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We study the nature of the finite-temperature transition of the three-dimensional scalar chromo-
dynamics with Nf flavors. These models are constructed by considering maximally O(M)-symmetric
multicomponent scalar models, whose symmetry is partially gauged to obtain SU(Nc) gauge theo-
ries, with a residual nonabelian global symmetry given by U(Nf ) for Nc ≥ 3 and Sp(Nf ) for Nc = 2,
so that M = 2NcNf . We find that their finite-temperature transition is continuous for Nf = 2 and
for all values of Nc we investigated, Nc = 2, 3, 4. Such continuous transitions belong to universality
classes related to the global symmetry group of the theory. For Nc = 2 it belongs to the SO(5)=
Sp(2)/Z2 universality class, while for Nc ≥ 3 it belongs to the SO(3)= SU(2)/Z2 universality class.
For Nf ≥ 3, the transition is always of first order. These results match the predictions obtained by
using the effective Landau-Ginzburg-Wilson approach in terms of a gauge-invariant order parameter.
Our results indicate that the nonabelian gauge degrees of freedom are irrelevant at the transition.
These conclusions are supported by an analysis of gauge-field dependent correlation functions, that
are always short-ranged, even at the transition.

I. INTRODUCTION

The importance of symmetries in modern physics can
be hardly overestimated. Global symmetries and the way
in which they are realized are commonly used to iden-
tify and describe different phases of matter [1]. Local
gauge symmetries play a fundamental role both in parti-
cle physics, where they lie at the heart of the Standard
Model [2], and in condensed-matter physics, where their
applications span from superconductivity [3] to topolog-
ical order and quantum phase transitions [4].

Several systems of physical interest display both global
and local symmetries, and a fundamental problem is to
understand which of these symmetries play a role in de-
termining the universal behavior of the system close to
a continuous phase transition. The traditional Landau-
Ginzburg-Wilson (LGW) approach to critical phenom-
ena relies on statistical field theory [5–9]. In this scheme
critical properties depend only on the global symmetry
breaking pattern and on some “kinematic” parameters,
like the space dimensionality and the number of fields
components. For transitions to/from topologically or-
dered states this time-honored scheme has to be modi-
fied, due to the peculiar nonlocal character of topological
order [10, 11]. However, when a continuous phase tran-
sition emerges due to the breaking of a global symmetry
in a gauge theory, it is by no means obvious which is
the role played by the gauge degrees of freedom: do they
affect the critical behavior or not?

The study of the chiral phase transition in mass-
less Quantum Chromodynamics (QCD) was likely the
first occasion in which this problem could have been
raised. Massless QCD is indeed invariant under local
SU(3) color transformations and under global SUL(Nf )×
SUR(Nf ) flavor transformations, with the chiral transi-
tion being associated with the symmetry breaking pat-

tern SUL(Nf ) × SUR(Nf ) → SUV (Nf ) [2]. However,
starting from the seminal work of Pisarski and Wilczek
[12] (see Refs. [13, 14] for some refinements), it was al-
ways implicitly assumed that gauge degrees of freedom
are irrelevant at the chiral transition, whose properties
were predicted by using a gauge-invariant order param-
eter and the LGW approach. Numerical lattice results
later supported these predictions, although with limited
numerical precision because of the computational burden
of simulating dynamical fermions. Moreover, in recent
times possible hints of discrepancies have appeared (see
Refs. [15, 16] for recent reviews).
The dependence of the critical behavior on the gauge

degrees of freedom can be numerically investigated much
more accurately in scalar models. The three dimensional
(3D) abelian case attracted much attention in the recent
past, both from the theoretical and from the numerical
point of view [10, 11, 17–25]. In particular, some works
[22–25] reported some numerical evidence that the LGW
approach, based on a gauge invariant order parameter,
may not describe the emerging critical behavior.
Notwithstanding their applications to high-energy

physics (most notably to the QCD chiral phase tran-
sition but also to possible extensions of the standard
model) and their growing importance in condensed-
matter physics [4, 11, 26, 27], 3D nonabelian gauge theo-
ries has been so far much less studied. The only case that
was systematically investigated was that of the 3D SU(2)
gauge theory coupled to a scalar SU(2) doublet, which is
relevant for the electroweak phase transition (see, e.g.,
Refs. [28–32]). For our purposes, however, this model is
somehow trivial, since it is known that its phase diagram
consists of a single phase [33–35].
To improve on this state of affairs, in Ref. [36] we pre-

sented results regarding a multiflavor 3D lattice scalar
model with continuous U(Nf ) symmetry, which might be
called lattice multiflavor scalar chromodynamics. We de-
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termined the transitions in this model, investigated their
nature, and compared the results with the predictions
of two field-theoretical formalisms, the gauge-invariant
LGW scheme and the continuum scalar chromodynam-
ics. The outcome of this analysis was that the LGW
approach correctly predicts the finite-temperature criti-
cal behavior of 3D multiflavor scalar chromodynamics in
all cases we studied, i.e., for Nc = 2, 3, 4 and Nf = 2, 3.
The analysis of the lattice results reported in Ref. [36]
was however necessarily sketchy, and in this paper we re-
port all the analyses that permitted us to unambiguously
identify the order of the transitions and the universality
class in the case of continuous transitions. A more de-
tailed discussion of the symmetries of the model, and in
particular of the U(1) flavor symmetry, is also reported,
together with the full details of the LGW approach for
Nc = 2, in which case the global symmetry of the model
is Sp(Nf ).
The paper is organized as follows. In Sec. II the lattice

multiflavor scalar chromodynamics model is introduced,
with a discussion of its global and local symmetries. In
Sec. III we discuss the predictions of the effective LGW
approach. In Sec. IV we describe the lattice observables
adopted and we briefly summarize the finite-size scaling
(FSS) results we use in the analysis of the data. In Sec. V
we present the results of the numerical simulations, and
finally we draw our conclusions in Sec. VI. In App. A we
discuss the symplectic order parameters and, for Nf = 2,
the relation between Sp(2) and O(5) observables. App. B
is devoted to a discussion of the LGW approach for the
two-color case in which the global symmetry group is
Sp(Nf ). Finally, in App. C we discuss some properties
of the model for β → ∞.

II. THE LATTICE MODEL

The three-dimensional lattice model we are going to
study has Nc × Nf complex matrix variables Zaf

x
asso-

ciated with each site x of a cubic lattice. Our starting
point is the lattice model defined by the action

Sinv = −J
∑

x,µ

ReTrZ†
x
Zx+µ̂ +

∑

x

V (TrZ†
x
Zx) , (1)

V (X) = rX + uX2 . (2)

In Eq. (1) the first sum is over the lattice links, the second

one is over the lattice sites, and µ̂ = 1̂, 2̂, 3̂ are unit vec-
tors along the three lattice directions. In particular, we
consider the unit-length limit of the site variables, which
is formally obtained by setting r = −u, and taking the
limit u→ ∞ in the potential (2), so that the variables Z
satisfies

TrZ†
x
Zx = 1 , (3)

and the action simplifies to

Sinv = −J
∑

x,µ

ReTrZ†
x
Zx+µ̂ . (4)

Models with actions (1) and (4) are invariant under
O(M) transformations with M = 2NcNf . This is im-
mediately checked if we write the matrices Zx in terms
of M -component real vectors Sx. In the new variables,
we obtain the standard O(M) nonlinear σ-model

SM = −J
∑

x,µ

Sx · Sx+µ̂ , Sx · Sx = 1 . (5)

We now proceed by gauging some of the degrees of
freedom. We associate an SU(Nc) matrix Ux,µ̂ with each
lattice link and extend the action (4) to ensure SU(Nc)
gauge invariance. We also add a kinetic term for the
gauge variables in the Wilson form [37]. We obtain the
model with action

Sg = −βNf

∑

x,µ

ReTr
[
Z†
x
Ux,µ̂ Zx+µ̂

]

−
βg
Nc

∑

x,µ>ν

ReTr
[
Ux,µ̂Ux+µ̂,ν̂ U

†
x+ν̂,µ̂ U

†
x,ν̂

]
,

(6)

and partition function

Z =
∑

{Z,U}

e−Sg . (7)

Note that the gauge group is SU(Nc) and not U(Nc),
so that, for Nc = 1, the model is not related to the 3D
CPNf−1 model [9] or to the abelian Higgs model, studied,
e.g., in Ref. [21]. The factor Nf in the first term is in-
troduced so that the large-Nf limit can be performed by
keeping β fixed; the factor 1/Nc in the second term is in-
stead conventional in the lattice gauge theory literature.
Note that, for βg → ∞, the product of the gauge fields
along a plaquette converges to one, and therefore we can
set Ux,µ̂ = 1 modulo a gauge transformation. Therefore,
in this limit we reobtain the O(M) invariant theory (4)
we started from.
It is immediate to see that, for any value of Nc and

Nf , Sg is invariant under the local gauge transformation

Zx → GxZx , Ux,µ̂ → GxUx,µ̂G
†
x+µ̂ , (8)

with Gx ∈ SU(Nc), and under the global transformation

Zx → ZxV , Ux,µ̂ → Ux,µ̂ , (9)

with V ∈ U(Nf ). Note that, more precisely, the global
symmetry group of the model is U(Nf )/ZNc

, where ZNc

is the center of the gauge symmetry group SU(Nc).
Actually, for Nc = 2 the action Sg is invariant under

a larger global symmetry group, the compact complex
symplectic group1 Sp(Nf ). This is a well established re-
sult (we found mention of it, in various forms, e.g., in

1 Several notations are used to denote this group: in particular
both Sp(Nf ) and Sp(2Nf ) can be found in the literature.
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Refs. [11, 38–40]), which is a consequence of the self-
duality of the fundamental representation of SU(2). We
will here briefly explain the origin of this symmetry en-
largement, introducing also some notations that will be
useful in the following.
We define

Y af
x

=
∑

b

ǫabZ̄bf
x
, (10)

where ǫab is the completely antisymmetric tensor in 2
dimensions (ǫ12 = −ǫ21 = 1), and the 2 × 2Nf matrix
field Γaα

x
, defined by

Γaα
x

=

{
Zaα
x

if 1 ≤ α ≤ Nf

Y
a (α−Nf )
x if Nf + 1 ≤ α ≤ 2Nf

. (11)

Since SU(2) matrices satisfy

∑

b

ǫabŪ bc =
∑

b

Uabǫbc, (12)

Γx transforms covariantly under gauge transformations:

Γx → GxΓx . (13)

We can now rewrite the nearest-neighbor interaction
term involving the scalar variables as

1

2

∑

f,a,b

[
Z̄af
x
Uab
x,µ̂ Z

bf
x+µ̂ + Zaf

x
Ūab
x,µ̂ Z̄

bf
x+µ̂

]
=

1

2

∑

f,a,b

[
Z̄af
x
Uab
x,µ̂ Z

bf
x+µ̂ + Ȳ af

x
Uab
x,µ̂ Y

bf
x+µ̂

]
=

1

2

∑

γ,a,b

Γ̄aγ
x
Uab
x,µ̂Γ

bγ
x+µ̂ =

1

2
TrΓ†

x
Ux,µ̂Γx+µ̂ .

(14)

Apparently, the action (14) is invariant under the global
transformations

Γx → ΓxM , M ∈ U(2Nf ) . (15)

However, one should bear in mind that the Γ variables
are not generic, since they are obtained by a formal dou-
bling of the degrees of freedom. Therefore, one must only
consider transformationsM that maintain the particular
structure (11). To identify them, we note that the previ-
ous bipartite structure of Γ is equivalent to the relation

∑

a

ǫabΓ̄bα
x

= −
∑

γ

Γaγ
x
Jγα , (16)

where J is the 2Nf × 2Nf matrix

J =

(
0 −I
I 0

)
, (17)

and I is the Nf × Nf identity matrix. Therefore, the
global invariance group of Sg is the subgroup of U(2Nf )

which leaves invariant the relation Eq. (16). By straight-
forward manipulations it is possible to show that this
requires M to satisfy

MJMT = J , (18)

which identifies the global symmetry group as the com-
pact (unitary) complex symplectic group Sp(Nf ) (see,
e.g., Ref. [41]). The global symmetry group for Nc = 2 is
thus Sp(Nf )/Z2, since the sign of the field can be rede-
fined by a gauge transformation. Note that, for Nf = 2,
we have the isomorphism (see, e.g., Ref. [41])

SO(5) = Sp(2)/Z2 . (19)

Finally, let us explicitly note that the Sp(Nf ) symmetry
also holds when the fields do not satisfy the unit-length
condition. Since

TrZ†
x
Zx =

1

2
TrΓ†

x
Γx , (20)

is invariant under any U(2Nf ) transformations, and, in
particular, under those of its Sp(Nf ) subgroup, the ac-
tion is Sp(Nf ) invariant for generic site potentials V in
Eqs. (1) and (2).

III. EFFECTIVE FIELD THEORY RESULTS

The critical behavior of the lattice multiflavor scalar
chromodynamics was discussed in Ref. [36]. Two dif-
ferent approaches were considered: the continuum the-
ory corresponding to the lattice model and the Landau-
Ginzburg-Wilson theory built in term of a gauge-
invariant order parameter. The renormalization-group
flow of continuum multiflavor chromodynamics was stud-
ied in the ε-expansion around four dimensions [42]. It
was found that a stable fixed point (FP) only exists for
a very large number of flavors [for Nc = 2 it exists only
for Nf > 359+O(ε)]. As a consequence, for small values
of Nf a first-order transition is predicted.
In the LGW approach, one starts by considering an

order parameter that breaks the global symmetry of the
model. We first consider the case Nc > 2, so that the
global symmetry is U(Nf )/ZNc

. Since this is not a simple
group, we may have different symmetry breakings.
One possibility is that of breaking the SU(Nf ) sub-

group. An appropriate order parameter is the field com-
bination

Qfg
x

=
∑

a

Z̄af
x
Zag
x

−
δfg

Nf
, (21)

which is the natural generalization of the quantity stud-
ied in abelian models (see, e.g., Refs. [20, 21]). The corre-
sponding LGW theory is obtained by considering a her-
mitian traceless Nf × Nf matrix field Ψ(x), which rep-
resents a coarse-grained version of Qx, with Lagrangian

LLGW = Tr ∂µΨ∂µΨ+ rTr Ψ2 (22)

+ u3Tr Ψ
3 + u41Tr Ψ

4 + u42 (Tr Ψ
2)2 .
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This Lagrangian is invariant under the global transfor-
mations Ψ → VΨV † and therefore the symmetry group
is SU(Nf )/ZNf

. As discussed in, e.g., Ref. [20], the cubic
term vanishes for Nf = 2. In this case a continuous tran-
sition is possible in the SU(2)/Z2, that is in the vector
SO(3), universality class. For Nf > 2 the cubic term is
present and, on the basis of the usual mean-field argu-
ments, one expects a first-order transition.
A second possibility is that of breaking the U(1)/ZNc

symmetry group associated with the transformations

Zaf
x

→ eiαZaf
x
, (23)

which leave invariant the order parameter Qab
x
. However,

for Nf < Nc, this additional symmetry is only apparent.
Indeed, for any x, one can find an SU(Nc) matrix Gx

such that

eiαZx = GxZx. (24)

If Nf < Nc, there is a gauge transformation Z ′
x =

G1xZx such that Z ′af
x

= 0 for any f and any a satis-
fying Nf + 1 ≤ a ≤ Nc. Then, one defines the Nc × Nc

unitary matrix

G2 = diag (g1, . . . , gNc
) (25)

with ga = eiα for 1 ≤ a ≤ Nf , ga = e−iαNf for a =
Nf + 1, ga = 1 for a > Nf + 1. It is then easy to verify

that Gx = G†
1xG2G1x satisfies Eq. (24).

For Nf ≥ Nc, the relation (24) does not hold anymore,
and one must consider the breaking of the abelian sym-
metry U(1)/ZNc

. An appropriate order parameter is

D
f1,...,fNc
x =

∑

a1,...,aNc

ǫa1,...,aNcZa1f1
x

. . . Z
aNcfNc
x , (26)

which is invariant under gauge transformations (here
ǫa1,...,aNc is the completely antisymmetric tensor in Nc

dimensions). Such an order parameter vanishes for Nf <
Nc, an expected result given the effective absence of the
symmetry in this case. For Nf = Nc the order parameter
defined in Eq. (26) is invariant under SU(Nf ) transfor-
mations and therefore it is a good order parameter for the
breaking of the U(1) flavor symmetry. It can be rewritten
in a simpler way, as

D
f1,...,fNc
x = ǫf1,...,fNc det Zx. (27)

On the other hand, for Nf > Nc, the order parameter
belongs to a nontrivial representation of SU(Nf ). There-
fore, it condenses only if both the SU(Nf ) and the U(1)
symmetries are broken.
As we discuss in App. C, in our model, for Nc ≥ 3,

the order parameter D
f1,...,fNc
x vanishes for β → ∞.

If we assume that the relevant configurations in the
low-temperature phase are simply obtained by consid-
ering short-range fluctuations on top of the ordered
background observed for β = +∞, we conclude that

D-correlations are short-ranged in the low-temperature
phase, i.e., that the U(1) symmetry is not broken. Below
we will present numerical results for Nc = Nf = 3 that
confirm this picture.
For Nc = 2 the symmetry group is Sp(Nf )/Z2. The

order parameter is a symplectic analogue of Qx. Specif-
ically, we define

T αβ
x

=
∑

a

Γ
aα

x
Γaβ
x

−
δαβ

2Nf

∑

aγ

Γ
aγ

x
Γaγ
x
, (28)

with Γaα
x

defined in Eq. (11). This order parameter is a
2Nf × 2Nf hermitian traceless matrix which satisfies the
additional condition

J T̄ J + T = 0 , (29)

which follows from Eq. (16). The matrix T is thus an el-
ement of the sp(Nf ) algebra [41]. The explicit construc-
tion of the corresponding LGW theory starts by defining
a 2Nf × 2Nf hermitian traceless matrix field Ψ(x) that
satisfies the analog of Eq. (29). The corresponding LGW
theory is obtained by considering the most general quar-
tic polynomial in the fields: we reobtain Eq. (22). For
Nf = 2, as discussed in App. B, the cubic term van-
ishes. Therefore, continuous transitions are allowed in
the SO(5) universality class, given the isomorphism be-
tween Sp(2)/Z2 and the SO(5) group. For Nf > 2, a
cubic operator is generically present and therefore we ex-
pect first-order transitions. Note, that for Nc = 2, there
is no residual U(1) symmetry, as U(1) global transforma-
tions are a subgroup of the Sp(Nf ) group.
We finally note that the LGW approach based on the

symmetry of the model does not depend on the specific
form of the lattice potential V (X) in Eq. (2). Moreover,
we recall that the presence of a stable fixed point in the
corresponding LGW theory does not exclude the possi-
bility that the model undergoes a first-order transition,
when the system is outside the attraction domain of the
stable fixed point even though it shares the global sym-
metry of the universality class.

IV. OBSERVABLES AND ANALYSIS METHOD

In this section we introduce the lattice observables
studied and we briefly recall some basic facts about FSS
that will be relevant for the analysis of the numerical
data. We always assume the lattice to have periodic
boundary conditions and to be of linear size L.

A. Lattice observables

In the following we consider the energy density and the
specific heat, defined as

E =
1

βNfV
〈Sg〉 , C =

1

β2N2
fV

(
〈S2

g 〉 − 〈Sg〉
2
)
, (30)
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where V = L3. We also define the average gauge energy
as

Eg =
1

6V Nc

〈 ∑

x,µ>ν

ReTr
[
Ux,µ̂ Ux+µ̂,ν̂ U

†
x+ν̂,µ̂ U

†
x,ν̂

]〉
.

(31)
To study the breaking of the SU(Nf ) flavor symmetry
we consider the order parameter Q defined in Eq. (21),
which is a hermitian and traceless Nf × Nf matrix. Its
two-point correlation function is defined by

G(x− y) = 〈TrQxQy〉 , (32)

where the translation invariance of the system has been
explicitly taken into account. We can define the correa-
sponding susceptibility χ and correlation length ξ as

χ =
∑

x

G(x) , (33)

ξ2 =
1

4 sin2(π/L)

G̃(0)− G̃(pm)

G̃(pm)
, (34)

where G̃(p) =
∑

x
eip·xG(x) is the Fourier transform of

G(x) and pm = (2π/L, 0, 0). We also consider the Binder
parameter U , defined by

U =
〈µ2

2〉

〈µ2〉2
, µ2 =

1

V 2

∑

x,y

TrQxQy . (35)

We will study the U(1) flavor symmetry only for Nf =
Nc. In this case it is equivalent to consider the scalar
order parameter, see Eq. (27),

Dx = det Zx . (36)

We define the correlation function

GD(x− y) = 〈Re D̄xDy〉 , (37)

the correlation length ξD using the analogue of Eq. (34),
and the Binder parameter

UD =
〈µ2

D2〉

〈µD2〉2
, µD2 =

1

V 2

∑

x,y

Re D̄xDy . (38)

To better appreciate the role of the gauge degrees of
freedom, we also study some observables involving the
SU(Nc) gauge link variables. More specifically, we con-
sider the averages

〈∑

ab

Z̄af
x

[∏

ℓ∈C

Uℓ

]ab
Zbg
y

〉
, (39)

where the product extends over the link variables that
belong to a lattice path C connecting the points x and
y. To define quantities that have the correct FSS, the

path C must be chosen appropriately [43], and here we
consider correlations between points along lattice lines:

GV (t, L) = Re

〈∑

abfg

Z̄af
x

[
t−1∏

k=0

Ux+kµ̂,µ̂

]ab
Zbf
x+tµ̂

〉
. (40)

As usual, translation invariance and independence of the
direction µ̂ can be used to actually increase the statistics.
In some test cases we also determined the Polyakov loop

P (L) =
1

3L3

∑

x,µ

Re

〈
Tr

[
L−1∏

k=0

Ux+kµ̂,µ̂

]〉
. (41)

For Nf = 2 and Nc = 2 the model is invariant under
Sp(2)/Z2 = O(5) transformations. We discuss in App. A
the O(5) observables that can be defined in terms of the
order parameter (28). In particular, we show that the
second-moment correlation length computed from G(x),
GD(x) or the O(5)-invariant correlation frunction of the
the order parameter T αβ are numerically the same. For
the Binder parameters, instead, the relation is not trivial.
We have

U =
25

21
UΓ , UD =

10

7
UΓ , (42)

where UΓ is the O(5)-invariant Binder parameter defined
in App. A, which corresponds to the usual vector param-
eter in the O(5) theory.
For Nf = 2 and Nc ≥ 3, the global symmetry group

is SU(2)/Z2 = SO(3). This invariance can be more
easily understood by defining the gauge-invariant three-
component real vector variables ϕk

x
as

ϕk
x
=
∑

a,f,g

Z̄af
x
σk
fgZ

ag
x

=
∑

f,g

σk
fgQ

fg
x
, (43)

where σk are the Pauli matrices. Previoulsy defined ob-
servables, like χ and U , can be rewritten in term of the
vector variable ϕx using

G(x− y) =
1

2
〈ϕx · ϕy〉 , (44)

U =
〈µ2

2〉

〈µ2〉2
, µ2 =

1

V 2

∑

x,y

ϕx ·ϕy . (45)

Note however that the vectors ϕx do not have fixed
length, indeed

ϕx ·ϕx = 2TrQ2
x
≤ 1. (46)

B. Finite-Size Scaling

To investigate continuous transitions using FSS it is
particularly convenient to study RG invariant quantities,
such as U and

Rξ = ξ/L . (47)
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For an RG-invariant quantity, generically denoted by R,
FSS theory predicts the scaling behavior [8]

R(β, L) = fR(X) + L−ωgR(X) + . . . , (48)

X = (β − βc)L
1/ν , (49)

where fR(X) is a function that is universal up to a multi-
plicative scale of its argument, ν is the critical exponent
of the correlation length and ω is the exponent associ-
ated with the leading irrelevant operator. By expanding
Eq. (48) around βc, corresponding to X = 0, we may
write

R(β, L) ≈ R∗ +
n∑

k=1

akX
k + L−ω

m∑

k=0

bkX
k , (50)

where, as in Eq. (48), we have neglected next-to-leading
scaling corrections. Using this expression it is possible to
estimate βc and ν from numerical determinations of R.

Since Rξ defined in Eq. (47) is an increasing function
of β, we may write

U(β, L) = FU (Rξ) +O(L−ω) , (51)

where FU now depends on the universality class only,
without any non-universal multiplicative factor. This is
true once the boundary conditions and the shape of the
lattice have been fixed, provided one uses corresponding
quantities in the different models, see, e.g., Ref. [20] and
the discussion in Sec. VA. The scaling (51) is particularly
convenient to test universality-class predictions, since it
permits easy comparisons between different models with-
out any tuning of nonuniversal parameters.

Finally, we also mention that the susceptibility is ex-
pected to scale as [8]

χ(β, L) = L2−η
[
fχ(X) + L−ωgχ(X)

]
(52)

= L2−η
[
Fχ(Rξ) +O(L−ω)

]
, (53)

where fχ and Fχ are universal functions, apart from triv-
ial multiplicative normalizations and a normalization of
the argument in the case of fχ.

V. NUMERICAL RESULTS

We now present and discuss the results of Monte
Carlo (MC) simulations. We use an overrelaxation algo-
rithm, consisting of a combination of heat-bath [44, 45]
and microcanonical [46] updates (with ratio 1:5) for the
gauge fields (implemented à la Cabibbo-Marinari [47] for
Nc > 2) and of a combination of Metropolis [48] and mi-
crocanonical updates for the scalar field. The Metropolis
update was tuned to have an acceptance rate of approx-
imately 30%.
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FIG. 1: Rξ versus β forNf = 2, Nc = 2, and βg = 0. The data
for different values of L have a crossing point, whose position
provides an estimate of the critical point, βc = 2.68885(5), in-
dicated by the vertical line. The horizontal line corresponds
to the universal value R∗

ξ = 0.538(1) for the O(5) vector uni-
versality class.
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FIG. 2: Rξ versus (β−βc)L
1/ν for Nf = 2, Nc = 2, and βg =

0. We use βc = 2.68885 and ν = 0.779, the estimate of the
correlation-length exponent for the O(5) vector universality
class, see Ref. [50].

A. FSS analysis for Nf = 2 and Nc = 2

In this section we present the numerical results ob-
tained for Nf = 2 and Nc = 2. We start by analyzing
the computationally simplest case βg = 0. In this case we
performed simulations on lattices of size up to L = 96.
In Fig. 1 we show the estimates of Rξ for different

values of L and β. They display the typical behavior ex-
pected at a continuous transition: Different curves have
an approximate crossing point and the slopes increase by
increasing the lattice size. Eq. (50) can then be used to
extract the critical coupling βc and the critical exponent
ν. For this purpose we first perform standard nonlinear
(unbiased) fits to the ansatz

Rξ = R∗
ξ + a1X , X = (β − βc)L

1/ν , (54)
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FIG. 3: Rescaled susceptibility χ/L2−η versus Rξ, for Nf = 2,
Nc = 2, and βg = 0. We use the estimate η = 0.034, the
estimate for the O(5) vector universality class, see Ref. [50].
The dotted vertical line corresponds to the critical value R∗

ξ

for the O(5) vector universality class.

δ Lmin βc R∗

ξ χ2/d.o.f. # data

0.05 8 2.68886(3) 0.5381(3) 1.1 45

0.10 8 2.68887(2) 0.5378(3) 1.4 68

0.05 12 2.68880(4) 0.5372(6) 1.1 33

0.10 12 2.68880(3) 0.5364(5) 1.4 52

0.05 24 2.68886(8) 0.539(3) 1.2 13

0.10 24 2.68884(6) 0.538(2) 1.3 26

TABLE I: Results of the biased fits of Rξ to the Ansatz (50)
with n = 1, m = 0, fixing ν and ω to the O(5) values reported
in Eq. (55). Results for Nc = Nf = 2 and βg = 0.

using data within the self-consistent window Rξ(β, L) ∈
[R∗

ξ(1 − δ), R∗
ξ(1 + δ)]. For δ = 0.1 and L ≥ Lmin = 16,

we obtain βc = 2.68869(2), ν = 0.775(6), and R∗
ξ =

0.5340(2), with χ2/d.o.f. ≈ 1.5 (30 data, d.o.f. is the
number of degrees of freedom of the fit). The exponent
ν is consistent with that of the O(5) vector universality
class, whose universal critical exponents are [49–52]

ν = 0.779(3) , η = 0.034(1) , ω = 0.79(2) . (55)

To corroborate this identification, we perform biased fits
to Eq. (50), with n = 1 and m = 0 (we include a single
scaling correction term), fixing ν and ω to the O(5) values
reported in Eq. (55). Again, we use a self-consistent fit
window Rξ(β, L) ∈ [R∗

ξ(1 − δ), R∗
ξ(1 + δ)]. The results

are reported in Table I. Our final biased estimates, that
take into account the dependence of the fit parameters
on δ and Lmin, are

βc = 2.68885(5) , R∗
ξ = 0.538(2) . (56)

The errors also take into account the variation of the
estimates as ν and ω vary within one error bar. The
corresponding scaling plot is shown in Fig. 2, where Rξ
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FIG. 4: Rescaled Binder parameter Ur versus Rξ (top) and
rescaled Binder parameter UDr versus Rξ,D = ξD/L. Results
for Nf = 2, Nc = 2, and βg = 0. Data are in good agree-
ment with the the numerical results for the Binder parameter
obtained by numerical simulations of the O(5) vector lattice
model. The dotted horizontal and vertical lines correspond
to the universal values U∗ = 1.069(1) and R∗

ξ = 0.538(1) of
the O(5) universality class. The dashed horizontal lines cor-
respond to Ur = 7/5 and Ur = 1, the asymptotic values for
Rξ → 0 and for Rξ → ∞, respectively.

is plotted versus X = (β − βc)L
1/ν using βc = 2.68885

and the O(5) value ν = 0.779. The agreement is excel-
lent. Note also that the estimate of R∗

ξ is consistent with

R∗
ξ = 0.538(1), obtained in the O(5) vector model using

the vector correlation function [50]. Also the behavior
of the susceptibility χ is consistent with a transition in
the O(5) universality class. If we fix η to the O(5) value
[see Eq. (55)], the ratio χ/L2−η scales nicely when plotted
versus Rξ, as expected from the scaling relation Eq. (53),
see Fig. 3.

Additional evidence that the transition belongs to the
O(5) vector universality class is provided by the analysis
of the Binder parameter U defined in Eq. (35). To per-
form the correct universality check, we should compare
corresponding quantities in our model and in the O(5)
vector model. As we discuss at length in App. A, the
Binder parameter that corresponds to the O(5) param-
eter is UΓ defined by using T αβ , see Eq. (A8). Using
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FIG. 5: The correlation function GV defined in Eq. (40), for
Nf = 2, Nc = 2, and βg = 0 at βc. It shows a large-distance

exponential behavior ∼ e−x/ξg with ξg = 1.92(2).
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FIG. 6: Estimates of the rescaled Binder parameter Ur versus
Rξ, for Nf = 2, Nc = 2, and βg = 2 and of the usual Binder
parameter for the O(5) vector model. The dotted horizontal
and vertical lines indicate the universal values U∗ = 1.069(1)
and R∗

ξ = 0.538(1) of the O(5) universality class. The dashed
horizontal lines correspond to the asymptotic values Ur = 7/5
and Ur = 1 for Rξ → 0 and Rξ → ∞, respectively.

the Sp(2)/O(5) invariance of the theory, one can easily
show that UΓ and U simply differ by a multiplicative con-
stant, see Eq. (A15). Therefore, the renormalized Binder
parameter

Ur =
21

25
U (57)

should behave as the vector Binder parameter in the O(5)
vector model. If we perform biased fits to Eq. (50) anal-
ogous to those we performed for Rξ, we obtain U∗

r =
1.070(1), which is in agreement with the O(5) estimate
U∗
O(5) = 1.069(1) reported in Ref. [50]. A conclusive evi-

dence for an O(5) critical behavior is provided by Fig. 4,
where we report Ur versus Rξ (upper panel). The numer-
ical data fall on top of those obtained in the O(5) vector
model.
As we discussed in Sec. III, in the models with Nc = 2

the U(1) flavor symmetry breaks at the same β where the
SU(Nf ) is broken, since the two groups are subgroups
of the larger symmetry group Sp(Nf ). To verify this
point, we have estimated several observables in terms of
the order parameter Dx defined in Eq. (36). We have
verified that the correlation length ξD defined using the
correlation function (37) is identical, within errors, to ξ.
Moreover, we have studied the behavior of the Binder
parameter UD. Again, to obtain a quantity that can be
directly related to the O(5) Binder parameter, we have
considered, see Eq. (A15),

UDr =
10

7
UD . (58)

In Fig. 4 (lower panel) we report UDr versus Rξ,D =
ξD/L. The data are compared with the O(5) correspond-
ing data, observing again an excellent agreement.
Finally, we have computed the correlation function

GV (t), defined in Eq. (40). As it is evident from Fig. 5, it
is short-ranged and essentially independent of L even at
the critical point. It has a very clear exponential behav-
ior, GV (t) ∼ exp(−x/ξg), with ξg = 1.92(2), indepen-
dently of the size L. We also analyzed the Polyakov loop
which is expected to behave as e−L/ξP . The estimates of
ξP are close to those of ξg, but with significantly larger
errors.
We have also verified that the analogous results are

obtained for βg 6= 0. For this purpose we performed MC
simulations at βg = −2 (using lattices up to L = 32)
and at βg = 2 (using lattices up to L = 48). In both
cases data fully support the presence of a continuous
transition in the O(5) universality class. As an exam-
ple, in Fig. 6 we plot Ur versus Rξ for βg = 2. Again,
the data fall on top of the corrisponding ones obtained
in the O(5) vector model. Biased fits to Eq. (50) al-
low us to obtain the estimates βc(βg = −2) = 3.794(2)
and βc(βg = 2) = 1.767(1). While the critical cou-
pling at βg = 2 is significantly lower than the value
βc(βg = 0) ≈ 2.689, it is still quite larger than the value
βc = 0.96339(1) which is attained in the limit of large
βg, when the model become equivalent to the O(8) vec-
tor model [53]. This could explain the absence of signifi-
cant crossover effects in our data induced by the unstable
O(2NfNc) fixed point at βg → ∞, which have instead
been observed in the abelian case [21]. We finally note
that the approach to the asymptotic scaling behavior is
significantly slower for βg = 2 than for βg = 0, see Fig. 6.
This is likely related to the fact that the gauge length
scale ξg at the transition is larger at βg = 2 than at
βg = 0. Indeed, we find ξg(βg = 2) = 2.46(4), to be
compared with ξg(βg = 0) = 1.92(2).
The above results provide a robust evidence that the

lattice scalar chromodynamics for Nf = 2 and Nc = 2
undergoes a continuous transition in the O(5) universal-
ity class. This result agrees with the predictions of the
LGW approach, assuming that the critical behavior is
determined by the global symmetry group and that the
gauge degrees of freedom are irrelevant.
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FIG. 7: Rξ versus β for Nf = 2, Nc = 3, and βg = 0.
The data for different values of L show a crossing point,
whose position provides an estimate of the critical point,
βc = 3.7518(2), indicated by the vertical line. The horizontal
line corresponds to the universal value R∗

ξ = 0.5639(2) of the
O(3) vector universality class.
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FIG. 8: Rξ versus (β − βc)L
1/ν for Nf = 2, Nc = 3, and

βg = 0. We use βc = 3.7518 and ν = 0.7117, the correlation-
length exponent for the O(3) vector universality class.

B. FSS analysis for Nf = 2 and Nc = 3, 4

In this section we consider the model for Nf = 2
and Nc = 3, 4. For Nc = 3 and βg = 0 we heve per-
formed simulation up to L = 64. In Fig. 7 we report
Rξ as a function of β. We observe a crossing point for
β ≈ 3.75. To determine the nature of the transition,
we again proceed by first performing standard nonlin-
ear (unbiased) FSS fits of the Rξ data to the simplest
ansatz Eq. (54), using data within the self-consistent win-
dow Rξ(β, L) ∈ [R∗

ξ(1 − δ), R∗
ξ(1 + δ)]. For δ = 0.1 and

L ≥ Lmin = 8, we obtain βc = 3.7523(1), ν = 0.705(10),
and R∗

ξ = 0.5771(5), with χ2/d.o.f. ≈ 1.4 (28 data). The

critical exponent ν is consistent with that of the O(3) vec-
tor universality class, as predicted by the LGW theory.
Indeed, the universal critical exponents and RG invari-

δ Lmin βc R∗

ξ χ2/d.o.f. # data

0.1 8 3.75182(9) 0.5673(12) 1.1 27

0.1 12 3.75186(16) 0.569(4) 1.2 20

0.1 24 3.7521(4) 0.577(16) 0.8 30

0.1 32 3.7519(11) 0.57(6) 0.6 17

TABLE II: Results of the biased fits for Rξ to Eq. (50) with
n = 1 and m = 2, fixing ν and ω to the O(3) values reported
in Eq. (59). Results for Nf = 2, Nc = 3, and βg = 0.

ant quantities of the O(3) universality class which are
relevant for our study are [54–56]

ν = 0.7117(5) , η = 0.0378(3) , ω = 0.782(13) , (59)

R∗
ξ = 0.5639(2) , U∗ = 1.1394(3) . (60)

Additional evidence for an O(3) critical behavior is ob-
tained by performing biased fits to Eq. (50) with n = 1
and m = 0, fixing ν and ω to the O(3) values reported in
Eq. (59). As before, we use data within the self-consistent
window Rξ(β, L) ∈ [R∗

ξ(1−δ), R
∗
ξ(1+δ)]. The results are

reported in Table II. The estimates of R∗
ξ are nicely con-

sistent with the O(3) estimate R∗
ξ = 0.5639(2). A similar

analysis can be done using the Binder parameter U . Us-
ing Lmin = 8, we obtain the estimates βc = 3.7519(2) and
U∗ = 1.139(3), with χ2/d.o.f ≈ 1.2 (27 data). Again, the
estimate of U∗ is in good agreement with the O(3) value
U∗ = 1.1394(3). Our final estimate of the critical tem-
perature, obtained by considering the various systematic
errors, is

βc = 3.7518(2) . (61)

In Figs. 8, 9, and 10 we show different scaling plots that
clearly confirm that the transition belongs to the O(3)
universality class. In particular, the data of U plotted
versus Rξ, see Fig. 9, are nicely consistent with the re-
sults obtained in numerical simulations of the O(3) vector
model.
As in the two color case, we have also checked that

the above results extend to nonvanishing values of βg.
In particular, simulations have been performed for a few
values of βg between −9 and 6. In all cases, the FSS
behavior of U as a function of Rξ supports the O(3) na-
ture of the transition, as can be seen in Fig. 11, where
we report the results for βg = −6 and βg = 6. Again
these results are far from trivial, since the critical cou-
pling βc(βg) changes from approximately 4.39 to 2.55 as
we vary βg in the interval [−9, 6] (see Fig. 12). Therefore,
the effect of βg on the dynamics of the system is large.
Also the average gauge energy Eg at criticality changes
significantly. It varies approximately from −0.23 to 0.51.
These values are however still far from the asymptotic
values ±1 at βg → ±∞ and this could explain the ab-
sence of sizable crossover effects in our data. This is also
consistent with the fact that the correlation length as-
sociated with the gauge modes increases with increasing
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FIG. 9: The Binder parameter U versus Rξ, for Nf = 2,
Nc = 3, and βg = 0. The data clearly converge to the O(3)
vector universal curve (continuous curve). The dotted hor-
izontal and vertical lines correspond to the universal values
U∗ = 1.1394(3) and R∗

ξ = 0.5639(2) of the O(3) universality
class. The dashed horizontal lines correspond to U = 5/3 and
U = 1, the asymptotic values of Rξ → 0 and for Rξ → ∞,
respectively.
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FIG. 10: The rescaled susceptibility χ/L2−η with η = 0.0378,
the exponent value in the O(3) vector universality class, ver-
sus Rξ , for Nf = 2, Nc = 3, and βg = 0. The dotted vertical
line corresponds to R∗

ξ .

βg, but nevertheless stays quite small: at the transition
we obtain ξg(βg = 0) = 1.60(2), ξg(βg = 3) = 1.70(2),
and ξg(βg = 6) = 2.02(2).

As a final check that, for Nf = 2 and any Nc ≥ 3, the
transition always belongs to the O(3) universality class,
we performed MC simulations for Nc = 4 and βg = 0.
Also in this case the data of U plotted versus Rξ (we
have results for L ≤ 48) clearly approach the O(3) curve
as L is increased, as it can be seen in Fig. (13). Again,
the results confirm the LGW predictions.
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FIG. 11: The Binder parameter U versus Rξ, for Nf = 2,
Nc = 3. In the lower panel we report results for βg = −6 up
to L = 32, in the upper panel results for βg = 6 up to L = 64.
The data appear to converge to the O(3) vector universal
curve (continuous line). The dotted horizontal and vertical
lines correspond to the universal values U∗ = 1.1394(3) and
R∗

ξ = 0.5639(2) of the O(3) universality class. The dashed
horizontal lines correspond to U = 5/3 and U = 1, the asymp-
totic values for Rξ → 0 and Rξ → ∞.

C. FSS analysis for Nf = 3

For Nf = 3 the LGW effective field theory predicts a
first-order phase transition for any number of colors. To
verify the prediction, we perform sumulations for Nc = 2
and Nc = 3, fixing always βg = 0.
A standard technique to identify first-order phase tran-

sitions consists in checking if the maximum value of the
susceptibility or of the specific heat scales linearly with
the volume. However, for weak first order transitions
such a technique is, in practice, quite often ineffective:
The values of L at which such a behavior sets in are far
larger than those at which simulations can be performed.
This is indeed what happens, as we discuss below, for
Nc = 2 and 3.
In Fig. 14 we report the specific heat CV defined in

Eq. (30) for Nc = 2. It is clear that the specific heat
is apparently diverging as L increases. This allows us
to conclude that the transition, if continuous, does not
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the limit βg → ∞, corresponding to the critical point of the
O(12) theory, βc ≈ 1.46, obtained using the results reported
in Ref. [57]. The dotted line connecting the data is drawn to
guide the eyes.
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FIG. 13: The Binder parameter U versus Rξ, for Nf = 2,
Nc = 4, and βg = 0. The data appear to converge to the
O(3) vector universal curve (continuous line). The dotted
horizontal and vertical lines correspond to the universal values
U∗ = 1.1394(3) and R∗

ξ = 0.5639(2) of the O(3) universality
class. The dashed horizontal lines correspond to U = 5/3 and
U = 1, the asymptotic values for Rξ → 0 and Rξ → ∞.

belong to a universality class characterized by a negative
value of the critical exponent α, like, e.g., the standard
O(M) universality classes for any M ≥ 2 [8].
In the case of weak first-order transitions, a more use-

ful quantity is the Binder parameter U . At a first-order
transition, the maximum Umax of U behaves as [58, 59]

Umax = aV [1 + O(V −1)] . (62)

On the other hand, at a continuous phase transition, U is
bounded as L→ ∞. At the critical point U converges to
a universal value U∗, while the data of U corresponding
to different values of Rξ collapse onto a common scal-
ing curve as the volume is increased. Therefore, U has
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FIG. 14: The specific heat defined in Eq. (30) versus β for
Nc = 2, Nf = 3, and βg = 0.

a qualitatively different scaling behavior for first- and
second-order transitions. In practice, a first-order tran-
sition can be simply identified by verifying that Umax in-
creases with L, without the need of explicitly observing
the linear behavior in the volume. A second indication
of a first-order transition is provided by the plot of U
versus Rξ. The absence of a data collapse is an early
indication of the first-order nature of the transition, as
already advocated in Ref. [20]. In Fig. 15 we plot the
Binder parameter U versus Rξ, for Nc = 2 and Nc = 3,
respectivele, and βg = 0. In neither of the two cases an
acceptable collapse is obtained and the data display a
pronounced peak whose height increases with increasing
volume. We take the absence of scaling as an evidence
that the transition is not continuous, thus that it is of
first order in both cases.

We have also investigated the behavior of the observ-
ables related to the breaking of the U(1) flavor symme-
try. In Fig. 16 we report the correlation length ξD and
the Binder parameter UD, defined in Sec. IVA. Our nu-
merical results show that the correlation length ξD is
always small, even at the transition point β ≈ 3.415,
a clear indication that the U(1) flavor symmetry does
not break. The results for the Binder parameter are
completely consistent: UD is always compatible with the
high-temperature value UD = 2.

VI. CONCLUSIONS

In this work we have studied the finite-temperature
critical behavior of the lattice multiflavor chromodynam-
ics model defined by the action, Eq. (6). This model is
characterized by the presence of a SU(Nc) gauge symme-
try and of a U(Nf ) or Sp(Nf ) global symmetry, depend-
ing whether Nc ≥ 3 or Nc = 2. In all cases, we find
that the system undergoes a finite-temperature phase
transition associated with the condensation of a gauge-
invariant order parameter: the operator Qab

x
for Nc ≥ 3
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FIG. 15: The Binder parameter U versus Rξ, for Nf = 3,
Nc = 2 (top) and Nc = 3 (bottom), and βg = 0. The pres-
ence of a maximum of U diverging in the large-L limit is a
peculiar feature of the behavior at first-order transitions, see,
e.g., Refs. [20, 58, 59].

and the operator T αβ
x

forNc = 2. At the phase transition
the global symmetry SU(Nf ) or Sp(Nf ) is spontaneously
broken.

To investigate the possible influence of the gauge de-
grees of freedom on the critical behavior of the model, we
determine the universality class of the transition for sev-
eral values of the number of colors Nc and of the numbers
of flavors Nf , also varying the plaquette-coupling coeffi-
cient βg. In the two-flavor case, we always observe a
continuous phase transition, in the 3D O(5) universality
class for Nc = 2 and in the 3D O(3) universality class for
Nc = 3, 4. For Nf = 3 we instead find results compatible
with the presence of a first-order phase transition both
for Nc = 2 and 3.

These results agree with the predictions of a LGW
analysis based on a gauge-invariant order parameter [36],
and therefore indicate the irrelevance of the nonabelian
gauge degrees of freedom at the finite-temperature tran-
sition. In other words, gauge invariance does not play
any role at the transition, apart from that of restricting
the fields to the coset O(M)/SU(Nc) whereM = 2NcNf .
Such a conclusion is also consistent with the observed be-
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FIG. 16: The correlation length ξD and the Binder parameter
UD versus β, for Nf = 3, Nc = 3, and βg = 0. We report
results for β in the range [4,17]. The first-order transition
occurs at βc ≈ 3.415.

havior of the correlation function GV , defined in Eq. (40),
which directly involves the gauge degrees of freedom. In
all cases, this correlation function is short-ranged at the
transition.

These results strongly support the procedure initially
advocated by Pisarski and Wilczek in Ref. [12] to study
the chiral phase transition in massless QCD, which makes
use of gauge-invariant order parameters to analyze the
critical behavior of gauge theories when a global symme-
try gets spontaneously broken.

We finally note that there are still several points which
deserve to be further investigated. For example, in this
work we concentrated on the gauge theory that is ob-
tained by starting from a maximally symmetric O(M)-
invariant model and by fixing TrZ†

x
Zx = 1. It would be

interesting to investigate what happens if one or both of
these conditions are relaxed. It would also be interesting
to study theories with different global and local symme-
tries that are different from the ones considered in this
work.

Acknowledgement Numerical simulations have been
performed on the CSN4 cluster of the Scientific Com-



13

puting Center at INFN-PISA. We thank Daniele Teresi
and Omar Zanusso for useful discussions.

Appendix A: Symplectic observables for Nc = 2

For Nc = 2 the order parameter is the symplectic ana-
logue of Qx defined in Eq. (28). It is a 2Nf × 2Nf her-
mitian traceless matrix, which satisfies the relation

J T̄ J + T = 0 , (A1)

which follows from Eq. (16). It is thus an element of the
sp(Nf ) algebra [41]. It can be parametrized in the block
form

T =

(
A1 A2

A3 A4

)
, (A2)

where A1, A2, A3 and A4 are Nf × Nf matrices, A1 is
hermitian and traceless, A3 is antisymmetric and

A4 = Ā1 , A3 = −Ā2 . (A3)

It is not difficult to show that T can be expressed in
terms of the two order parameters Qfg

x
and Dfg

x
. Indeed,

we have

A1 = Q , A3 = −D . (A4)

This result implies that the critical behavior encoded in
T αβ
x

can be also investigated by studying Qfg
x
. How-

ever, some care should be exercised, when comparing the
results with the Sp(Nf ) predictions. We define the cor-
relation function of the T field:

GΓ(x− y) = 〈Tr TxTy〉 . (A5)

Such a correlation can be related to the correlation of the
Q field defined in Eq. (32). We use the relation

〈T αβ
x

T γδ
y

〉 =
1

2(Nf − 1)(2Nf + 1)
GΓ(x− y)

×

(
JαγJβδ + δαδδβγ −

1

Nf
δαβδγδ

)
, (A6)

which follows from the Sp(Nf ) invariance of the theory.
We obtain the relation

GΓ(x) =
2(2Nf + 1)

(Nf + 1)
G(x) . (A7)

It implies that, if one uses Eq. (34), the same correlation
length is obtained from GΓ(x) or G(x). The behavior of
the Binder parameter is more involved. For Nc = 2 the
natural Binder parameter is

UΓ =
〈ν22 〉

〈ν2〉2
, ν2 =

1

V 2

∑

xy

Tr TxTy . (A8)

In general such a quantity is not related to U defined in
Eq. (35), except for Nf = 2, as we discuss below.
ForNf = 2 the global invariance group is isomorphic to

SO(5). It is useful to make this correspondence explicit.
We can rewrite the blocks A1 and A3 in Eq. (A2) as

A1 =

(
φ3 φ1 − iφ2

φ1 + iφ2 −φ3

)
,

A3 =

(
0 φ4 + iφ5

−φ4 − iφ5 0

)
.

(A9)

Since

(T 2)αβ =
1

4
δαβ , (A10)

we can verify that

5∑

i=1

φ2i = 1. (A11)

Moreover, one can easily verify that, under infinitesimal
Sp(2) transformations, the vector (φ1, . . . , φ5) transforms
as an SO(5) vector. Thus, the redefinition T → φ ex-
plicitly realizes the isomorphism between Sp(2)/Z2 and
SO(5). Since

TrQxQy = 2

3∑

a=1

φa
x
φa
y
,

D̄xDy =

5∑

a=4

φa
x
φa
y
, (A12)

we obtain the relations

GΓ(x− y) = 4〈φx · φy〉 ,

G(x− y) =
3

20
GΓ(x− y) ,

GD(x− y) =
1

10
GΓ(x− y) , (A13)

where we have used the O(5) symmetry of the theory.
For the Binder parameters we have

UΓ =
〈ν22φ〉

〈ν2φ〉2
, ν2φ =

1

V 2

∑

xy

〈φx · φy〉 , (A14)

which shows that UΓ corresponds to the usual O(5)
Binder parameter, and

U =
25

21
UΓ , UD =

10

7
UΓ . (A15)

Appendix B: Symplectic Landau-Ginzburg-Wilson

theory for Nc = 2

To define the LGW theory for Nc = 2, we introduce a
coarse-grained continuum analogue Ψ of T , which satis-
fies the condition

JΨ̄J +Ψ = 0 . (B1)
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The corresponding action is given in Eq. (22). For Nf =
2, we obtain the O(5) LGW model. Indeed, in this case
we can set

A1 =

(
ψ3 ψ1 − iψ2

ψ1 + iψ2 −ψ3

)
,

A3 =

(
0 ψ4 + iψ5

−ψ4 − iψ5 0

)
,

(B2)

from which it easily follows that

Ψ2 = I

(
5∑

i=1

ψ2

)
, TrΨ3 = 0 , (B3)

and thus the LGW effective theory for Ψ in the Sp(2)
case is equivalent to that for the O(5) vector model.

Appendix C: The behavior for β → ∞

In this appendix we study the large-β limit of the
model described by the action Sg, Eq. (6). As the system
is ferromagnetic, the global minimum of the β-dependent
part of the action is obtained by minimizing the contri-
bution of each link. This is obtained by setting

Zx = Ux,µZx+µ̂ (C1)

on each link. This relation implies that

Qx = Qx+µ̂ , Dx = Dx+µ̂ , (C2)

on each link, where Qx and Dx are the order parameters
defined in Eqs. (21) and (26). The unit-length condi-
tion implies that Qx is nonvanishing: the system is fully
ordered in the limit β → ∞ and therefore the SU(Nf)
subgroup is broken at zero temperature. As for the U(1)
order parameter Dx, we shall show below that Dx is
nonvanishing for Nc = 2. This is obvious as the U(1)
subgroup is a subgroup of the Sp(Nf ) symmetry group,
which is broken. On the other hand, for Nc ≥ 3, we find
Dx = 0: the U(1) flavor symmetry is not broken.
Let us now consider any closed path Cx that starts and

ends in the same point x. By repeated applications of
condition (C1), we obtain the consistency condition

Zaf
x

=
∑

b

[ ∏

l∈Cx

Ul

]ab
Zbf
x
. (C3)

This relation implies that the product of the links along
the path has at least one unit eigenvalue. For an SU(2)
matrix, this implies that the product is the identity ma-
trix. Therefore, for Nc = 2, we can set Ux,µ = 1 modulo
gauge transformations. For Nc ≥ 3, we obtain the con-
dition

∏

l∈Cx

Ul = V †
x
WVx (C4)

with Vx ∈ SU(Nc) and

W =

(
Ŵ 0

0 1

)
, (C5)

where Ŵ is an SU(Nc − 1) matrix. If Ŵ does not have
unit eigenvalues (this is the case for a generic unitary
matrix), then

Zx = V †
x
A , A =

(
0

ẑ

)
, (C6)

where A is an Nc ×Nf matrix such that Aij = 0 for any
i = 1, . . .Nc − 1; ẑ is a unit vector of Nf elements.
To obtain more information on the gauge configura-

tions relevant for β → ∞ we have performed simulations
for βg = 0 on small lattices (23 and 43) for very large β
values (from β = 50 up to β = 300) and then we have
extrapolated the results to β → ∞. Results for different
quantities are reported in Tables III and IV. Note that
we are indeed probing the system in the large β regime
as the average energy E defined in Eq. (30) converges
to −3. In Tables III and IV we also report the average
gauge energy defined in Eq. (31). For Nc = 2, results
are consistent with the plaquette being the identity ma-
trix. For Nc ≥ 3, data for the average gauge energy, cf.
Eq. (31), are consistent with

Eg =
1

Nc
. (C7)

Note that this is not an exact equality for finite L. How-
ever, deviations decrease as L increases from 2 to 4. Such
a result can be explained by assuming that the relevant
configurations are such that all plaquettes can be rewrit-
ten in the form (C4), where W is given in Eq. (C5).

Indeed, if this is the case and Ŵ is randomly distributed,
we obtain the result (C7). Of course, we are not claiming
that all minimizing configurations are such that Eq. (C5)
and (C6) hold. We only claim that the number of these
configurations is exponentially larger in the lattice vol-
ume than the others, so that they dominate the effective
asymptotic behavior. As a check, we have determined
the average of P 2, where P fg

x
is defined by

P fg
x

=
∑

a

Z̄af
x
Zag
x
. (C8)

In general, such an operator is not a projector, i.e., P 2 6=
P . However, if the Z fields satisfy Eq. (C6), we have
P 2 = P and in particular TrP 2 = 1. The results reported
in Tables III and IV are in perfect agreement with this
result, confirming the above analysis.
If the relevant configurations have the form (C6) it is

immediate to prove that Dx = 0 everywhere. The U(1)
flavor symmetry is not broken at β = ∞, at least for
βg = 0. It is easy to understand under which conditions
the order parameter Dx is not zero. If we imagine the
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field Zaf as a collection of Nf complex vectors of di-
mension Nc, then Dx does not vanish if Nc of these vec-
tors are nonvanishing and linearly independent. If this
occurs, the consistency condition (C3) implies that the
product of the links along any path has Nc unit eigen-
values. As the product is an SU(Nc) matrix, it must
be equal to the identity matrix, which implies that all
gauge fields are equivalent to the identity modulo gauge
transformations. This argument shows therefore that the
U(1) symmetry can be broken only if the relevant config-
urations are characterized by the triviality of the gauge
fields. For Nc ≥ 3 and βg = 0, this does not occur and
the U(1) symmetry is unbroken. For βg = ∞, there is no
gauge dependence and the U(1) symmetry is broken, an
obvious result given that the U(1) group is a subgroup
of the larger O(2NfNc) group. As we expect the gauge
energy Eg to depend smoothly on βg, we should always
have Eg < 1 for finite βg: there are relevant nontrivial
gauge configurations that always forbid the breaking of
the U(1) symmetry.
Let us finally discuss the behavior for Nc = 2. In this

case, we can set Ux,µ = 1 everywhere. Eq. (C1) implies
that Zaf

x
takes the same value on each link. Thus, the

average of any quantity O(Zx) can be obtained as

〈O((Zx)〉 =

∫
[dA]O(A), (C9)

where A is an Nc ×Nf matrix (Nc = 2) and [dA] is the
normalized invariant integration measure over the NcNf -
dimensional complex sphere defined by TrA†A = 1.

We obtain

〈TrP 2
x
〉 =

∫
[dA] Tr[(A†A)2] =

Nf +Nc

1 +NfNc
, (C10)

and

U =
(1 +NfNc)(NfNc + 4N2

f +N3
fNc − 6)

(N2
f − 1)(2 +NfNc)(3 +NfNc)

, (C11)

which again are consistent with the numerical data in
Tables III and IV for Nc = 2. Note that the results for U
are consistent with UΓ = 1 when Nf = 2, see Eq. (A15).

The results that we have obtained for Nc = 2 do not
depend on the dimensionality of the system. On the other
hand, for Nc ≥ 3 the conclusions we have obtained rely
on the fact that the relevant configurations have the form
(C5) and (C6), a claim that is only justified by the nu-
merical study we have performed on cubic lattices. We
expect, but we do not have a proof, that the same result
holds in any dimension.
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