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A NOTE ON BV AND 1-SOBOLEV FUNCTIONS ON THE WEIGHTED

EUCLIDEAN SPACE

MARIA STELLA GELLI AND DANKA LUČIĆ

Abstract. In the setting of the Euclidean space equipped with an arbitrary Radon measure,

we prove the equivalence between several notions of function of bounded variation present in

the literature. We also study the relation between various definitions of 1-Sobolev function.

1. Introduction

In the setting of the Euclidean space Rd equipped with an arbitrary Radon measure µ ≥ 0

(hereafter referred to as the weighted Euclidean space) the first notion of function of bounded

variation (BV, for short) was introduced in the late nineties, proposed by Bellettini, Bouchitté,

and Fragalà in [2]. The approach in there follows the ideas developed in [6], where the Sobolev

space W 1,p with p > 1 has been introduced. It is based on a notion of space tangent to the

measure µ and the related concept of µ-tangential gradient, that we shall discuss below. The

study of functional spaces in the weighted Euclidean space setting is motivated by numerous

applications in different kinds of variational problems; e.g. shape optimization [5, 3, 4], optimal

transport problems with gradient penalization [15], homogenization [21, 13].

In the last twenty years, both Sobolev and BV calculus have been extensively studied also in

a more general setting, that of metric measure spaces (namely, complete and separable metric

spaces endowed with a boundedly-finite Borel measure), see for example [17, 1, 8, 14]. The first

instance of the definition of BV function appeared in [17] by Miranda, where a relaxation-type

approach has been adopted. Ten years later it was followed by the definitions by Ambrosio and

Di Marino in [1] and by Di Marino in [9], where a thorough study of all the approaches has been

performed and where it was also proven that all of them are equivalent. All the results from [1]

and [9] are collected in Di Marino’s PhD thesis [8], to which we will often refer to.

In the main result of this paper (given in Theorem 5.7) we will prove that the notion of BV

function proposed in [2], that is tailored for the Euclidean setting, coincides with several (equiva-

lent) notions of BV function coming from the framework of metric measure spaces [8]. This note

comes as a natural follow-up to the paper [16], where the equivalence between different notions of

Sobolev spaces W 1,p with p > 1 has been proven.

Let us now briefly explain the main ideas that lie behind the definition of BV andW 1,1 functions

proposed in [2]. The objects that play a key role in this approach are bounded vector fields having

bounded distributional divergence. In the sequel, the space of such vector fields will be denoted

by D∞(divµ). Their role is, in a sense, two-fold: the space BV(Rd, µ) of functions of bounded

variation is defined as the space of those 1-integrable (with respect to µ) functions f ∈ L1
µ(R

d)

Date: October 7, 2021.

2020 Mathematics Subject Classification. 46E36, 49J45.

Key words and phrases. Functions of bounded variations, weighted Euclidean space, tangent space with respect

to a measure.

1

http://arxiv.org/abs/2110.02622v1


2 MARIA STELLA GELLI AND DANKA LUČIĆ

such that the quantity

‖Dµf‖ := sup

{∫

Rd

f divµ(v) dµ : v ∈ D∞(divµ), |v| ≤ 1µ-a.e.

}

,

referred to as the total variation of f , is finite. On the other hand, one can show that there exists

a unique (up to µ-a.e. equality) minimal subbundle of Rd – denoted {Tµ(x)}x∈Rd – such that for

every v ∈ D∞(divµ) it holds v(x) ∈ Tµ(x) for µ-a.e. x ∈ Rd. It then permits to give the notion of

tangential gradient ∇µf of a compactly-supported smooth function, by simply setting

∇µf(x) := prTµ(x)(∇f(x)), f ∈ C∞
c (Rd).

It has been proven in [2] that the space BV(Rd, µ) can be equivalently characterized as the domain

of finiteness of the relaxation (in the strong L1
µ(R

d)-topology) of the functional associating to every

f ∈ C∞
c (Rd) the quantity

∫

Rd |∇µf | dµ and set to be +∞ elsewhere in L1
µ(R

d). Moreover, it holds

that

‖Dµf‖ = inf lim
n→∞

∫

Rd

|∇µfn| dµ, f ∈ BV(Rd, µ), (1.1)

where the infimum is taken among all (fn)n ⊆ C∞
c (Rd) converging strongly in L1

µ(R
d) to f .

The Sobolev space W 1,1(Rd, µ) is defined (as in the case p > 1 in [6]) as the completion of

C∞
c (Rd) with respect to the norm

‖f‖W 1,1(Rd,µ) = ‖f‖L1
µ(R

d) + ‖∇µf‖L1
µ(R

d;Rd).

Such defined space is indeed a space of functions (not just an abstract Banach space), due to

the closability property of the tangential gradient operator, which therefore extends to the whole

space W 1,1(Rd, µ). These properties of ∇µ, that have been stated in [2], are proven in Lemma

4.4, Corollary 4.5, and Proposition 4.6 for the sake of completeness.

Looking from the point of view of the metric measure space theory, there are two approaches

that will be relevant for the purposes of the present paper.

(i) The first one is a variant of the relaxation-type approach from [17], given in [8]. This

approach involves, due to the lack (in general) of a smooth structure of the underlying space,

locally Lipschitz functions. The role of |∇µf | in the relaxation argument above is here played by

the asymptotic Lipschitz constant (denoted hereafter by lipa(f) for any f Lipschitz; see (3.2) for

its definition). Hence, when we stick to the specific case of the weighted Euclidean space, the space

of BV functions BVLip(R
d, µ) is defined as the set of those f ∈ L1

µ(R
d) for which the quantity

‖Dµf‖Lip := inf lim
n→∞

∫

Rd

lipa(fn) dµ

is finite. The infimum above is taken among all sequences (fn)n of locally Lipschitz functions

converging to f strongly in L1
µ(R

d). Localizing the above procedure, one can associate to each

f ∈ BVLip(R
d, µ) its total variation measure |Dµf |Lip, which on any open set Ω ⊆ Rd reads as

|Dµf |Lip(Ω) := inf lim
n→∞

∫

Ω

lipa(fn) dµ.

The corresponding definition of the Sobolev spaceW 1,1
Lip(R

d, µ) is as follows: f ∈ L1
µ(R

d) belongs to

W 1,1
Lip(R

d, µ) if there exists a sequence (fn)n of compactly-supported Lipschitz functions converging

to f strongly in L1
µ(R

d) and such that (lipa(fn))n is weakly convergent in L1
µ(R

d).

(ii) Another definition of BV function we will consider was proposed in [9] and is based on the

notion of bounded derivation b admitting bounded divergence div(b). Such a derivation can be

thought of as a linear map acting on boundedly-supported Lipschitz functions and having values in

the space of essentially bounded functions. Also, this derivation enjoys a suitable Leibniz rule and
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a locality property. We refer to Subsection 3.3 for the definition, in the specific case of the weighted

Euclidean space, of the above-described space of derivations, that we denote by Derb(R
d, µ). With

this notion at disposal, the space of BV functions BVDer(R
d, µ) is defined as the space of those

f ∈ L1
µ(R

d) for which there exists a continuous, linear (also with respect to the multiplication by

Lipschitz functions) operator Lf : Derb(R
d, µ) → M (Rd), such that

Lf (b)(R
d) = −

∫

Rd

f div(b) dµ for all b ∈ Derb(R
d, µ).

Here we denote by M (Rd) the space of all finite signed Borel measures on Rd. The total variation

associated to a BV function f ∈ BVDer(R
d, µ) is given by the quantity

‖Dµf‖Der := sup

{∫

Rd

f div(b) dµ : b ∈ Derb(R
d, µ), |b| ≤ 1µ-a.e.

}

.

Similarly, the total variation measure associated with f is given on any Ω ⊆ Rd open by

|Dµf |Der(Ω) := sup

{∫

Ω

f div(b) dµ : b ∈ Derb(R
d, µ), |b| ≤ 1µ-a.e. and supp(b) ⋐ Ω

}

.

It follows from [8] that

BVLip(R
d, µ) = BVDer(R

d, µ), |Dµf |Lip = |Dµf |Der for every f ∈ BVLip(R
d, µ). (1.2)

The present paper provides the following results:

(I) BVLip(R
d, µ) = BVC∞(Rd, µ): As one might expect, we show that in the setting of the

weighted Euclidean space, smooth functions are enough for the approximation in the relaxation

process that leads to the definition of the space BVLip(R
d, µ) described in (i). The same holds

also for the total variation measure, namely |Dµf |Lip = |Dµf |C∞ (see Theorem 5.3). Recalling

that for every f ∈ C∞(Rd) it holds that lipa(f) = |∇f |, note that the quantity ‖Dµf‖Lip, a priori,

might differ from the quantity ‖Dµf‖ given in (1.1).

(II) BV(Rd, µ) = BVDer(R
d, µ): In order to prove it, we first show in Section 5.2 that there

exists an isometric isomorphism between D∞(divµ) and Derb(R
d, µ). Due to this fact, we have that

‖Dµf‖ = ‖Dµf‖Der for every f ∈ L1
µ(R

d). This immediately implies BV(Rd, µ) ⊇ BVDer(R
d, µ).

To get the opposite inclusion, we use the equivalent characterization of ‖Dµf‖ given in (1.1) in

order to construct the operator Lf as in point (ii) above, associated with f ∈ BV(Rd, µ) (see

Theorem 5.7). Taking into account (I) and (1.2) we finally get

BV(Rd, µ) = BVDer(R
d, µ) = BVLip(R

d, µ) = BVC∞(Rd, µ),

and, moreover, that |Dµf |Der = |Dµf |Lip = |Dµf |C∞ as measures, for every f ∈ BV(Rd, µ).

(III) W 1,1
Lip(R

d, µ) ⊆ W 1,1(Rd, µ): In the case of W 1,1 spaces, there are not many instances

where the various notions provided in [8] do coincide. Also in this case we obtain (in Theorem 5.8)

only the above inclusion: to do so, we need to perform a careful study of the tangential gradient

operator and its behaviour on compactly-supported Lipschitz functions. The entire Subsection

4.1 is devoted to this. In particular, it allows us to give an equivalent characterization of the

space W 1,1(Rd, µ) (see Theorem 4.13), which turns out to be more suitable for showing that

W 1,1
Lip(R

d, µ) ⊆ W 1,1(Rd, µ).
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2. Preliminaries

In this paper we are going to work in the setting of the weighted Euclidean space, namely, in the

space Rd equipped with the Euclidean distance dEucl(x, y) := |x−y| and an arbitrary non-negative

Radon measure µ. The space (Rd, dEucl, µ) will be fixed to the end of the paper. Let us recall

some basic notions that will be used throughout.

We denote by LIP(Rd) the space of all real-valued Lipschitz functions on Rd, whereas LIPc(R
d)

stands for the family of all elements of LIP(Rd) having compact support. The Lipschitz constant of

the restriction of a function f ∈ LIP(Rd) to a set E ⊆ Rd will be denoted by Lip(f ;E) ∈ [0,+∞),

while the global Lipschitz constant of f will be denoted by Lip(f) := Lip(f ;Rd) for brevity.

Given any p ∈ [1,∞), we denote by Lp
µ(R

d;Rk) the space of p-integrable (with respect to µ)

Rk-valued maps on Rd, while L∞
µ (Rd;Rk) stands for the space of µ-essentially bounded Rk-valued

maps on R
d, in both cases considered up to µ-a.e. equality. By L0

µ(R
d) we shall denote the space

of all µ-measurable functions on Rd, again considered up to µ-a.e. equality. It is well-known that

the space Lp
µ(R

d;Rk) is a Banach space for any p ∈ [1,∞], with respect to the norm

‖v‖Lp
µ(Rd;Rk) := ‖|v|‖Lp

µ(Rd), for every v ∈ Lp
µ(R

d;Rk).

A mollification argument will be often useful. Hence, we fix once and for all a kernel of mollifi-

cation ρ on Rd, i.e., a smooth, symmetric function ρ ∈ C∞
c (Rd) such that ρ ≥ 0, supp(ρ) ⊆ B1(0),

and
∫

Rd ρ(x) dLn(x) = 1. Given any ε > 0, we define ρε ∈ C∞
c (Rd) as

ρε(x) := εnρ(x/ε), for every x ∈ R
d.

Notice that supp(ρε) ⊆ Bε(0) and
∫

Rd ρε(x) dLn(x) = 1. Given a locally integrable, Borel function

f : Rd → R, we define its ε-mollification (with kernel ρ) as the convolution between ρε and f , i.e.,

(ρε ∗ f)(x) :=
∫

Rd

ρε(x− y)f(y) dLn(y) =

∫

Rd

ρε(y)f(x+ y) dLn(y), for every x ∈ R
d.

In the following result we collect the main well-known properties of the mollification:

Lemma 2.1 (Approximation of compactly-supported Lipschitz functions). Let f ∈ LIPc(R
d) be

given. Then for every ε > 0 the ε-mollification fε := ρε ∗ f ∈ C∞
c (Rd) satisfies

supp(fε) ⊆ Bε(supp(f)), (2.1a)
∣
∣fε(x)− f(x)

∣
∣ ≤ Lip(f)ε, for every x ∈ R

d, (2.1b)

|∇fε(x)| ≤ Lip
(
f ;B2ε(x)

)
, for every x ∈ R

d. (2.1c)

Moreover, it holds f = limεց0 fε strongly in Lp
µ(R

d) for any p ∈ [1,∞) and weakly∗ in L∞
µ (Rd).

Proof. The fact that fε ∈ C∞(Rd) is well-known. Given any x ∈ Rd \Bε(supp(f)), we have that

x+ y /∈ supp(f) for every y ∈ Bε(0), thus fε(x) =
∫

Bε(0)
ρε(y)f(x+ y) dLn(y) = 0, getting (2.1a)

and in particular that fε ∈ C∞
c (Rd). Now observe that for any x ∈ Rd we may estimate

∣
∣fε(x)− f(x)

∣
∣ ≤

∫

Rd

∣
∣f(x+ y)− f(x)

∣
∣ρε(y) dLn(y) ≤ Lip(f)

∫

Bε(0)

|y|ρε(y) dLn(y) ≤ Lip(f)ε,

which proves (2.1b). To verify (2.1c), take y ∈ Bε(x) with y 6= x. Then it holds that

∣
∣fε(y)− fε(x)

∣
∣ ≤

∫

Bε(0)

∣
∣f(y + v)− f(x+ v)

∣
∣ρε(v) dLn(v) ≤ Lip

(
f ;B2ε(x)

)
|y − x|.
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By dividing the above inequality by |y − x| and passing to the limit as y → x, we get that

|∇fε(x)| ≤ Lip
(
f ;B2ε(x)

)
, proving (2.1c). Finally, for any ε ∈ (0, 1) and x ∈ Rd we have that

|fε(x)| ≤
∫

Rd

|f(x+ y)|ρε(y) dLn(y) ≤ sup
Rd

|f |
∫

Rd

ρε dLn = sup
Rd

|f |,

which together with (2.1a) grant that |fε| ≤ χK‖f‖L∞

µ (Rd) ∈ L1
µ(R

d) ∩ L∞
µ (Rd) for all ε ∈ (0, 1),

where K stands for the closed 1-neighbourhood of supp(f). We know from (2.1b) that fε pointwise

converges to f as ε ց 0, so applying the dominated convergence theorem we get f = limεց0 fε
strongly in Lp

µ(R
d) for any p ∈ [1,∞). For any h ∈ L1

µ(R
d) we have that |hfε| ≤ χK |h|‖f‖L∞

µ (Rd)

holds µ-a.e. for every ε ∈ (0, 1) and (hf)(x) = limεց0(hfε)(x) for µ-a.e. x ∈ Rd, thus by apply-

ing again the dominated convergence theorem we conclude that
∫

Rd hf dµ = limεց0

∫

Rd hfε dµ.

Thanks to the arbitrariness of h ∈ L1
µ(R

d), we conclude that f = limεց0 fε weakly
∗ in L∞

µ (Rd). �

For the reader’s usefulness, in the following statement we collect some well-known fundamental

results in functional analysis, which will be used several times in the sequel.

Proposition 2.2. The following properties are verified:

i) Let (vn)n ⊆ L1
µ(R

d;Rk) and v ∈ L1
µ(R

d;Rk) be such that vn → v strongly in L1
µ(R

d;Rk).

Then some subsequence (vni
)i of (vn)n is dominated, i.e. there exists g ∈ L1

µ(R
d) such that

|vni
| ≤ g holds µ-a.e. for every i ∈ N. Moreover, we can further require that vni

(x) → v(x)

as i → ∞ for µ-a.e. x ∈ R
d.

ii) Let (vn)n ⊆ L1
µ(R

d;Rk) and v ∈ L1
µ(R

d;Rk) be such that vn ⇀ v weakly in L1
µ(R

d;Rk).

Then for any n ∈ N there exist coefficients (αn
i )

Nn

i=n ⊆ [0, 1], for some Nn ∈ N with Nn ≥ n,

such that
∑Nn

i=n α
n
i = 1 and

∑Nn

i=n α
n
i vi → v strongly in L1

µ(R
d;Rk) as n → ∞.

iii) Let (vn)n ⊆ L1
µ(R

d;Rk) be a dominated sequence. Then there exist v ∈ L1
µ(R

d;Rk) and a

subsequence (vni
)i of (vn)n such that vni

⇀ v weakly in L1
µ(R

d;Rk) as i → ∞.

Proof. Observe that, writing v = (v1, . . . , vk) ∈ L1
µ(R

d;Rk), we may estimate

max
i=1,...,k

|vi| ≤ |v| =
(
|v1|2 + . . .+ |vk|2

)1/2 ≤
√
k max

i=1,...,k
|vi|, in the µ-a.e. sense.

In particular, a sequence (vn)n ⊆ L1
µ(R

d;Rk) is dominated if and only if (vin)n ⊆ L1
µ(R

d) is

dominated for every i = 1, . . . , k. Moreover, it is easy to check that vn converges strongly (resp.

weakly) in L1
µ(R

d;Rk) to some vector field v = (v1, . . . , vk) ∈ L1
µ(R

d;Rk) if and only if vin converges

strongly (resp. weakly) in L1
µ(R

d) to vi for every i = 1, . . . , k. Thanks to these observations, we

can prove the statement by arguing componentwise, i.e. it suffices to deal with the case k = 1.

i) Fix any (fn)n ⊆ L1
µ(R

d) and f ∈ L1
µ(R

d) such that fn → f strongly in L1
µ(R

d). Then we can

find a subsequence (ni)i satisfying ‖fni
− fni+1‖L1

µ(R
d) ≤ 1/2i for every i ∈ N. Now let us define

g(x) := |fn1 |(x) +
∞∑

i=1

|fni
− fni+1 |(x), for µ-a.e. x ∈ R

d.

The µ-a.e. defined functions gj := |fn1 |+
∑j

i=1 |fni
− fni+1 | satisfy gj ր g in the µ-a.e. sense and

∫

gj dµ ≤
∫

|fn1 | dµ+

j
∑

i=1

∫

|fni
− fni+1 | dµ ≤ ‖fn1‖L1

µ(R
d) +

j
∑

i=1

1

2i
≤ ‖fn1‖L1

µ(R
d) + 1.

By using the monotone convergence theorem we get that
∫
g dµ = limj

∫
gj dµ ≤ ‖fn1‖L1

µ(R
d) +1,

thus in particular g ∈ L1
µ(R

d). Notice also that for any j ∈ N with j ≥ 2 we have that

|fnj
| =

∣
∣
∣
∣
fn1 +

j
∑

i=2

(fni
− fni−1)

∣
∣
∣
∣
≤ |fn1 |+

j
∑

i=2

|fni
− fni−1 | ≤ g, in the µ-a.e. sense.
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All in all, we have proved that (fni
)i is dominated by g. Finally, from the fact that g(x) < +∞

for µ-a.e. x ∈ Rd we deduce that
(
fni

(x)
)

i
⊆ R is a Cauchy sequence for µ-a.e. x ∈ Rd. Given

that fni
→ f strongly in L1

µ(R
d), we thus conclude that fni

(x) → f(x) for µ-a.e. x ∈ Rd.

ii) Immediate consequence of Mazur Lemma, applied to the Banach space L1
µ(R

d).

iii) It follows from Dunford–Pettis Theorem. For a more direct proof, see [12, Lemma 1.3.22]. �

Remark 2.3. With (M (Rd), ‖ · ‖TV) we denote the space of finite, signed Borel measures on Rd.

Endowed with the total variation norm, denoted above by ‖ · ‖TV, it results in a Banach space.

We recall that we can identify (M (Rd), ‖ · ‖TV) with the dual of the Banach space C0(R
d) :=

clCb(Rd)(Cc(R
d)). Here, Cb(R

d) (resp. Cc(R
d)) stands for the space of bounded (resp. compactly-

supported) continuous, real-valued functions on Rd. Recall also that Cb(R
d) is a Banach space

when endowed with the supremum norm ‖f‖Cb(Rd) := supx∈Rd |f(x)|. �

3. Different notions of BV space

3.1. BV space via vector fields. The first attempt to the definition of BV functions in the

setting of the weighted Euclidean spaces has been done in [2]. It is based on the notion of µ-

divergence of a vector field which we are going to recall below.

A vector field v ∈ L∞
µ (Rd;Rd) is said to be a vector field with bounded µ-divergence (in a dis-

tributional sense) if there exists a function divµ(v) ∈ L∞
µ (Rd) such that the following integration-

by-parts formula holds:

∫

Rd

∇f · v dµ = −
∫

Rd

f divµ(v) dµ, for every f ∈ C∞
c (Rd).

Whenever it exists, divµ(v) is uniquely determined. Let us define the space

D∞(divµ) :=
{
v ∈ L∞

µ (Rd;Rd) : v has bounded µ-divergence
}
.

The following definition of BV function has been proposed in [2]:

Definition 3.1 (BV space via vector fields). We say that a function f ∈ L1
µ(R

d) belongs to the

space BV(Rd, µ) if the quantity

‖Dµf‖ := sup

{∫

Rd

f divµ(v) dµ : v ∈ D∞(divµ), |v| ≤ 1µ-a.e.

}

(3.1)

is finite.

The total variation defined in (3.1) can be localized on open sets as follows: given any function

f ∈ BV(Rd, µ) and any open set Ω ⊆ Rd, we set

|Dµf |(Ω) := sup

{∫

Ω

f divµ(v) dµ : v ∈ D∞(divµ), supp(v) ⋐ Ω, |v| ≤ 1µ-a.e.

}

.

Notice that |Dµf |(Rd) = ‖Dµf‖ by definition. The function |Dµf | can be extended to all Borel

sets B ⊆ Rd via Carathéodory construction, as follows:

|Dµf |(B) := inf
{
|Dµf |(Ω) : Ω ⊆ R

d open, B ⊆ Ω
}
.

It turns out that |Dµf | is a finite Borel measure on Rd. However, we do not verify it right now;

we will obtain it as a consequence of Theorem 5.7.
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3.2. BV space via relaxation. The relaxation-type approach to the definition of BV space has

been firstly introduced in [17] in the setting of metric measure spaces. We shall present here a

slight variant of it, which has been proposed in [8].

Given any open set Ω ⊆ Rd, we denote by LIPloc(Ω) the family of all locally Lipschitz functions

on Ω, i.e. those functions f : Ω → R satisfying the following: for every x ∈ Ω there exists rx > 0

such that f |Brx (x)
is Lipschitz. Given any f ∈ LIPloc(Ω), we shall denote by lipa(f) : Ω → [0,+∞)

its asymptotic Lipschitz constant, which is defined as

lipa(f)(x) := lim
r→0

Lip
(
f ;Br(x)

)
= lim

y 6=z
y,z→x

|f(y)− f(z)|
d(y, z)

, (3.2)

if x ∈ Ω is an accumulation point and lipa(f)(x) := 0 otherwise.

Taking into account [8, Theorem 4.5.3], we have the following definition of BV space:

Definition 3.2 (BV space via relaxation). We say that a function f ∈ L1
µ(R

d) belongs to the

space BVLip(R
d, µ), if one of the following equivalent conditions is satisfied:

1) There exists a sequence (fn)n ⊆ LIPloc(R
d) ∩ L1

µ(R
d) such that

fn → f in L1
µ(R

d) and sup
n

∫

Rd

lipa(fn) dµ < +∞.

2) There exists a sequence (fn)n ⊆ LIPc(R
d) such that

fn → f in L1
µ(R

d) and sup
n

∫

Rd

lipa(fn) dµ < +∞.

Given any f ∈ BVLip(R
d, µ), the total variation measure |Dµf |Lip associated with f is defined

in [8] as

|Dµf |Lip(B) := inf
{
|Dµf |Lip(Ω) : Ω ⊆ R

d open, B ⊆ Ω
}
, for every B ⊆ R

d Borel,

where for any open set Ω ⊆ Rd we set

|Dµf |Lip(Ω) := inf
{

lim
n→∞

∫

Ω

lipa(fn) dµ : (fn)n ⊆ LIPloc(Ω) ∩ L1
µ(Ω), fn → f in L1

µ(Ω)
}

. (3.3)

The total variation of f , i.e., the total variation measure evaluated at the entire space, can be

recovered by using only compactly-supported Lipschitz functions (cf. [8, Theorem 4.5.3]), namely:

|Dµf |Lip(Rd) = inf
{

lim
n→∞

∫

Rd

lipa(fn) dµ : (fn)n ⊆ LIPc(R
d), fn → f in L1

µ(R
d)
}

. (3.4)

As observed in the example preceding [8, Proposition 4.4.1], the formulation in (3.4), using

compactly-supported Lipschitz functions instead of locally Lipschitz ones, cannot be used (in

general) to compute the quantity |Dµf |Lip(Ω) for any open set Ω ⊆ Rd.

Remark 3.3. While Definition 3.1 is tailored to the weighted Euclidean space setting, the concept

in Definition 3.2 (as well as the one in Definition 3.5) actually makes sense on any metric measure

space (X, d,m), i.e., (X, d) is a complete separable metric space and m is a boundedly-finite Borel

measure on X; we refer to [8] for the details. This remark will play a role in Section 5.1. �

3.3. BV space via derivations. In this subsection we report the definition of BV space via

derivations proposed in [8]. We start by recalling the definition of derivation introduced in [8] and

point out some of its basic properties.

Definition 3.4. By a derivation on (Rd, dEucl, µ) we mean any linear map b : LIPc(R
d) → L0

µ(R
d)

satisfying the following two properties:
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1) Leibniz rule: For every f, g ∈ LIPc(R
d), it holds that

b(fg) = b(f)g + fb(g).

2) Weak locality: There exists a non-negative function G ∈ L0
µ(R

d) such that

|b(f)| ≤ G lipa(f) holds µ-a.e., for every f ∈ LIPc(R
d).

The least function G as above will be denoted by |b|.

We recall from [10] that for a given derivation b, one has the following formula for |b|:

|b| = ess sup
{
b(f) : f ∈ LIPc(R

d), Lip(f) ≤ 1
}
. (3.5)

By the support of a derivation b we mean the support of the associated function |b|, and we denote

it by supp(b).

We denote by Der(Rd, µ) the space of all derivations on (Rd, dEucl, µ), while Der∞(Rd, µ) stands

for the space of all bounded derivations, i.e., Der∞(Rd, µ) :=
{
b ∈ Der(Rd, µ) : |b| ∈ L∞

µ (Rd)
}
.

We have that
(
Der∞(Rd, µ), ‖ · ‖b

)
is a Banach space, where we set

‖b‖b := ‖|b|‖L∞

µ (Rd), for every b ∈ Der∞(Rd, µ).

In what follows we will be concentrated on those elements b ∈ Der∞(Rd, µ) admitting bounded

divergence, i.e., for which there is a (uniquely determined) function div(b) ∈ L∞
µ (Rd) such that

∫

Rd

b(f) dµ = −
∫

Rd

f div(b) dµ, for every f ∈ LIPc(R
d).

The space of all bounded derivations with bounded divergence will be denoted by Derb(R
d, µ),

which is a Banach space when endowed with the norm

‖b‖b,b := ‖b‖b + ‖div(b)‖L∞

µ (Rd).

Let us recall the Leibniz rule for the divergence: given any h ∈ LIPc(R
d) and b ∈ Derb(R

d, µ), it

holds that hb ∈ Derb(R
d, µ) and

div(hb) = b(h) + h div(b). (3.6)

Definition 3.5. We say that a function f ∈ L1
µ(R

d) belongs to the space BVDer(R
d, µ) if there

exists a LIPc(R
d)-linear and ‖ · ‖b-continuous map Df : Derb(R

d, µ) → M (Rd) satisfying
∫

Rd

dDf(b) = −
∫

Rd

f div(b) dµ, for every b ∈ Derb(R
d, µ).

In this case, the map Df is uniquely determined.

Given any f ∈ BVDer(R
d, µ), the total variation measure associated with f is defined as the

unique finite Borel measure |Dµf |Der on Rd that for each open set Ω ⊆ Rd satisfies

|Dµf |Der(Ω) = sup

{∫

Ω

f div(b) dµ : b ∈ Derb(R
d, µ), supp(b) ⋐ Ω, |b| ≤ 1 µ-a.e.

}

.

4. Different notions of W 1,1 space

4.1. W 1,1 space via vector fields. An approach based on a notion of a ‘space tangent to a

measure’ (and in turn on the properties of vector fields with divergence) has been used in the

pioneering work [6] to propose a concept of Sobolev space W 1,p in the case p ∈ (1,∞). As

observed in [2], the very same technique may be applied in the case p = 1. Below, we recall

the definition of W 1,1 space from [2] and study more in details the properties of the ‘tangential

gradient operator’ which plays a crucial role in its definition.



A NOTE ON BV AND 1-SOBOLEV FUNCTIONS ON THE WEIGHTED EUCLIDEAN SPACE 9

First of all, let us recall the definition of a (measurable) bundle in Rd, following quite closely the

presentation in [16]. Let V be a map assigning to any point x ∈ Rd a vector subspace V (x) of Rd.

Then we say that V is a (measurable) bundle in Rd provided Rd ∋ x 7→ dEucl(y, V (x)) ∈ R is Borel

measurable for any y ∈ Rd. A partial order (depending on µ) on the family of all bundles in Rd is

given as follows: if V and W are bundles in Rd, we declare that V � W provided V (x) ⊆ W (x)

for µ-a.e. x ∈ R
d. Given an exponent p ∈ [1,∞] and a bundle V in R

d, we denote by Γp
µ(V ) the

space of all Lp
µ(R

d)-sections of V , namely,

Γp
µ(V ) :=

{
v ∈ Lp

µ(R
d;Rd) : v(x) ∈ V (x) for µ-a.e. x ∈ R

d
}
.

Observe that Γp
µ(V ) is a closed vector subspace of Lp

µ(R
d;Rd) which is closed under multiplication

by L∞
µ (µ)-functions. As proven in [16, Proposition 2.22], it holds that

V � W ⇐⇒ Γ2
µ(V ) ⊆ Γ2

µ(W ), (4.1)

whenever V and W are bundles in Rd.

Lemma 4.1. There exists a �-minimal bundle Tµ in Rd, uniquely determined up to µ-a.e. equality,

such that

given any v ∈ D∞(divµ), it holds that v(x) ∈ Tµ(x) for µ-a.e. x ∈ R
d. (4.2)

Proof. We subdivide the proof into three steps:

Step 1. First of all, let us define

V :=
{
v ∈ D∞(divµ) : |v| ∈ L2

µ(R
d)
}

and M := clL2
µ(R

d;Rd)(V). (4.3)

We claim that

v ∈ D∞(divµ) and f ∈ C∞
c (Rd) =⇒ fv ∈ V and divµ(fv) = f divµ(v) +∇f · v. (4.4)

To prove it, notice that for every g ∈ C∞
c (Rd) we have that fg ∈ C∞

c (Rd) and∇(fg) = f∇g+g∇f ,

thus accordingly
∫

Rd

∇g · (fv) dµ =

∫

Rd

(f∇g) · v dµ =

∫

Rd

∇(fg) · v dµ−
∫

Rd

(g∇f) · v dµ

= −
∫

Rd

g
(
f divµ(v) +∇f · v

)
dµ.

Since fv ∈ L∞
µ (Rd;Rd) ∩ L2

µ(R
d;Rd) and f divµ(v) +∇f · v ∈ L∞

µ (Rd), we have obtained (4.4).

Step 2. Next we claim that

v ∈ M and f ∈ L∞
µ (Rd) =⇒ fv ∈ M. (4.5)

To prove it, fix (vn)n ⊆ V such that vn → v in L2
µ(R

d;Rd). Moreover, we can find (fn)n ⊆ C∞
c (Rd)

such that |fn| ≤ ‖f‖L∞

µ (Rd) for every n ∈ N and fn → f in the µ-a.e. sense. Indeed, chosen a finite

Borel measure µ̃ on Rd having the same null sets as µ, there exists a sequence (gn)n ⊆ LIPc(R
d)

satisfying gn → f in L2
µ̃(R

d). Up to replacing gn with (gn ∧ ‖f‖L∞

µ (Rd)) ∨ (−‖f‖L∞

µ (Rd)), we

can assume that |gn| ≤ ‖f‖L∞

µ (Rd) holds µ-a.e.. Up to passing to a not relabeled subsequence,

we can further assume that gn → f in the µ̃-a.e. sense (thus, in the µ-a.e. sense). Now choose

(εn)n ⊆ (0, 1) such that each function fn := ρεn ∗ gn ∈ C∞
c (Rd) satisfies ‖fn − gn‖Cb(Rd) ≤ 1/n.

In particular, it holds that |fn| ≤ ‖f‖L∞

µ (Rd) for every n ∈ N and fn → f in the µ-a.e. sense, as

desired. Therefore, we can estimate

‖fnvn − fv‖2L2
µ(R

d;Rd) ≤ 2

∫

Rd

|fn − f |2|v|2 dµ+ 2

∫

Rd

|fn|2|vn − v|2 dµ

≤ 2

∫

Rd

|fn − f |2|v|2 dµ+ 2 ‖f‖2L∞

µ (Rd)‖vn − v‖2L2
µ(R

d;Rd).
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Since |fn−f |2|v|2 ≤ 2 ‖f‖2L∞

µ (Rd)|v|2 ∈ L1
µ(R

d) for every n ∈ N, by dominated convergence theorem

we deduce that fnvn → fv in L2
µ(R

d;Rd). As (fnvn)n ⊆ V by (4.4), we conclude that fv ∈ M.

Step 3. We are now in a position to apply [16, Proposition 2.22]: (4.5) grants that M is a

L2
µ(R

d)-normed L∞
µ (Rd)-submodule of L2

µ(R
d;Rd) in the sense of [11, Definition 1.2.10], thus

there exists a unique bundle Tµ in Rd such that Γ2
µ(Tµ) = M. To show that Tµ satisfies (4.2),

let us fix v ∈ D∞(divµ) and a sequence (ηn)n ⊆ C∞
c (Rd) such that 0 ≤ ηn ≤ 1 and ηn = 1

on Bn(0) for every n ∈ N. Fix n ∈ N and notice that ηnv ∈ V ⊆ Γ2
µ(Tµ) by (4.4). Hence,

v(x) = (ηnv)(x) ∈ Tµ(x) for µ-a.e. x ∈ Bn(0). Thanks to the arbitrariness of n ∈ N, we obtain

that Tµ satisfies (4.2).

Finally, we are left to prove the minimality of Tµ, which also forces uniqueness. Fix an arbitrary

bundle S in Rd satisfying the property in (4.2) with S(x) in place of Tµ(x). We aim to show that

Tµ(x) ⊆ S(x) for µ-a.e. x ∈ Rd. Taking into account (4.1), we can equivalently show that

Γ2
µ(Tµ) ⊆ Γ2

µ(S). Pick any v ∈ Γ2
µ(Tµ) and a sequence (vn)n ⊆ V such that vn → v in L2

µ(R
d;Rd).

Up to a not relabeled subsequence, we have that vn(x) → v(x) for µ-a.e. x ∈ R
d. Given that for

µ-a.e. x ∈ Rd it holds that vn(x) ∈ S(x) for every n ∈ N, we conclude that v(x) ∈ S(x) for µ-a.e.

x ∈ Rd. �

Remark 4.2. Let us point out that there exists a countable family C ⊆ D∞(divµ), such that

(w(x))w∈C is dense in Tµ(x) for µ-a.e. x ∈ R
d.

To verify this, observe that V ⊆ D∞(divµ) defined in (4.3) is a linear subspace of L2
µ(R

d;Rd).

Moreover, it is closed under the multiplication by C∞
c (Rd)-functions, due to (4.4). Take now any

countable L2
µ(R

d;Rd)-dense subset C ⊆ V ⊆ D∞(divµ) and define

V (x) := cl
(
{w(x) : w ∈ C}

)
for µ-a.e. x ∈ R

d.

By applying [16, Lemma 2.24] (see also [7, Lemma A.1]), we have that Γ2
µ(V ) = clL2

µ(R
d;Rd)(V) =

M. On the other hand, we have from the construction of the bundle Tµ that M = Γ2
µ(Tµ). Thus,

Γ2
µ(Tµ) = Γ2

µ(V ) which further implies (recalling [16, Proposition 2.22]) that Tµ = V . Therefore,

{w(x) : w ∈ C} is dense in Tµ(x) for µ-a.e. x ∈ Rd, as claimed. �

Once we have the tangent fibers at our disposal, we are in a position to define the tangential

gradient : namely, we define ∇µ : C
∞
c (Rd) → Γ1

µ(Tµ) as

∇µf(x) := prTµ(x)

(
∇f(x)

)
, for every f ∈ C∞

c (Rd) and µ-a.e. x ∈ R
d, (4.6)

where prV : Rd → V stands for the orthogonal projection onto the vector subspace V of Rd.

In [2] the space of W 1,1 functions has been defined as follows:

Definition 4.3 (W 1,1 space via vector fields). The Sobolev space W 1,1(Rd, µ) is defined as the

completion of C∞
c (Rd) under the norm

‖f‖W 1,1
µ

:= ‖f‖L1
µ(R

d) + ‖∇µf‖Γ1
µ(Tµ).

Observe that, a priori,
(
W 1,1(Rd, µ), ‖·‖W 1,1

µ

)
is an abstract Banach space. Let us now show that

W 1,1(Rd, µ) is actually a space of functions, i.e., that it can be identified with a linear subspace

of L1
µ(R

d). The inclusion map
(
C∞

c (Rd), ‖ · ‖W 1,1
µ

)
→֒

(
L1
µ(R

d), ‖ · ‖L1
µ(R

d)

)
is a linear contraction.

Denoting by ι : C∞
c (Rd) →֒ W 1,1(Rd, µ) the canonical isometric embedding of

(
C∞

c (Rd), ‖ · ‖W 1,1
µ

)

into its completion W 1,1(Rd, µ), there exists a unique linear contraction φ : W 1,1(Rd, µ) → L1
µ(R

d)
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such that the following diagram is commutative:

C∞
c (Rd) L1

µ(R
d)

W 1,1(Rd, µ)

ι
φ

(4.7)

Our aim is to prove that φ is injective. To achieve this goal, we need the following key result.

Lemma 4.4 (Closability of the tangential gradient). Let (fn)n∈N ⊆ C∞
c (Rd) and v ∈ Γ1

µ(Tµ) be

such that

fn ⇀ 0 in L1
µ(R

d) and ∇µfn ⇀ v in Γ1
µ(Tµ).

Then v(x) = 0 for µ-a.e. x ∈ Rd.

Proof. Fix g ∈ C∞
c (Rd) and w ∈ C, where C ⊆ D∞(divµ) is a countable family as in Remark 4.2.

Then, taking into account the property (4.4), we have that
∫

Rd

g w · v dµ = lim
n→∞

∫

Rd

g w · ∇µfn dµ = − lim
n→∞

∫

Rd

fn divµ(g w) dµ = 0.

Now, let f ∈ LIPc(R
d) and let (gn)n ⊆ C∞

c (Rd) be such that gn → f pointwise µ-a.e. and

|gn| ≤ ‖f‖L∞

µ (Rd) for every n ∈ N (the existence of such a sequence follows from a standard

mollification argument, cf. Lemma 2.1). Then, by applying the dominated convergence theorem

and using the above equality, we get that
∫

Rd

f w · v dµ = lim
n→∞

∫

Rd

gn w · v dµ = 0.

Since the function f ∈ LIPc(R
d) was arbitrary, we deduce that w · v = 0 holds µ-a.e. in Rd. By

Remark 4.2, we know that the elements of the family C are fiberwise dense in µ-a.e. fiber of Tµ.

Thus, by the arbitrariness of w ∈ C, we finally conclude that v(x) = 0 for µ-a.e. x ∈ Rd. �

Corollary 4.5. The map φ as in (4.7) is injective. In particular, W 1,1(Rd, µ) can be identified

with a linear subspace of L1
µ(R

d).

Proof. To prove the claim amounts to showing that if f ∈ W 1,1(Rd, µ) and φ(f) = 0, then f = 0;

we are using the different font f to underline that, a priori, the elements of W 1,1(Rd, µ) are not

functions. Choose a sequence (fn)n∈N ⊆ C∞
c (Rd) such that ‖ι(fn) − f‖W 1,1

µ
→ 0. In particular,

the sequences (fn)n∈N ⊆ L1
µ(R

d) and (∇µfn)n∈N ⊆ Γ1
µ(Tµ) are Cauchy, thus there exist elements

f ∈ L1
µ(R

d) and v ∈ Γ1
µ(Tµ) such that fn → f and ∇µfn → v. Being φ continuous, we have that

fn = φ(ι(fn)) → φ(f) = 0 in L1
µ(R

d), whence it follows that f = 0. Hence, an application of

Lemma 4.4 yields the identity v = 0. All in all, we proved that ‖fn‖W 1,1
µ

→ 0, so that f = 0. �

In light of Corollary 4.5, hereafter we will tacitly regard W 1,1(Rd, µ) as a subspace of L1
µ(R

d).

Next we show that the tangential gradient ∇µ can be extended to the whole of W 1,1(Rd, µ):

Proposition 4.6. There exists a unique linear extension ∇µ : W
1,1(Rd, µ) → Γ1

µ(Tµ) of the tan-

gential gradient ∇µ : C
∞
c (Rd) → Γ1

µ(Tµ) having the following property: if (fn)n∈N ⊆ W 1,1(Rd, µ)

satisfies fn ⇀ f in L1
µ(R

d) and ∇µfn ⇀ v in Γ1
µ(Tµ) for some f ∈ L1

µ(R
d) and v ∈ Γ1

µ(Tµ), then

f ∈ W 1,1(Rd, µ) and ∇µf = v. Moreover, it holds that

‖f‖W 1,1
µ

= ‖f‖L1
µ(R

d) + ‖∇µf‖Γ1
µ(R

d), for every f ∈ W 1,1(Rd, µ). (4.8)
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Proof. Let f ∈ W 1,1(Rd, µ) be given. Pick any sequence (fn)n∈N ⊆ C∞
c (Rd) such that fn → f

strongly in W 1,1(Rd, µ). In particular, (∇µfn)n∈N is a Cauchy sequence in Γ1
µ(Tµ). Then we define

∇̃µf ∈ Γ1
µ(Tµ) as the limit of ∇µfn as n → ∞. Notice that this definition is well-posed, i.e., ∇̃µf

does not depend on the specific choice of (fn)n: indeed, given another sequence (gn)n∈N ⊆ C∞
c (Rd)

such that gn → f in W 1,1(Rd, µ), we have that fn − gn → 0 in L1
µ(R

d), thus Lemma 4.4 ensures

that ∇µfn − ∇µgn = ∇µ(fn − gn) converges to 0 in Γ1
µ(Tµ). Moreover, if f ∈ C∞

c (Rd), then by

taking the constant sequence fn ≡ f we see that ∇̃µf = ∇µf . Then we can omit the tilde from our

notation and obtain an extension ∇µ : W
1,1(Rd, µ) → Γ1

µ(Tµ) of the tangential gradient. Linearity

readily follows from the fact that ∇µ is linear when restricted to C∞
c (Rd). Uniqueness is granted

by its very construction. Moreover, observe that if f ∈ W 1,1(Rd, µ) and (fn)n∈N ⊆ C∞
c (Rd) satisfy

fn → f in W 1,1(Rd, µ), then we have both ‖fn‖W 1,1
µ

→ ‖f‖W 1,1
µ

and

‖fn‖W 1,1
µ

= ‖fn‖L1
µ(R

d) + ‖∇µfn‖Γ1
µ(Tµ) → ‖f‖L1

µ(R
d) + ‖∇µf‖Γ1

µ(Tµ),

whence (4.8) follows. Finally, it remains to show that ∇µ is a closed operator, namely, that if

(fn)n∈N ⊆ W 1,1(Rd, µ) satisfies fn ⇀ f ∈ L1
µ(R

d) and ∇µfn ⇀ v ∈ Γ1
µ(Tµ), then f ∈ W 1,1(Rd, µ)

and ∇µf = v. Given any n ∈ N, we can find gn ∈ C∞
c (Rd) such that ‖gn − fn‖L1

µ(R
d) ≤ 1/n and

‖∇µgn −∇µfn‖Γ1
µ(Tµ) ≤ 1/n. In particular, gn ⇀ f in L1

µ(R
d) and ∇µgn ⇀ v in Γ1

µ(Tµ). Thanks

to Mazur lemma (item ii) of Proposition 2.2) and the linearity of ∇µ, we may assume (possibly

replacing the gn’s by their convex combinations) that gn → f in L1
µ(R

d) and ∇µgn → v in Γ1
µ(Tµ).

This implies that (gn)n∈N is Cauchy in W 1,1(Rd, µ) and that its L1
µ(R

d)-limit coincides with f , so

that f ∈ W 1,1(Rd, µ) and ∇µf = v. Therefore, the statement is achieved. �

We conclude the current section by proving that the (extended) tangential gradient introduced

in Proposition 4.6 satisfies the following Leibniz rule:

Lemma 4.7 (Leibniz rule for the tangential gradient). Let f, g ∈ W 1,1(Rd, µ) ∩ L∞
µ (Rd). Then

fg ∈ W 1,1(Rd, µ) and ∇µ(fg) = g∇µf + f ∇µg. (4.9)

Proof. We divide the proof into several steps:

Step 1. We first prove that (4.9) holds for any f, g ∈ W 1,1(Rd, µ) ∩ L∞
µ (Rd) having bounded

support. To verify this claim, let us fix sequences (fn)n∈N, (gn)n∈N ⊆ C∞
c (Rd) such that fn → f

and gn → g in W 1,1(Rd, µ). Without loss of generality, we may assume that there exists C > 0

and a compact set K ⊆ Rd such that |fn|, |gn| ≤ C and supp(fn), supp(gn) ⊆ K, for all n ∈ N.

Proposition 4.6 ensures that ∇µfn → ∇µf and ∇µgn → ∇µg in Γ1
µ(Tµ). Since also fn → f and

gn → g in L1
µ(R

d), we know from Proposition 2.2 i) that (up to a not relabelled subsequence)

the convergence (fn,∇µfn, gn,∇µgn) → (f,∇µf, g,∇µg) is both dominated and in the pointwise

µ-a.e. sense. Now define hn := fngn ∈ C∞
c (Rd) and vn := gn∇µfn + fn∇µgn ∈ Γ1

µ(Tµ) for every

n ∈ N. Observe that ∇µhn = vn, as one can easily verify:

∇µhn(x) = prTµ(x)

(
∇(fngn)(x)

)
= prTµ(x)

(
gn(x)∇fn(x) + fn(x)∇gn(x)

)

= gn(x)prTµ(x)

(
∇fn(x)

)
+ fn(x)prTµ(x)

(
∇gn(x)

)
= vn(x),

for µ-a.e. x ∈ Rd. Fixed a non-negative function H ∈ L1
µ(R

d) such that |∇µfn|, |∇µgn| ≤ H is

satisfied µ-a.e. for every n ∈ N, we can estimate |hn| ≤ C2χK ∈ L1
µ(R

d) and |vn| ≤ 2CχKH ∈
L1
µ(R

d) in the µ-a.e. sense for every n ∈ N. By using the dominated convergence theorem, we can

finally conclude that

hn → fg in L1
µ(R

d) and ∇µhn = vn → g∇µf + f∇µg in Γ1
µ(Tµ).

Therefore, Proposition 4.6 implies that fg ∈ W 1,1(Rd, µ) and ∇µ(fg) = g∇µf + f∇µg.

Step 2. We next show that (4.9) holds for f ∈ W 1,1(Rd, µ)∩L∞
µ (Rd) and η ∈ C∞

c (Rd). Choosing
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a sequence of smooth functions (fn)n ⊆ C∞
c (Rd) such that fn → f in L1

µ(R
d) and ∇µfn → ∇µf

in Γ1
µ(Tµ), we have that ∇µ(fnη) = η∇µfn + fn∇µη holds for every n ∈ N, and consequently
∫

Rd

∣
∣∇µ(fnη)− (η∇µf + f∇µη)

∣
∣ dµ ≤

∫

Rd

|η||(∇µfn −∇µf)| dµ+

∫

Rd

|(fn − f)||∇µη| dµ.

Therefore, by passing to the limit as n → ∞, we get (4.9).

Step 3. We finally prove (4.9) for any f, g ∈ W 1,1(Rd, µ) ∩ L∞
µ (Rd). To this aim, fix a sequence

(ηn)n ⊆ C∞
c (Rd) of cut-off functions, i.e., 0 ≤ ηn ≤ 1, ηn = 1 on Bn(0) and |∇ηn| ≤ 1, for every

n ∈ N. Then for every n ∈ N, call fn := ηnf and gn := ηng and observe that fn, gn are compactly

supported functions belonging to W 1,1(Rd, µ) ∩ L∞
µ (Rd) by Step 2. Thus, by Step 1 we have

that fngn ∈ W 1,1(Rd, µ) and that

∇µ(fngn) =fn∇µgn + gn∇µfn = ηnf∇µ(ηng) + ηng∇µ(ηnf)

=
(
η2nf∇µg + ηnfg∇µηn

)

︸ ︷︷ ︸

A

+
(
η2ng∇µf + ηngf∇µηn

)

︸ ︷︷ ︸

B

holds µ-a.e. in Rd. Clearly, the sequence (fngn)n converges to fg strongly in L1
µ(R

d). In order to

prove (4.9), we will show that ∇µ(fngn) converges to f∇µg+ g∇µf strongly in L1
µ(R

d). We prove

that the part of ∇µ(fngn) denoted by A above converges to f∇µg strongly in L1
µ(R

d). Indeed, it

holds that
∫

Rd

|η2nf∇µg − f∇µg| dµ ≤
∫

Rd

|f ||∇µg|(1− η2n) dµ ≤
∫

Bc
n(0)

|f ||∇µg| dµ n→∞−→ 0

and that ∫

Rd

|ηnfg∇µηn| dµ ≤
∫

Bc
n(0)

|fg| dµ n→∞−→ 0,

proving the claim. Similarly, one can show that the part B converges to g∇µf strongly in L1
µ(R

d),

concluding the proof. �

4.2. W 1,1 space via relaxed slope. The relaxation type approach to the definition of W 1,1

space proposed in [8] is based on the concept of the ‘relaxed slope’:

Definition 4.8 (Relaxed slope). Let f ∈ L1
µ(R

d). A non-negative function G ∈ L1
µ(R

d) is said to

be a relaxed slope of f if there exists a sequence (fn)n ⊆ LIPc(R
d) such that fn → f in L1

µ(R
d)

and lipa(fn) ⇀ G′ weakly in L1
µ(R

d), for some G′ ∈ L1
µ(R

d) with G′ ≤ G µ-a.e. in R
d. We denote

the set of all relaxed slopes of f by RS(f).

Definition 4.9 (W 1,1 space via relaxation). We say that a function f ∈ L1
µ(R

d) belongs to the

space W 1,1
Lip(R

d, µ) if RS(f) 6= ∅. The minimal element (in the µ-a.e. sense) of RS(f) will be

denoted by |∇f |rs and called the minimal relaxed slope of f .

Remark 4.10. Given any f ∈ W 1,1
Lip(R

d, µ), there exist (fn)n∈N ⊆ LIPc(R
d) and H ∈ L1

µ(R
d) such

that fn → f strongly in L1
µ(R

d), lipa(fn) ⇀ |∇f |rs weakly in L1
µ(R

d), and lipa(fn) ≤ H µ-a.e. for

every n ∈ N. Indeed, by exploiting the minimality of |∇f |rs we can find (gn)n∈N ⊆ LIPc(R
d) such

that gn → f strongly in L1
µ(R

d) and lipa(gn) ⇀ |∇f |rs weakly in L1
µ(R

d). By Proposition 2.2 ii),

we can find (αn
i )

Nn

i=n ⊆ [0, 1] with
∑Nn

i=n α
n
i = 1 and

∑Nn

i=n αn
i lipa(gi) → |∇f |rs strongly in L1

µ(R
d)

as n → ∞. By Proposition 2.2 i), we know that there exists H ∈ L1
µ(R

d) such that (up to a not

relabeled subsequence in n) it holds
∑Nn

i=n αn
i lipa(gi) ≤ H µ-a.e. for every n ∈ N. Now we define

fn :=
∑Nn

i=n α
n
i gi ∈ LIPc(R

d) for every n ∈ N. Notice that fn → f strongly in L1
µ(R

d) and

lipa(fn) = lipa

( Nn∑

i=n

αn
i gi

)

≤
Nn∑

i=n

αn
i lipa(gi) ≤ H, in the µ-a.e. sense,



14 MARIA STELLA GELLI AND DANKA LUČIĆ

for every n ∈ N. By Proposition 2.2 iii), we can find G ∈ L1
µ(R

d) such that G ≤ |∇f |rs µ-a.e.

and (up to a further subsequence in n) it holds lipa(fn) ⇀ G weakly in L1
µ(R

d). Finally, the

minimality of |∇f |rs ensures that G = |∇f |rs, thus accordingly the claim is proved. �

4.3. W 1,1 space via tangential relaxed slope. We introduce here an auxiliary notion of W 1,1

space, which is intermediate between the approaches W 1,1(Rd, µ) and W 1,1
Lip(R

d, µ), as it is based

upon the relaxation of the modulus of the tangential gradient∇µ. Its equivalence with W 1,1(Rd, µ)

will be proved in Theorem 4.13. As a consequence of this characterization, we will show in

Proposition 4.14 that, as one might expect, the compactly-supported Lipschitz functions belong

to W 1,1(Rd, µ).

Definition 4.11 (Tangential relaxed slope). Given any f ∈ L1
µ(R

d), we say that G ∈ L1
µ(R

d) is

a tangential relaxed slope of f provided there exists a sequence (fn)n ⊆ C∞
c (Rd) converging to

f in L1
µ(R

d) and such that |∇µfn| ⇀ G′ weakly in L1
µ(R

d), for some function G′ ∈ L1
µ(R

d) with

G′ ≤ G µ-a.e. in Rd. We denote by TRS(f) the family of all tangential relaxed slopes of f .

Lemma 4.12. Let f ∈ L1
µ(R

d) be such that TRS(f) 6= ∅. Then the set TRS(f) is a closed convex

sublattice of L1
µ(R

d). In particular, it admits a unique µ-a.e. minimal element Gf ∈ TRS(f),

namely Gf ≤ G holds µ-a.e. for every G ∈ TRS(f).

Proof.

Closure. Let (Gi)i ⊆ TRS(f) satisfy Gi → G strongly in L1
µ(R

d) for some G ∈ L1
µ(R

d). We

aim to show that G ∈ TRS(f). For any i ∈ N, we can find G′
i ≤ Gi and (f i

n)n ⊆ C∞
c (Rd) such

that f i
n → f strongly in L1

µ(R
d) as n → ∞ and |∇µf

i
n| ⇀ G′

i weakly in L1
µ(R

d) as n → ∞. Since

Gi → G in L1
µ(R

d), we know from Proposition 2.2 i) that (up to a not relabeled subsequence) it

holds G′
i ≤ Gi ≤ H µ-a.e. for all i ∈ N, for some H ∈ L1

µ(R
d). Hence, Proposition 2.2 iii) ensures

that (up to a further subsequence) it holds G′
i ⇀ G′ weakly in L1

µ(R
d), for some G′ ∈ L1

µ(R
d).

Since G′
i ≤ Gi µ-a.e. for all i ∈ N, we deduce that G′ ≤ G µ-a.e.. We now perform a diagonalization

argument: for any i ∈ N we can find n(i) ∈ N such that the elements fi := f i
n(i) satisfy fi → f

strongly in L1
µ(R

d) and |∇µfi| ⇀ G′ weakly in L1
µ(R

d). This shows that G ∈ TRS(f), as desired.

Convexity. Fix any G,H ∈ TRS(f) and λ ∈ [0, 1]. Then there exist G′ ≤ G, H ′ ≤ H ,

and (fn)n, (gn)n ⊆ C∞
c (Rd) such that fn → f , gn → f , |∇µfn| ⇀ G′, and |∇µgn| ⇀ H ′ in

L1
µ(R

d). Proposition 2.2 yields the existence of some coefficients (αn
i )

Nn

i=n, (β
n
i )

Mn

i=n ⊆ [0, 1] with
∑Nn

i=n α
n
i =

∑Mn

i=n βn
i = 1 such that

(∑Nn

i=n αn
i |∇µfi|

)

n
and

(∑Mn

i=n βn
i |∇µgi|

)

n
are dominated and

converge strongly in L1
µ(R

d) to G′ and H ′, respectively. For any n ∈ N we define

hn := λ

Nn∑

i=n

αn
i fi + (1− λ)

Mn∑

i=n

βn
i gi ∈ C∞

c (Rd).

Observe that hn → f strongly in L1
µ(R

d). Moreover, from the inequality

|∇µhn| ≤ λ

Nn∑

i=n

αn
i |∇µfi|+ (1− λ)

Mn∑

i=n

βn
i |∇µgi|

we deduce that
(
|∇µhn|

)

n
is dominated, thus (by Proposition 2.2 iii) and up to subsequence) it

holds |∇µhn| ⇀ L′ weakly in L1
µ(R

d), for some L′ ≤ λG′ + (1 − λ)H ′ ≤ λG + (1 − λ)H . This

shows that λG+ (1− λ)H ∈ TRS(f), thus proving the convexity of the set TRS(f).

Lattice property. We aim to show that, given any G,H ∈ TRS(f), it holds G ∨H ∈ TRS(f)

and G ∧H ∈ TRS(f). The former is trivial, so let us focus on the latter. Define E := {G ≤ H}.
By convolution, we can find a sequence (ηj)j ⊆ C∞

c (Rd) with 0 ≤ ηj ≤ 1 that weakly∗ converges

to χE in L∞
µ (Rd). In particular, ηjG + (1 − ηj)H ⇀ χEG + χEcH = G ∧ H weakly in L1

µ(R
d).



A NOTE ON BV AND 1-SOBOLEV FUNCTIONS ON THE WEIGHTED EUCLIDEAN SPACE 15

The set TRS(f) ⊆ L1
µ(R

d) is weakly closed (as it is strongly closed and convex), thus in order to

prove that G ∧ H ∈ TRS(f) it suffices to show that ηjG + (1 − ηj)H ∈ TRS(f) for all j ∈ N.

To this aim, pick G′ ≤ G, H ′ ≤ H , and (fn)n, (gn)n ⊆ C∞
c (Rd) such that fn → f , gn → f ,

|∇µfn| ⇀ G′, and |∇µgn| ⇀ H ′ in L1
µ(R

d). Thanks to Proposition 2.2, for any n ∈ N we can

find coefficients (αn
i )

Nn

i=n, (β
n
i )

Mn

i=n ⊆ [0, 1] with
∑Nn

i=n αn
i =

∑Mn

i=n βn
i = 1 such that the sequences

(∑Nn

i=n α
n
i |∇µfi|

)

n
and

(∑Mn

i=n β
n
i |∇µgi|

)

n
are dominated and converge strongly in L1

µ(R
d) to G′

and H ′, respectively. Now fix j ∈ N and define hj
n := ηj

∑Nn

i=n fi + (1− ηj)
∑Mn

i=n gi ∈ C∞
c (Rd) for

every n ∈ N. Observe that hj
n → f strongly in L1

µ(R
d) as n → ∞. For any n ∈ N we have that

|∇µh
j
n| ≤ ηj

Nn∑

i=n

αn
i |∇µfi|+ (1 − ηj)

Mn∑

i=n

βn
i |∇µgi|,

thus in particular
(
|∇µh

j
n|
)

n
is dominated. Therefore, Proposition 2.2 iii) ensures that (up to a

not relabeled subsequence in n) it holds |∇µh
j
n| ⇀ L′ weakly in L1

µ(R
d) as n → ∞, for some

function L′ ≤ ηjG
′ + (1− ηj)H

′ ≤ ηjG+ (1 − ηj)H . This yields ηjG+ (1− ηj)H ∈ TRS(f). �

Theorem 4.13. Let f ∈ L1
µ(R

d) be given. Then f ∈ W 1,1(Rd, µ) if and only if TRS(f) 6= ∅. In

this case, the function |∇µf | coincides with the µ-a.e. minimal element of TRS(f).

Proof. First, we aim to show that if f ∈ W 1,1(Rd, µ), then TRS(f) 6= ∅ and Gf ≤ |∇µf | µ-a.e.,
where Gf stands for the minimal element of TRS(f). Pick (fn)n ⊆ C∞

c (Rd) such that fn → f

and ∇µfn → ∇µf strongly in L1
µ(R

d) and Γ1
µ(Tµ), respectively. In particular, |∇µfn| → |∇µf |

strongly in L1
µ(R

d), whence it follows that |∇µf | ∈ TRS(f), thus Gf ≤ |∇µf | in the µ-a.e. sense.

Conversely, let us show that if TRS(f) 6= ∅, then f ∈ W 1,1(Rd, µ) and |∇µf | ≤ G µ-a.e. for

every G ∈ TRS(f). There exist G′ ≤ G and (fn)n ⊆ C∞
c (Rd) such that fn → f and |∇µfn| ⇀ G′

in L1
µ(R

d). Proposition 2.2 yields the existence of (αn
i )

Nn

i=n ⊆ [0, 1] with
∑Nn

i=n α
n
i = 1 such that

the sequence
(∑Nn

i=n α
n
i |∇µfi|

)

n
is dominated and converges (both strongly in L1

µ(R
d) and in the

pointwise µ-a.e. sense) to G′ as n → ∞. Define

gn :=

Nn∑

i=n

αn
i fi ∈ C∞

c (Rd), for every n ∈ N.

Then gn → f strongly in L1
µ(R

d). Moreover, from the inequality |∇µgn| ≤
∑Nn

i=n αn
i |∇µfi| we

deduce that the sequence (∇µgn)n is dominated. Hence, by applying Proposition 2.2 iii) we

obtain that there exists a vector field v ∈ Γ1
µ(Tµ) such that (up to a subsequence in n) it holds

∇µgn ⇀ v weakly in Γ1
µ(Tµ). Lemma 4.4 ensures that f ∈ W 1,1(Rd, µ) and v = ∇µf . Finally, let

us show that |∇µf | ≤ G µ-a.e. in R
d. Given any v ∈ R

d with |v| ≤ 1 and any 0 ≤ h ∈ L∞
µ (Rd) it

holds that
∫

Rd

h v · ∇µf dµ = lim
n→∞

∫

Rd

h v · ∇µgn dµ ≤ lim
n→∞

∫

Rd

h|∇µgn| dµ ≤
∫

Rn

hG′ dµ ≤
∫

Rd

hGdµ.

By the arbitrariness of h, we deduce that v · ∇µf ≤ G holds µ-a.e. in Rd. Then, we conclude that

|∇µf |(x) = sup{v · ∇µf(x) : v ∈ Rd, |v| ≤ 1} ≤ G for µ-a.e. x ∈ Rd. Therefore, the statement is

achieved. �

Proposition 4.14. Let f ∈ LIPc(R
d). Then f ∈ W 1,1(Rd, µ) and |∇µf | ≤ lipa(f) holds µ-a.e..

Proof. Denote by K the closed 1-neighbourhood of supp(f). Fix a sequence (εn)n ⊆ (0, 1) such

that εn → 0 and define fn := ρεn ∗ f ∈ C∞
c (Rd) for every n ∈ N. Notice that each supp(fn)

is contained in K. Thanks to (2.1b), we see that |fn| ≤ ‖f‖L∞

µ (Rd)χK and fn(x) → f(x) for all
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x ∈ Rd, thus by using the dominated convergence theorem we obtain that fn → f in L1
µ(R

d).

Moreover,

|∇µfn| ≤ |∇fn|
(2.1c)

≤ Lip
(
f ;Bεn(·)

)
≤ Lip(f)χK ∈ L1

µ(R
d), for every n ∈ N,

thus in particular
(
|∇µfn|

)

n
is dominated. By Proposition 2.2 iii) we get the existence of a function

G ∈ L1
µ(R

d) such that (up to a subsequence) it holds |∇µfn| ⇀ G weakly in L1
µ(R

d). Hence, we

conclude that for every 0 ≤ h ∈ L∞
µ (Rd) it holds that

∫

Rd

hGdµ = lim
n→∞

∫

Rd

h|∇µfn| dµ ≤ lim
n→∞

∫

Rd

h|∇fn| dµ

(2.1c)

≤ lim
n→∞

∫

Rd

hLip
(
f ;Bεn(·)

)
dµ =

∫

Rd

h lipa(f) dµ,

(4.10)

where, in order to get the last equality above, we have used a simple technical result given in Lemma

4.15 below. It follows from (4.10) that G ≤ lipa(f) holds µ-a.e. and thus that lipa(f) ∈ TRS(f).

Accordingly, f ∈ W 1,1(Rd, µ) and |∇µf | ≤ lipa(f) holds µ-a.e. by Theorem 4.13. The proof is

complete. �

In the proof of the lemma above the following easy technical lemma has been used. It will be

useful also later on, in the proof of Theorem 5.8.

Lemma 4.15. Let f ∈ LIPc(R
d) be given. Then it holds that

Lip
(
f ;Br(·)

)
→ lipa(f), strongly in L1

µ(R
d) as r ց 0. (4.11)

Proof. Call K the closed 1-neighbourhood of supp(f). Observe that for any r ∈ (0, 1) we have

that Lip
(
f ;Br(·)

)
≤ Lip(f)χK ∈ L1

µ(R
d) on Rd. Recalling that limrց0 Lip

(
f ;Br(x)

)
= lipa(f)(x)

for every x ∈ Rd by the very definition of lipa(f), by applying the dominated convergence theorem

we conclude that (4.11) is verified, as desired. �

5. Relation between BV and W 1,1 spaces

5.1. The total variation measure. Given that the relaxation-type approach to the BV space

presented in Subsection 3.2 comes from the general metric measure space setting, one has to use

Lipschitz functions in the relaxation process. When we stick to the specific case of the weighted

Euclidean space, one would expect that Lipschitz functions can be replaced by smooth ones.

Indeed, in the next results we confirm it. In this subsection we will use the notation LIPbs(X) to

denote the space of boundedly-supported Lipschitz functions on a given metric space (X, d). We

start with two preparatory lemmata:

Lemma 5.1. Let f ∈ BVLip(R
d, µ) be given. Let Ω ⊆ Rd be an open set with |Dµf |Lip(∂Ω) = 0.

Then f |Ω̄ ∈ BVLip(Ω̄, µ|Ω̄) and
∣
∣Dµ|Ω̄(f |Ω̄)

∣
∣
Lip

(Ω̄) = |Dµf |Lip(Ω).

Proof. For brevity, call C := Ω̄ and g := f |C . Given that

|Dµf |Lip(Ω) = |Dµf |(C) = inf
U

|Dµf |Lip(U),

where the infimum is among all open sets U ⊆ R
d containing C, for any ε > 0 we can find an

open set U ⊆ Rd with C ⊆ U and a sequence (fn)n ⊆ LIPloc(U) ∩ L1
µ(U) such that fn → f |U

in L1
µ(U) and limn

∫

U lipa(fn) dµ ≤ |Dµf |Lip(Ω) + ε. Then gn := fn|C ∈ LIPloc(C) ∩ L1
µ(C)

satisfies gn → g and limn

∫

C
lipa(gn) dµ ≤ limn

∫

U
lipa(fn) dµ ≤ |Dµf |Lip(Ω) + ε. Hence, we

have g ∈ BVLip(C, µ|C) and |Dµ|Cg|Lip(C) ≤ |Dµf |Lip(Ω). Conversely, we can find a sequence
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(g′n)n ⊆ LIPbs(C) such that g′n → g in L1
µ(C) and

∫

C lipa(g
′
n) dµ → |Dµ|Cg|Lip(C), thus the

functions f ′
n := g′n|Ω ∈ LIPloc(Ω) ∩ L1

µ(Ω) satisfy f ′
n → f |Ω in L1

µ(Ω) and

lim
n→∞

∫

Ω

lipa(f
′
n) dµ ≤ lim

n→∞

∫

C

lipa(g
′
n) dµ = |Dµ|Cg|Lip(C),

whence it follows that |Dµf |Lip(Ω) ≤ |Dµ|Cg|Lip(C). Therefore, the statement is achieved. �

Lemma 5.2. Let f ∈ BVLip(R
d, µ) be given. Define

Of :=
{
Ω ⊆ R

d open
∣
∣ µ(Ω) < +∞, µ(∂Ω) = |Dµf |Lip(∂Ω) = 0

}
. (5.1)

Then for any σ-finite Borel measure ν on Rd and for any compact set K ⊆ Rd it holds that

ν(K) = inf
{
ν(Ω)

∣
∣ Ω ∈ Of , K ⊆ Ω

}
. (5.2)

Proof. For any r > 0, denote by Ωr the open r-neighbourhood of K. Since the sets {Ωr}r>0

have pairwise disjoint boundaries, we deduce that Ωr ∈ Of for a.e. r > 0. In particular, we

can find a sequence ri ց 0 such that (Ωri)i ⊆ Of . Given that K =
⋂

iΩri , we conclude that

ν(K) = limi ν(Ωri), whence the claim (5.2) follows. �

Now, given a function f ∈ BVLip(R
d, µ) and an open set Ω ⊆ Rd, we define

|Dµf |C∞(Ω) := inf

{

lim
n→∞

∫

Ω

|∇fn| dµ
∣
∣
∣
∣
(fn)n ⊆ C∞(Ω) ∩ L1

µ(Ω), fn → f in L1
µ(Ω)

}

. (5.3)

We can extend it via Carathéodory construction to a set-function on all Borel sets, as follows:

|Dµf |C∞(B) := inf
{
|Dµf |C∞(Ω)

∣
∣ Ω ⊆ R

d open, B ⊆ Ω
}
.

By suitably adapting the arguments in [8, Lemma 4.4.2 and Lemma 4.4.3], one can show that

|Dµf |C∞ is a finite Borel measure on Rd.

Theorem 5.3. Let f ∈ BVLip(R
d, µ). Then the measures |Dµf |C∞ and |Dµf |Lip coincide.

Proof. It suffices to show that |Dµf |C∞(K) = |Dµf |Lip(K) for every K ⊆ R
d compact. Thanks

to Lemma 5.2, this is verified as soon as |Dµf |C∞(Ω) = |Dµf |Lip(Ω) for every Ω ∈ Of , where Of

is defined as in (5.1). Then let Ω ∈ Of be fixed. Since C∞(Ω) ⊆ LIPloc(Ω) and |∇g| = lipa(g)

for all g ∈ C∞(Ω), we have that |Df |Lip(Ω) ≤ |Dµf |C∞(Ω). To prove the converse inequality, we

apply Lemma 5.1: given that f |Ω̄ ∈ BVLip(Ω̄, µ|Ω̄) and
∣
∣Dµ|Ω̄(f |Ω̄)

∣
∣
Lip

(Ω̄) = |Dµf |Lip(Ω), there
exists a sequence (fn)n ⊆ LIPbs(Ω̄) such that fn → f in L1

µ(Ω̄) and
∫

Ω

lipa(fn) dµ =

∫

Ω̄

lipa(fn) dµ →
∣
∣Dµ|Ω̄(f |Ω̄)

∣
∣
Lip

(Ω̄) = |Dµf |Lip(Ω), (5.4)

where the first identity is granted by the fact that ∂Ω is µ-negligible. Now let n ∈ N be fixed.

Extend fn to some Lip(fn)-Lipschitz function f̄n : R
d → R. Define fm

n := f̄n ∗ρ1/m ∈ C∞(Rd) and

gmn := fm
n |Ω ∈ C∞(Ω) for every m ∈ N. Since |gmn − fn| ≤ Lip(fn)/m by (2.1b), we may estimate

∫

Ω

|gmn | dµ ≤
∫

Ω

|fn| dµ+
Lip(fn)µ(Ω)

m
< +∞,

so that gmn ∈ L1
µ(Ω). By dominated convergence theorem, we also obtain that gmn → fn in L1

µ(Ω)

as m → ∞. Moreover, we have |∇gmn |(x) ≤ Lip
(
f̄n;B2/m(x)

)
for all m ∈ N and x ∈ Ω by (2.1c),

so that |∇gmn | ≤ Lip(fn)χΩ ∈ L1
µ(Ω) on Ω. An application of the reverse Fatou lemma yields

lim
m→∞

∫

Ω

|∇gmn | dµ ≤ lim
m→∞

∫

Ω

Lip
(
f̄n;B2/m(x)

)
dµ(x) ≤

∫

Ω

lim
m→∞

Lip
(
f̄n;B2/m(x)

)
dµ(x)

=

∫

Ω

lipa(fn) dµ.
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Hence, we can choose mn ∈ N such that the function gn := gmn
n satisfies

∫

Ω |gn−fn| dµ ≤ 1/n and
∫

Ω
|∇gn| dµ ≤

∫

Ω
lipa(fn) dµ+1/n. Then C∞(Ω)∩L1

µ(Ω) ∋ gn → f in L1
µ(Ω), so that accordingly

|Dµf |C∞(Ω) ≤ lim
n→∞

∫

Ω

|∇gn| dµ ≤ lim
n→∞

∫

Ω

lipa(fn) dµ
(5.4)
= |Dµf |Lip(Ω).

All in all, we have proved that |Dµf |C∞(Ω) = |Dµf |Lip(Ω) for every Ω ∈ Of , as desired. �

Note that it also follows from Theorem 5.3 that

BVLip(R
d, µ) = BVC∞(Rd, µ) :=

{
f ∈ L1

µ(R
d) : |Dµf |C∞(Rd) < +∞

}
. (5.5)

Moreover, the total variation measure of the entire space can be recovered by using only

compactly-supported smooth functions:

Lemma 5.4. Let f ∈ BVLip(R
d, µ). Then

|Df |Lip(Rd) = inf
{

lim
n→∞

∫

Rd

|∇fn| dµ : (fn)n ⊆ C∞
c (Rd), fn → f in L1

µ(R
d)
}

. (5.6)

Proof. Denote by R(f) the right-hand side of (5.6). Pick a sequence (fn)n ⊆ LIPc(R
d) converging

to f in L1
µ(R

d) (whose existence is guaranteed by the characterization of BV functions in item 2)

of Definition 3.2). Fix n ∈ N and denote by (fm
n )m ⊆ C∞

c (Rd) the sequence satisfying

∣
∣fm

n (x) − fn(x)
∣
∣ ≤ 1

m
and |∇fm

n (x)| ≤ Lip
(
fn;B1/m(x)

)
for all x ∈ R

d, (5.7)

whose existence is provided by Lemma 2.1. Calling Kn the closed 1-neighbourhood of supp(fn),

observe that

|∇fm
n | ≤ Lip(fn)χKn

holds for every m ∈ N

and (by passing to the limsup in the second inequality in (5.7)) that

lim
m

|∇fm
n | ≤ lipa(fn).

Thus, we may apply the reverse Fatou lemma and get that

lim
m→∞

∫

Rd

|∇fm
n | dµ ≤

∫

Rd

lim
m→∞

|∇fm
n | dµ ≤

∫

Rd

lipa(fn) dµ.

Now pick mn ∈ N so that

‖fmn
n − fn‖L1

µ(R
d) ≤

1

n
and

∫

Rd

|∇fmn
n | dµ ≤

∫

Rd

lipa(fn) dµ+
1

n
.

By setting gn := fmn
n ∈ C∞

c (Rd), we get (via a diagonalization argument) that

gn → f in L1
µ(R

d) and R(f) ≤ lim
n→∞

∫

Rd

|∇gn| dµ ≤ lim
n→∞

∫

Rd

lipa(fn) dµ.

This gives that R(f) ≤ |Df |(Rd). Given that also the opposite inequality holds, by the fact that

C∞
c (Rd) ⊆ LIPc(R

d), the proof of (5.6) is done. �

5.2. Relation between vector fields and derivations. In this subsection we show that the

space of bounded derivations with bounded divergence is isometrically isomorphic to the space of

bounded vector fields with bounded divergence. The main tool we are going to use is the following

result that we refer to as the superposition principle for derivations :
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Theorem 5.5. Let b ∈ Derb(R
n, µ) be such that |b|, div(b) ∈ L1

µ(R
d). Then there exists a finite,

non-negative Borel measure π on C([0, 1],Rd) concentrated on non-constant absolutely continuous

curves having constant speed and such that
∫

Rd

g b(f) dµ =

∫∫ 1

0

g(γt) (f ◦ γ)′t dt dπ(γ) for every (g, f) ∈ LIP(Rd)× LIPc(R
d), (5.8a)

∫

Rd

g |b| dµ =

∫∫ 1

0

g(γt) |γ̇t| dt dπ(γ) for every g ∈ LIPc(R
d). (5.8b)

The above result is a consequence of a metric version (provided by Paolini and Stepanov in

[19, 18]) of the superposition principle for normal 1-currents proven by Smirnov in [20] and of the

fact that any element of Derb(R
d, µ) induces a normal 1-current. Namely, for any b ∈ Derb(R

d, µ),

the map given by

Tb(g, f) :=

∫

g b(f) dµ for every (g, f) ∈ LIP(Rd)× LIPc(R
d),

defines a normal 1-current on Rd. The formulation given in Theorem 5.5 is due to [10].

Theorem 5.6. The operator Φ: D∞(divµ) → Derb(R
d, µ), given by

Φ(v)(f) := v · ∇µf ∈ L∞
µ (Rd), for every v ∈ D∞(divµ) and every f ∈ LIPc(R

d),

is a bijection, LIPc(R
d)-linear and satisfies

|Φ(v)| = |v| and div
(
Φ(v)

)
= divµ(v) µ-a.e., for every v ∈ D∞(divµ). (5.9)

Proof.

Step 1. First of all, given v ∈ D∞(divµ), we verify that Φ(v) ∈ Derb(R
d, µ). The linearity of Φ(v)

clearly holds true, while the properties 1) and 2) in the Definition 3.4 follow from the fact that

the gradient operator ∇µ satisfies the Leibniz rule (see Lemma 4.7) and from the µ-a.e. inequality

(granted by Proposition 4.14)
∣
∣Φ(v)(f)

∣
∣ ≤ |v||∇µf | ≤ |v| lipa(f) for every f ∈ LIPc(R

d),

respectively. We now prove that |Φ(v)| = |v| ∈ L∞
µ (Rd). Recalling formula (3.5), we have that

|Φ(v)| =ess sup
{
|v · ∇µf | : f ∈ LIPc(R

d), Lip(f) ≤ 1
}

≤ ess sup
{
|v| |∇µf | : f ∈ LIPc(R

d), Lip(f) ≤ 1
}
≤ |v|,

holds µ-a.e.. To prove the opposite inequality, take a dense sequence (wi)i ⊆ Sd−1 := {w ∈ Rd :

|w| = 1}. Then for µ-a.e. x ∈ Rd we have that |v|(x) = supi∈N
v(x) · wi. Now, for every i, k ∈ N

choose fi,k ∈ C∞
c (Rd) such that ∇fi,k = wi on Bk(0). Then, given k ∈ N, we have that

|v|(x) = sup
i∈N

v(x) · wi =sup
i∈N

v(x) · ∇fi,k(x) = sup
i∈N

v(x) · ∇µfi,k(x)

= sup
i∈N

Φ(v)(fi,k)(x) ≤ |Φ(v)|(x) lipa(fi,k)(x) ≤ |Φ(v)|(x),

for µ-a.e. x ∈ Bk(0). By the arbitrariness of k, we conclude that |v| ≤ |Φ(v)| holds µ-a.e. in Rd.

To see that Φ(v) admits bounded divergence, let us first observe that for every f ∈ C∞
c (Rd) it

holds that
∫

Rd

Φ(v)(f) dµ =

∫

Rd

v · ∇µf dµ
(4.6)
=

∫

Rd

v · ∇f dµ = −
∫

Rd

f divµ(v) dµ. (5.10)

Now, given any f ∈ LIPc(R
d), we know that f ∈ W 1,1(Rd, µ) and thus we can find a sequence

(fn)n ⊆ C∞
c (Rd) such that

fn → f in L1
µ(R

d) and ∇µfn → ∇µf in L1
µ(R

d;Rd).
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Thus, we can pass to the limit in (5.10) and get that
∫

Rd

Φ(v)(f) dµ = lim
n→∞

∫

Rd

v · ∇µfn dµ = − lim
n→∞

∫

Rd

fn divµ(v) dµ = −
∫

Rd

f divµ(v) dµ.

By the arbitrariness of f ∈ LIPc(R
d), this proves that Φ(v) admits divergence and that div

(
Φ(v)

)
=

divµ(v) ∈ L∞
µ (Rd).

Step 2. What remains to show is that Φ is bijective. The injectivity of Φ is granted by

the µ-a.e. equality |Φ(v)| = |v| proved in Step 1. Let us now fix b ∈ Derb(R
d, µ) such that

|b|, div(b) ∈ L1
µ(R

d). Let π be the measure on the space of curves C
(
[0, 1],Rd

)
given by the

superposition principle in Theorem 5.5. Define the map D : C
(
[0, 1],Rd

)
× [0, 1] → Rd × Rd as

D(γ, t) := (γt, γ̇t), for every (γ, t) ∈ C
(
[0, 1],Rd

)
× [0, 1].

We further set ν := D∗

(
π ⊗ L1|[0,1]

)
. Calling p : Rd × Rd → Rd the canonical projection map, i.e.

p(x, v) = x for every (x, v) ∈ Rd × Rd, we disintegrate the measure ν with respect to the map p,

getting a measurable family {νx}x∈Rd of probability measures νx on Rd satisfying
∫

Rd×Rd

g(x, v) dν(x, v) =

∫

Rd

∫

Rd

g(x, ·) dνx dp∗ν(x), for every g ∈ L1
ν(R

d × R
d).

We claim that p∗ν ≪ µ. Indeed, by using (5.8b) we have for every g ∈ LIPc(R
d) that

∫

Rd

g|b| dµ =

∫∫ 1

0

g(γt) |γ̇t| dt dπ(γ)

=

∫

Rd

g(x)

(∫

Rd

|w| dνx(w)
)

dp∗ν(x).

By the arbitrariness of g ∈ LIPc(R
d), we have that

|b|µ =

∫

Rd

|w| dν(·)(w) p∗ν. (5.11)

Since the measure π is concentrated on non-constant curves having constant speed, we have that

γ̇t 6= 0 for (π ⊗ L1|[0,1])-a.e. (γ, t). This implies that
∫

Rd |w| dνx(w) > 0 holds for p∗ν-a.e. x ∈ Rd.

Therefore, we conclude that p∗ν ≪ µ.

Step 3. Now, we define

v(x) :=
dp∗ν

dµ
(x)

∫

Rd

w dνx(w), for µ-a.e. x ∈ R
d.

Our aim is to show that v ∈ D∞(divµ) and that b(f) = ∇µf ·v = Φ(v)(f) for every f ∈ LIPc(R
d).

First of all, observe that the formula (5.11) ensures that |v| ≤ |b| holds µ-a.e., thus v ∈ L∞
µ (Rd).

By using formula (5.8a) and by unwrapping the above definitions we have the following: given

any g ∈ LIPc(R
d) and f ∈ C∞

c (Rd) it holds that

∫

Rd

g b(f) dµ =

∫∫ 1

0

g(γt)∇f(γt) · γ̇t dt dπ(γ)

=

∫

Rd

g(x)

(∫

∇f(x) · w dνx(w)

)

dp∗ν(x)

=

∫

Rd

g(x)

(
dp∗ν

dµ
(x)

∫

Rd

∇f(x) · w dνx(w)

)

dµ(x)

=

∫

Rd

g(x)∇f(x) · v(x) dµ(x).
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Thus, since g ∈ LIPc(R
d) was arbitrary, we deduce that b(f)(x) = ∇f(x) · v(x) for µ-a.e. x ∈ Rd.

This also ensures that
∫

Rd

∇f · v dµ =

∫

Rd

b(f) dµ = −
∫

Rd

div(b) f dµ

holds for every f ∈ C∞
c (Rd). Hence, v is a vector field with divergence and divµ(v) = div(b). All

in all, we have proved that v ∈ D∞(divµ). Consequently, we have that

b(f) = ∇f · v = ∇µf · v holds for every f ∈ C∞
c (Rd). (5.12)

By approximation, we can obtain (5.12) for every f ∈ LIPc(R
d), proving that Φ

(
D∞(divµ)

)
⊆

{b ∈ Derb(R
d, µ) : |b|, div(b) ∈ L1

µ(R
d)} =: D.

Step 4. It remains to show that Φ is surjective. Fix b ∈ Derb(R
d, µ) and fix a sequence (ηn)n ⊆

C∞
c (Rd) such that 0 ≤ ηn ≤ 1, ηn = 1 on Bn(0) and Lip(ηn) = 1 for each n ∈ N. We set bn := ηnb

and note that bn ∈ D. Moreover, |bn| ≤ |b| and |div(bn)| = |b(ηn)+ηndiv(b)| ≤ |b|+|div(b)|. By
Step 3 for every n ∈ N we have the existence of an element vn ∈ D∞(divµ) such that Φ(vn) = bn.

Also, |vn| = |bn| ≤ |b| and |divµ(vn)| = |div(bn)| ≤ |b| + |div(b)|, thus (up to a subsequence)

we have that vn ⇀ v weakly∗ in L∞
µ (Rd;Rd) for some v ∈ L∞

µ (Rd;Rd) and divµ(vn) ⇀ h weakly∗

in L∞
µ (Rd) for some h ∈ L∞

µ (Rd). Moreover, due to the closure of the operator divµ we have

that v ∈ D∞(divµ) and that h = divµ(v). We only need to check that Φ(v) = b. Let us fix

f ∈ LIPc(R
d). Then, for every n ∈ N we have that bn(f) = Φ(vn)(f) = vn · ∇µf . Since vn · ∇µf

and bn(f) = ηnb(f) converge weakly∗ in L∞
µ (Rd) to v · ∇µf and b(f), respectively, we get that

b(f) = v · ∇µf = Φ(v)(f). By the arbitrariness of f ∈ LIPc(R
d), we get the surjectivity of Φ and

conclude the proof. �

5.3. Equivalence of BV spaces. As our main result, we have the following equivalent charac-

terizations of the BV space:

Theorem 5.7 (Equivalent characterizations of BV function). It holds that

BV(Rd, µ) = BVDer(R
d, µ) = BVLip(R

d, µ) = BVC∞(Rd, µ).

Moreover, it holds that |Dµf | = |Dµf |Der = |Dµf |Lip = |Dµf |C∞ for every f ∈ BV(Rd, µ).

Proof.

Step 1. First of all, the fact that BVDer(R
d, µ) = BVLip(R

d, µ) = BVC∞(Rd, µ) and |Dµf |Der =

|Dµf |Lip = |Dµf |C∞ for every f ∈ BVDer(R
d, µ) follows from [8, Theorem 4.5.3] and Theorem 5.3.

Moreover, it follows from Theorem 5.6 that |Dµf |(Rd) = |Dµf |Der(R
d) for every f ∈ BVDer(R

d, µ),

which implies BVDer(R
d, µ) ⊆ BV(Rd, µ).

For the purposes of the next step, we recall that it was proved in [2, Theorem 5.1] that a given

function f ∈ L1
µ(R

d) belongs to BV(Rd, µ) if and only if

∃(fn)n∈N ⊆ C∞
c (Rd) : fn → f in L1

µ(R
d), sup

n∈N

∫

Rd

|∇µfn| dµ < +∞. (5.13)

Step 2. Next we claim that

BV(Rd, µ) ⊆ BVDer(R
d, µ). (5.14)

In order to prove it, fix any f ∈ BV(Rd, µ). Define Lf : Derb(R
d, µ) →

(
LIPc(R

d), ‖ · ‖Cb(Rd)

)∗
as

Lf (b)(h) := −
∫

Rd

f div(hb) dµ, for every b ∈ Derb(R
d, µ) and h ∈ LIPc(R

d). (5.15)
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To see that Lf (b) is indeed an element of
(
LIPc(R

d), ‖·‖Cb(Rd)

)∗
, note that for any b ∈ Derb(R

d, µ)

and h ∈ LIPc(R
d) with h 6= 0 we may compute

Lf (b)(h) = −
∫

Rd

f div

(
h‖h‖Cb(Rd)

‖h‖Cb(Rd)

b

)

dµ = −‖h‖Cb(Rd)

∫

Rd

f div

(
h

‖h‖Cb(Rd)

b

)

dµ.

We now apply Theorem 5.6: since v := h
‖h‖

Cb(R
d)
Φ−1(b) is a competitor in the definition of ‖Dµf‖

and divµ(v) = div
(

h
‖h‖

Cb(R
d)
b
)
, we get |Lf (b)| ≤ ‖h‖Cb(Rd)‖Dµf‖, thus the continuity of Lf (b).

The linearity is clear from the very definition of Lf (b), thus we conclude that Lf (b) is an element

of
(
LIPc(R

d), ‖ · ‖Cb(Rd)

)∗
. Being LIPc(R

d) dense in C0(R
d) with respect to the Cb(R

d)-norm,

we can uniquely extend Lf (b) to an element of
(
C0(R

d), ‖ · ‖Cb(Rd)

)∗
, which we still call Lf (b).

Given that
(
C0(R

d), ‖ · ‖Cb(Rd)

)∗
can be identified with M (Rd) (recall Remark 2.3), there exists

a unique Lf (b) ∈ M (Rd) such that

Lf (b)(h) =

∫

Rd

h dLf(b), for every h ∈ C0(R
d). (5.16)

To verify that Lf (v)(R
d) = −

∫

Rd f divµ(v) dµ, pick a sequence (hn)n∈N ⊆ LIPc(R
d) of 1-Lipschitz

functions hn : R
d → [0, 1] such that hn = 1 on Bn(0) for every n ∈ N. In particular, hn(x) → 1

and lipa(hn)(x) → 0 for every x ∈ Rd. Since for any n ∈ N we have the µ-a.e. inequality
∣
∣f
(
hndiv(b) + b(hn)

)∣
∣ ≤ |f |

(
|div(b)|+ |b| lipa(hn)

)
≤ |f |

(
|div(b)|+ |b|

)
∈ L1

µ(R
d),

by using twice the dominated convergence theorem we deduce that
∫

Rd

dLf(b) = lim
n→∞

∫

Rd

hn dLf (b)
(5.16)
= lim

n→∞
Lf (b)(hn)

(5.15)
= − lim

n→∞

∫

Rd

f div(hnb) dµ

(3.6)
= − lim

n→∞

∫

Rd

f
(
hndiv(b) + b(hn)

)
dµ = −

∫

Rd

f div(b) dµ.

The linearity of the map Derb(R
d, µ) ∋ b 7→ Lf (b) ∈ M (Rd) is clear from the very definition.

Moreover, given any g, h ∈ LIPc(R
d), we can compute

∫

Rd

h dLf(gb) = Lf (gb)(h) = −
∫

Rd

f div(hgb) dµ = Lf (b)(hg) =

∫

Rd

hg dLf (b),

which, thanks to the arbitrariness of h ∈ LIPc(R
d), implies Lf (gb) = gLf(b) for all g ∈ LIPc(R

d).

Hence, we have proved that the operator Lf is LIPc(R
d)-linear. We are just left to prove the

continuity of Lf with respect to the ‖ · ‖b-norm on Derb(R
d, µ). By applying (5.13), we can find

a sequence (fn)n∈N ⊆ C∞
c (Rd) and C ≥ 0 such that fn → f in L1

µ(R
d) and

∫

Rd |∇µfn| dµ → C.

For any n ∈ N and h ∈ LIPc(R
d), we can estimate

∣
∣
∣
∣

∫

fn div(hb) dµ

∣
∣
∣
∣

(5.9)
=

∣
∣
∣
∣

∫

fn divµ
(
hΦ−1(b)

)
dµ

∣
∣
∣
∣
=

∣
∣
∣
∣

∫

Rd

h∇µfn · Φ−1(b) dµ

∣
∣
∣
∣

≤ ‖h‖Cb(Rd)‖Φ−1(b)‖L∞

µ (Rd;Rd)

∫

Rd

|∇µfn| dµ

(5.9)
= ‖h‖Cb(Rd)‖b‖b

∫

Rd

|∇µfn| dµ,

whence by letting n → ∞ it follows |Lf (b)(h)| = limn

∣
∣
∫
fn div(hb) dµ

∣
∣ ≤ ‖h‖Cb(Rd)‖b‖bC, thus

‖Lf(b)‖TV = sup
h∈LIPc(R

d):
‖h‖

Cb(R
d)

≤1

|Lf (b)(h)| ≤ C‖b‖b.

This yields continuity of the map Derb(R
d, µ) ∋ b 7→ Lf(b) ∈ M (Rd). All in all, we have shown

that f ∈ BVDer(R
d, µ) with Df = Lf , thus accordingly the claim (5.14) is proved.
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Step 3. So far, we have shown that BV(Rd, µ) = BVDer(R
d, µ) = BVLip(R

d, µ) = BVC∞(Rd, µ).

To conclude, fix a function f ∈ BV(Rd, µ) and an open set Ω ⊆ Rd. The fact that |Dµf |C∞(Ω) =

|Dµf |Lip(Ω) = |Dµf |Der(Ω) is granted by Theorem 5.3 and [8, Theorem 4.5.3]. Moreover, it read-

ily follows from Theorem 5.6 that |Dµf |(Ω) = |Dµf |Der(Ω) as well. This is sufficient to conclude

that |Dµf | = |Dµf |Der = |Dµf |Lip = |Dµf |C∞ as measures, thus completing the proof of the

statement. �

5.4. Relation between W 1,1 spaces. Aim of this brief section is to investigate the relation

between the Sobolev spaces W 1,1(Rd, µ) and W 1,1
Lip(R

d, µ).

Theorem 5.8 (Relation between W 1,1 spaces). It holds that

W 1,1
Lip(R

d, µ) ⊆ W 1,1(Rd, µ).

Moreover, it holds that |∇µf | ≤ |∇f |rs µ-a.e. for every f ∈ W 1,1
Lip(R

d, µ).

Proof. To prove the statement amounts to showing that

f ∈ W 1,1
Lip(R

d, µ) =⇒ f ∈ W 1,1(Rd, µ) and |∇µf | ≤ |∇f |rs in the µ-a.e. sense. (5.17)

Taking Remark 4.10 into account, we can find a sequence (fn)n∈N ⊆ LIPc(R
d) and a non-negative

function H ∈ L1
µ(R

d) such that fn → f strongly in L1
µ(R

d), lipa(fn) ⇀ |∇f |rs weakly in L1
µ(R

d),

and lipa(fn) ≤ H µ-a.e. for every n ∈ N. Given any n ∈ N, define fk
n := ρ1/k ∗ fn ∈ C∞

c (Rd) for

every k ∈ N. Lemma 2.1 says that fk
n → fn strongly in L1

µ(R
d) as k → ∞. Lemma 4.15 gives

|∇µf
k
n | ≤ |∇fk

n |
(2.1c)

≤ Lip
(
fn;B2/k(·)

)
→ lipa(fn), strongly in L1

µ(R
d) as k → ∞.

Then Proposition 2.2 yields the existence of a functionGn ∈ L1
µ(R

d) such that (up to a subsequence

in k) it holds Gn ≤ lipa(fn) ≤ H µ-a.e. and |∇µf
k
n | ⇀ Gn weakly in L1

µ(R
d) as k → ∞. By

applying Proposition 2.2 again, we can also find a function G ∈ L1
µ(R

d) such that G ≤ |∇f |rs µ-a.e.
and (up to a subsequence in n) Gn ⇀ G weakly in L1

µ(R
d). Thanks to a diagonalization argument,

we can construct a sequence (k(n))n∈N ⊆ N such that the functions gn := f
k(n)
n ∈ C∞

c (Rd) satisfy

gn → f strongly in L1
µ(R

d) and |∇µgn| ⇀ G weakly in L1
µ(R

d). This implies that |∇f |rs ∈ TRS(f),

whence (by Theorem 4.13) it follows that f ∈ W 1,1(Rd, µ) and |∇µf | ≤ |∇f |rs µ-a.e., getting

(5.17). Therefore, the statement is achieved. �
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[7] G. Bouchitté and I. Fragalà, Second-order energies on thin structures: variational theory and non-local

effects, Journal of Functional Analysis, 204 (2003), pp. 228–267.

[8] S. Di Marino, Recent advances on BV and Sobolev Spaces in metric measure spaces, PhD thesis, 2014.

[9] , Sobolev and BV spaces on metric measure spaces via derivations and integration by parts, 2014.

[10] S. Di Marino, N. Gigli, E. Pasqualetto, and E. Soultanis, Infinitesimal Hilbertianity of Locally CAT(κ)

spaces, The Journal of Geometric Analysis, (2020), pp. 1–65.



24 MARIA STELLA GELLI AND DANKA LUČIĆ
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Appliquées, 82 (2003), pp. 975–1004.

[18] E. Paolini and E. Stepanov, Decomposition of acyclic normal currents in a metric space, Journal of func-

tional analysis, 263 (2012), pp. 3358–3390.

[19] , Structure of metric cycles and normal one-dimensional currents, Journal of Functional Analysis, 264

(2013), pp. 1269–1295.

[20] S. K. Smirnov, Decomposition of solenoidal vector charges into elementary solenoids, and the structure of

normal one-dimensional flows, Algebra i Analiz, 5 (1993), pp. 206–238.

[21] V. V. Zhikov, Homogenization of elasticity problems on singular structures, Izvestiya: Mathematics, 66 (2002),

p. 299.

Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo, 5, 56127 Pisa, Italy

Email address: maria.stella.gelli@unipi.it
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