelation function.
When i is much larger than the time scale �0 after which the autocorrelation is negligible (the “memory” of the process), 

the �/i term in round brackets can be neglected.
Hence, as i � �0 we get the approximation

Var[Xi] � i

⎛
⎝σ 2 + 2

�0∑
�=1

C(�)

⎞
⎠ = iσ 2

⎛
⎝1 + 2

�0∑
�=1

ρ(�)

⎞
⎠ . (7)

Thus for large i, the process becomes exactly diffusive (i.e. the Var[Xi] increases linearly with i) as in a random walk with 
iid increments and effective diffusion rate σ 2(1 + 2 

∑�0 ρ(�)). We therefore state the following conjecture:
�=1
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Conjecture 1. If ε is sufficiently large, the random walk will make a large number i of steps, and thus it will satisfy the condition of 
Theorem 1 with mean E[Xi] = iμ and variance Var[Xi] given by Equation (7), giving for the expected number of keys covered by a 
segment with slope m = 1/μ and maximum error ε the value

1

1 + 2
∑�0

�=1 ρ(�)

μ2

σ 2
ε2 ≈ 1

1 + 2
∑∞

�=1 ρ(�)

μ2

σ 2
ε2.

In the above approximation, we have extended the sum at the denominator from � ≤ �0 to � → +∞, since by construc-
tion ρ(�) is negligible (or zero) when � > �0. The above formula shows that in a random walk with correlated increments 
the expected number of keys increases quadratically with ε, as in the random walk with iid increments. The main difference 
is the prefactor multiplying μ2ε2/σ 2: when the increments are positively correlated (ρ(�) > 0), the prefactor is smaller than 
one, i.e. the expected number of keys is smaller than for a random walk with iid increments.

In order to dig into the significance of this observation, let us study few specific, yet realistic, examples. In Section 6, 
we provide numerical evidence that the above conjecture describes accurately the expected number of keys in one of the 
examples presented below.

Example 1 (Moving-average process). Let us consider a process {Ui}i∈N of positive iid variables Ui having mean E[Ui] =
μU and variance Var[Ui] = σ 2

U . We then assume that a gap Gi is generated by a convolution of �0 variables Ui as Gi =∑�0
k=1 φi U i , where φi are positive weights, i.e. that {Gi}i∈N is a moving-average process of order �0.

It is immediate to show that μ :=E[Gi] = μU
∑�0

k=1 φk and σ 2 := Var[Gi] = σ 2
U

∑�0
k=1 φ2

k . Moreover, it holds

C(�) = Cov[Gi, Gi+�] =
{
σ 2

U

∑�0−�

k=1 φkφk+� if � < �0

0 otherwise.

In the special case of a flat filter, i.e. φi = 1 for any i, it is easy to see that μ = �0μU , σ 2 = �0σ
2
U , and that C(�) =

σ 2
U (�0 − �) if � < �0 and C(�) = 0 otherwise. By plugging the last definitions of σ 2 and C(�) into Equation (6), we obtain

Var[Xi] = i�0σ
2
U + 2i

�0−1∑
�=1

(
1 − �

i

)
σ 2

U (�0 − �)

≤ i�0σ
2
U + 2iσ 2

U

�0−1∑
�=1

(�0 − �)

= i

(
�0σ

2
U + 2σ 2

U
�0(�0 − 1)

2

)

= i�2
0σ

2
U

= i�0σ
2.

To mimic the statement of Theorem 1 in the special case we just described, we conjecture that if ε is sufficiently larger 
than σ

√
�0/μ, the expected number of keys covered by a segment with slope 1/μ and maximum error ε is at least

μ2

σ 2�0
ε2. (8)

�
Example 2 (Autoregressive process). This second example assumes that the gaps follow an AR(1) process, i.e. Gi = ϕ Gi−1 +ηi , 
where ϕ is a real parameter, and ηi is a white noise with mean μη and variance σ 2

η .
It is well known [20] that when |ϕ| < 1

μ := E[Gi] = μη

1 − ϕ
, σ 2 := Var[Gi] = σ 2

η

1 − ϕ2
, and C(�) = σ 2ϕ�.

The autocorrelation function decays exponentially to zero, thus in this case ρ(�) is never zero, even if the time scale of the 
process is finite and related to |ϕ|. The variance of the random walk is
114



P. Ferragina, F. Lillo and G. Vinciguerra Theoretical Computer Science 871 (2021) 107–120
Var[Xi] = iσ 2

[
1 + 2

i∑
�=1

(
1 − �

i

)
ϕ�

]

= iσ 2

(
1 + 2

ϕ

1 − ϕ
− 2

ϕ − ϕ i+1

(1 − ϕ)2i

)
.

When i is very large the last (negative) term in brackets becomes negligible, and the variance of the random walk may be 
approximated by

Var[Xi] � iσ 2 1 + ϕ

1 − ϕ
.

To mimic the statement Theorem 1 in the special case we just described, we conjecture that if ε is sufficiently larger 
than 

√
1+ϕ
1−ϕ

σ
μ , the expected number of keys covered by a segment with slope 1/μ and maximum error ε is

1 − ϕ

1 + ϕ

μ2

σ 2
ε2. (9)

�
5. Some implications

We now mention some key implications of Theorems 1 and 4 that go beyond the realm of learned indexes. The compu-
tation of a Piecewise Linear Approximation (PLA) has indeed gathered attention in many other fields, such as computational 
geometry, time series approximation, image processing, database, geographic information systems, machine learning, etc., 
with a variety of error definitions, constraints, and proposed algorithms (see e.g. [13,21–24] and refs therein). Theorem 4
can eventually give an estimate of the number of segments computed by these algorithms when they are given a dataset 
satisfying the assumptions of Theorem 1. In particular, taking as a reference the linear time algorithm for computing the 
optimal (i.e. minimum-sized) PLA P with maximum error ε, that we could trace back to O’Rourke [13], we have that the 
number of segments composing P is bounded above by O (nσ 2/(με)2) with high probability (by Theorem 4).

In light of our new results, we can strengthen the solution of Ferragina and Vinciguerra [7] to the indexable dictionary 
problem by showing that their PGM-index achieves the same query time complexity of a B-tree, but within an improved 
space occupancy of O (n/B2) (versus the �(n/B) space of a B-tree).

Corollary 3. Let S and n be as in Theorem 1. The PGM-index data structure built on S uses O (n/B2) space with high probability, and 
answers rank, membership and predecessor queries in optimal O (logB n) I/Os, where B is block size of the external-memory model. 
Range queries are answered in extra (optimal) O (K ) time and O (K/B) I/Os, where K is the number of keys satisfying the range query.

Proof. Since the PGM-index is built on the s segments computed by the optimal algorithm of O’Rourke [13], then the 
minimality of s and Theorem 4 imply that s = O (n/ε2) with high probability (by Theorem 4). Substituting this bound into 
Theorem 1 of [7] and setting ε = �(B) the claim follows. �
6. Experiments

We start with an experiment aimed at validating our main result (Theorem 1).3 We generated 107 random streams of 
gaps for each of the following distributions: Uniform, Pareto, Lognormal, Exponential/Gamma. For each generated stream S , 
we picked an integer ε in the range [1, 28], which contains the values that were shown to be the most effective in practice 
for the learned index of [7]. Then, we ran the following PLA-algorithms with input parameters ε and S:

MET. This is the algorithm that fixes the slope of a segment to 1/μ and stops when the next point of S is outside the 
strip of width 2ε, see Equation (1). This corresponds to the random process we used to prove Theorem 1.

OPT. This is the algorithm that constructs the optimal PLA-model [13] used in the PGM-index of [7]. This algorithm 
computes the segment (of any slope and intercept) that ε-approximate the longest prefix of S .

We analysed the length of the segments computed by the two previous algorithms, that is, the index of the first key that 
causes the algorithm to stop because the (vertical) distance of the point from the segment is larger than ε. We plot in Fig. 3
the mean and the standard deviation of these segment lengths. The figure shows that the theoretical mean segment length 

3 The code to reproduce the experiments is available at https://github .com /gvinciguerra /Learned -indexes -effectiveness. The experiments were run on an 
Intel Xeon Gold 6132 CPU.
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Fig. 3. We consider four gap distributions — Uniform, Pareto, Lognormal, and Gamma — with various parameter settings. We plot the formula (μ2/σ 2) ε2

given in Theorem 1 with a solid black line and the Mean Exit Time (MET) of the experimented random walk with red points. The figure shows that they 
overlap, thus the formula stated in Theorem 1 accurately predicts the experimented MET. The figure also shows the performance of the algorithm OPT with 
green points. The shaded regions represent the standard deviation. The improvement of OPT with respect to MET is evident, indicating that OPT is more 
robust to outliers. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

computed according to Corollary 1 (hence the formula (μ2/σ 2) ε2), depicted as a solid black line, accurately describes the 
experimented algorithm MET, depicted as red points, over all tested distributions (just observe that the solid black line 
overlaps the red points). Moreover, the standard deviation of the exit time, depicted as a shaded red region, follows the 
corresponding bound proved in Theorem 3 and depicted as two dashed black lines in each plot. So our theoretical analysis 
of Theorem 1 is tight.

Not surprisingly, the plots show also that OPT performs better than MET. This is because MET fixes the slope of a segment 
to 1/μ, while OPT optimally adapts to each sequence of points given in input by choosing the slope that maximises the 
number of points covered by a segment. Thus it is more robust to outliers and hence can find longer segments.
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Table 1
The range of slopes found by algorithm OPT in the experiments of Fig. 3. Notice that these 
ranges are centred and close to 1/μ, which is the theoretical slope that maximises the MET of 
the random walk depicted in Fig. 2a.

Distribution Parameters 1/μ Avg. slope range

Uniform a = 0,b = 1 2 [2.000,2.002]
Uniform a = 0,b = 10 0.2 [0.200,0.200]
Uniform a = 10,b = 100 0.018 [0.018,0.018]
Pareto k = 2,α = 2.5 0.3 [0.300,0.301]
Pareto k = 3,α = 3 0.222 [0.222,0.222]
Pareto k = 4,α = 3.5 0.179 [0.179,0.179]
Lognormal μ = 1, σ = 0.5 0.325 [0.325,0.325]
Lognormal μ = 1, σ = 0.75 0.278 [0.278,0.278]
Lognormal μ = 1, σ = 1 0.223 [0.223,0.224]
Exponential λ = 1 1 [1.000,1.003]
Gamma θ = 3,k = 2 0.167 [0.167,0.167]
Gamma θ = 6,k = 3 0.056 [0.056,0.056]

Fig. 4. Three plots for three different settings of the ratio σ/μ for the distributions: Pareto, Gamma and Lognormal. We plot the relative error between the 
formula (μ2/σ 2) ε2 of Theorem 1 and the experimented MET. Notice how the fat-tail of the distributions affects the accuracy of the formula with respect 
to MET, as commented in the text.

Overall this first experiment entails that learned indexes (and, in particular, the learned index based on an optimal use 
of linear models, see [7]) use a space that decreases as fast as O (n/ε2), where n is the number of keys in the dataset and 
ε is the maximum error admitted by the learned index (Corollary 3).

The second experiment analysed the slopes found by OPT over the sequence of points generated according to the previous 
experiment, and averaged over ε. We compared them to the fixed slope 1/μ of MET. Table 1 clearly shows that these slopes 
are centred around 1/μ, thus confirming the result of Theorem 2 that 1/μ is the best slope on average.

The third experiment was devoted to studying the accuracy of the approximation to the mean exit time provided by the 
formula (μ2/σ 2) ε2 under the assumption “with ε sufficiently larger than σ/μ” present in the statement of Theorem 1. To 
this end, we properly set the distribution parameters to obtain a ratio σ/μ in {0.15, 1.5, 15}. We plot in Fig. 4 the relative 
error between the experimented MET (i.e. the empirical mean segment length) and the formula above, as ε grows from 
1 to 28. For the left plot, we notice that for all the distributions the relative error converges soon to 0 (here, the ratio 
σ/μ is very small compared to ε). In the middle plot, the convergence is fast for Gamma and Lognormal distributions, 
but it is slower for Pareto because α = 2.202 generates a very fat tail that slows down extremely the convergence of the 
Central Limit Theorem. This is a well-known fact [20] since the third moment diverges and the region where the Gaussian 
approximation holds grows extremely slowly with the number of steps of the walk. This effect is even more evident in the 
rightmost plot where all the three distributions have very fat tails. Overall, Fig. 4 confirms that ε does not need to be “too 
much larger” than σ/μ to get convergence to the predicted mean exit time, as stated in Theorem 1.

The fourth experiment considered streams of increasing length n (up to 106) that follow the gap distributions of the first 
column of Fig. 3. For each part of a stream, we computed with the MET algorithm the s segments that approximate that 
stream with error ε = 50. By repeating the experiment 104 times, we computed the average and the standard deviation of 
s/n. Fig. 5 shows that for a large n the distribution of s/n concentrates on λ = (σ /(μ ε))2, with a speed that is faster for 
smaller με/σ , as predicted by Theorem 4.

The fifth experiment, reported in Fig. 6, shows the average segment length of OPT on real-world datasets of 200 million 
elements from [11]. The books dataset represents book sale popularity from Amazon, while fb contains Facebook user IDs. 
Even though these datasets do not satisfy the assumption of Theorem 1, the fitted curves show a superlinear growth in ε. 
This suggests that the ε1+O (1) growth established in our analysis may also be valid on datasets that do not strictly follow 
the assumption on iid gaps.
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Fig. 5. The solid line is the average and the shaded region is the standard deviation of s/n over 104 streams for four distributions, where s is the number 
of segments computed by MET for a stream of length n. The dashed line depicts the limit stated in Theorem 4 to which the experimental values clearly 
converge to (quickly, at moderately small values of n).

Fig. 6. The average length of a segment computed by OPT on two real datasets exhibit a superlinear growth in ε.

Fig. 7. The mean segment length computed by OPT and MET on keys generated by three moving-average processes of order �0 = 5, 50 and 500, respectively. 
The solid black line overlaps the red dots of MET and thus it shows that Equation (8) provides a good approximation for the case of correlated keys.

The sixth experiment considered the random process described in Example 1 of Section 4, i.e. streams of gaps generated 
by moving-average processes of order �0. Specifically, we computed the moving average of reals drawn from a uniform 
distribution (with parameters a = 0, b = 1) by using unit weights φi and by varying �0 in {5, 50, 500}. For each value of 
�0, we repeated the experiment 107 times, each time picking an integer ε in the range [1, 28] and running OPT and MET 
with argument ε. Fig. 7 shows that the mean segment length of the two algorithms scales quadratically in ε and that the 
conjectured correction of the prefactor related to autocorrelation is in a very good agreement with simulations. This entails 
that even in the case of keys correlated at large lags (e.g. �0 = 500) the result of Theorem 1 might still hold, as discussed 
thoroughly in Section 4.

The seventh and final experiment considered the random process described in Example 2 of Section 4, i.e. streams of gaps 
generated by autoregressive processes with parameter ϕ . We sampled the white noise terms from a uniform distribution 
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Fig. 8. The mean segment length computed by OPT and MET on keys generated by three autoregressive processes with parameter ϕ = 0.1, 0.5 and 0.9, 
respectively. The solid black line overlaps the red dots of MET and thus it shows that Equation (9) provides a good approximation for the case of correlated 
keys.

(with parameters a = 0, b = 1) and varied ϕ in {0.1, 0.5, 0.9}. For each value of ϕ , we repeated the experiment 107 times, 
each time picking an integer ε in the range [1, 28] and running OPT and MET with argument ε. Fig. 8 shows that the mean 
segment length of the two algorithms scales quadratically in ε and that the conjectured correction of the prefactor related 
to autocorrelation is in very good agreement with simulations.

7. Conclusions

In this paper, we have provided the first theoretical analysis of learned indexes, thus offering mathematical grounds to 
their known excellent practical performance in terms of space occupancy. Our theoretical results have been corroborated in 
precision and robustness by a large set of experiments. Our paper leaves open a series of interesting theoretical questions, 
two of them are sketched here.

The first one concerns the main result stated in Theorem 1. It holds under the condition that “ε is sufficiently larger 
than σ/μ”, therefore it is natural to ask whether this condition can be waived, thus making the theorem stronger, and 
whether/how we can bound the error made by the approximation for finite and not too large values for εμ/σ .

A second question asks to provide a formal analysis of the distribution of the segment lengths found by the optimal 
algorithm (OPT) proposed by O’Rourke [13]. We know that they are longer than the ones found by MET and thus their 
number grows on average as �((με/σ )2), but how much are they longer than what it is stated asymptotically in this 
�-bound?
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