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Abstract: Objective: Respiration is recognized as a systematic physiological interference in functional
near-infrared spectroscopy (fNIRS). However, it remains unanswered as to whether it is possible to
estimate the respiratory rate (RR) from such interference. Undoubtedly, RR estimation from fNIRS
can provide complementary information that can be used alongside the cerebral activity analysis,
e.g., sport studies. Thus, the objective of this paper is to propose a method for RR estimation from
fNIRS. Our primary presumption is that changes in the baseline wander of oxygenated hemoglobin
concentration (O2Hb) signal are related to RR. Methods: fNIRS and respiratory signals were con-
currently collected from subjects during controlled breathing tasks at a constant rate from 0.1 Hz to
0.4 Hz. Firstly, the signal quality index algorithm is employed to select the best O2Hb signal, and
then a band-pass filter with cut-off frequencies from 0.05 to 2 Hz is used to remove very low- and
high-frequency artifacts. Secondly, troughs of the filtered O2Hb signal are localized for synthesiz-
ing the baseline wander (S1) using cubic spline interpolation. Finally, the fast Fourier transform
of the S1 signal is computed, and its dominant frequency is considered as RR. In this paper, two
different datasets were employed, where the first one was used for the parameter adjustment of the
proposed method, and the second one was solely used for testing. Results: The low mean absolute
error between the reference and estimated RRs for the first and second datasets (2.6 and 1.3 breaths
per minute, respectively) indicates the feasibility of the proposed method for RR estimation from
fNIRS. Significance: This paper provides a novel view on the respiration interference as a source of
complementary information in fNIRS.

Keywords: fNIRS; respiratory rate; estimation; signal quality index; physiological interference

1. Introduction

Over the last 20 years, functional near-infrared spectroscopy (fNIRS) has arisen as
an effective optical neuroimaging modality for measuring oxygenated (O2Hb) and de-
oxygenated (HHb) hemoglobin concentrations, associated with the neuronal activity [1,2].
Compared to other neuroimaging techniques such as electroencephalography (EEG) and
functional magnetic resonance imaging (fMRI), fNIRS provides better spatial and temporal
resolutions, respectively [3,4]. Thus, a wide range of studies in different cognitive tasks
and clinical settings have employed fNIRS, e.g., [5–8].

Beside the EEG, due to its portable and non-invasive nature, fNIRS has been also used
for outdoor applications [9]. In particular, the emergence of lightweight low-channel fNIRS
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equipment has provided a new possibility for non-laborious investigations, e.g., sport
studies [10–13]. Nevertheless, the susceptibility of fNIRS to artifacts that are stemmed from
various sources causes a great challenge for the accurate analysis of brain activity [14].

Generally, artifacts in fNIRS are classified into two categories: external and physio-
logical interference [15,16]. The most prominent example of the former is motion artifacts,
manifested by abrupt changes in the signal [17,18]. The latter is the interference originated
from physiological systemic activities such as heart rate, blood pressure, Mayer waves,
and respiration [19].

Nevertheless, despite a majority of studies that have considered physiological inter-
ference as source of artifacts in fNIRS, a few investigations have showed that such an
interference can provide useful information for enhancing the accuracy of cerebral activity
analysis. For example, Svinkunaite et al. [20] showed that using cardiac and respiratory
features extracted from the fNIRS spectrum can enhance the accuracy of mental work-
load classification when employed alongside fNIRS temporal analysis. More interestingly,
Hakimi et al. [21] showed the synergy of combining fNIRS temporal analysis alongside the
extracted heart rate variability (HRV) for the stress assessment. According to the reported
results by the authors, employing the extracted HRV from fNIRS improved the accuracy of
classification by 10%.

Besides the heart rate, respiration is another physiological interference that is vividly
observable in the fNIRS spectrum (usually ranging from 0.2 to 0.4 Hz) [22]. According to
the best of our knowledge, no research has yet considered the possibility of respiratory rate
(RR) estimation from fNIRS. This is while fNIRS is being employed in several applications
where RR can also play an important role, e.g., meditation [23], stress assessment [24],
and exercise [10]. Unarguably, such an estimation can provide complementary information
to be used in conjunction with the cerebral activity analysis.

Motivated accordingly, we propose a new method for estimating RR from fNIRS.
Inspired by the studies that estimated RR from the photoplethysmography (PPG) [25], our
hypothesis is that the baseline wander of fNIRS also might be related to alternations in the
respiration. On the other hand, it has been shown that respiration has a stronger influence
on the O2Hb than the HHb signal [26]. Hence, the basis of our method is to (i) extract
the troughs of the O2Hb signal, (ii) synthesize the baseline wander using the cubic spline
interpolation of the extracted troughs, and (iii) find the dominant frequency of the baseline
wander to estimate RR. In order to assess the performance of the proposed method, two
different datasets are used. The first one is used to adjust the parameters of proposed
method whereas the second one is only used for testing.

2. Methods

The block diagram of the proposed method for RR estimation from fNIRS signals is
shown in Figure 1. It mainly consists of two stages: pre-processing (A) and RR estimation
(B). In the subsections below, each step of the proposed method is explained in detail.
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1. Raw optical density (OD) 
signals

2. Converting the ODs to 
O2Hb and HHb concentrations

3. Computing the signal 
quality index (SQI) for all channels

4. Selecting the O2Hb signal 
with highest SQI

5. Band pass filtering 
[0.05 2] Hz the O2Hb signal

6. Extracting troughs from the 
filtered O2Hb signal

7. Generating the baseline 
wander by Spline interpolation

8. Moving average filtering the 
baseline wander

9. Computing Fast Fourier 
transform of filtered

 baseline wander

10. Finding the dominant 
frequency to estimate RR

A

B

RR

Figure 1. The block diagram of the proposed method. It should be noted that for the sake of clarity,
fNIRS signals are shown only for 10 s.

2.1. Pre-Processing

One the most important steps in every fNIRS-based study is to find high quality
data for the analysis [27]. Thus, we have employed the signal quality index (SQI) [28]
algorithm, which quantitatively scores fNIRS data in a numeric scale from 1 (very low
quality) to 5 (very high quality). To compute the SQI, firstly, the modified Beer-Lambert
law [29] is applied to covert the optical density (OD) signals into O2Hb and HHb changes
in concentration. Secondly, OD, O2Hb, and HHb signals are detrended by subtracting
the least-squares fit of a straight line to the data. Thirdly, a 208th-order zero-phase FIR
band-pass filter with cutoff frequencies at 0.4 Hz and 3 Hz is applied on the signals from
the previous step. Finally, several features are extracted from the filtered signals, and each
channel is scored numerically between 1 and 5. It should be also noted that the SQI is
computed based on 10 s windows. For a more detailed explanation, see [28]. After finding
the highest quality channel, a zero-phase FIR band-pass filter with cut-off frequencies
between 0.05 and 2 Hz is used for the removal of very low- and high-frequency artifacts
from the selected O2Hb signal via the SQI algorithm.

2.2. RR Estimation
2.2.1. Trough Detection

Inspired from the PPG-based studies to estimate RR [25,30], our assumption is that
alternations in the baseline wander of O2Hb signal can be related to RR. To this end, the
fiducial points of O2Hb signal, i.e., the peaks and troughs, can be used. As shown in
Figure 2, the synthesis of the baseline wander from troughs, compared to peaks, are more
convenient as they are not subjected to dicrotic notch-induced peak fluctuations.

0 2 4 6 8 10
Time (s)

A
rb

itr
ar

y 
am
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de

Dicrotic notch induced peak fluctuations

Figure 2. An example of O2Hb signal with its corresponding peaks (blue) and troughs (black).
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To localize the troughs, firstly, the filtered O2Hb signal, x(n), is normalized to between
−1 and 1. Then, the local minima that have a value lower than Th1 = A×Mean (x(n))
are considered as the potential troughs (Figure 3a). Yet, the emergence of motion artifacts
can still jeopardize the accurate synthesis of baseline wander (Figure 3b). To overcome
this problem, after localizing the troughs, their corresponding magnitudes are set on a
vector, z(n), and elements with values lower than Th2 = Mean (z(n)) + B× std (z(n))
are discarded (Figure 3c). The coefficients A and B are constants that will be regulated
empirically (see Section 4.1.1). The main steps of trough detection are summarized in
Algorithm 1.

Algorithm 1 Localization of O2Hb signal troughs

Input: O2Hb signal x(n), constants A, B
Output: Troughs, K

Initialisation Th1← 0, Th2← 0, J ← [ ], K ← [ ]
1: x(n)← Normalize (x(n))
2: Th1← A ×Mean (x(n))
3: for i = 2 to length(x(n))− 1 do
4: if x(i) < x(i− 1) && x(i) < x(i + 1) && x(i) < Th1 then
5: J ← [J i]
6: end if
7: end for
8: z(n)← x(J)
9: Th2←Mean (z(n)) + B × std (z(n))

10: for i = 1 to length(z(n)) do
11: if z(i) > Th2 then
12: K = [K i]
13: end if
14: end for
15: return K

(a
)

(b
)

0 10 20 30 40 50
Time (s)

(c
)

Th
1

Th
2

 Outlier

Figure 3. An example of the trough detection. The filtered O2Hb signal (a), the selected troughs after
employing Th1 (b), and Th2 (c).

2.2.2. Forming the Baseline Wander Signal

After extracting the troughs, the corresponding time series, i.e., baseline wander,
needs to be re-sampled. This is a necessary step, as the baseline wander generated from the
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troughs is irregularly sampled, whereas the following analysis needs a regularly sampled
signal [25]. For this aim, the cubic spline interpolation method is employed, which approxi-
mates a signal by connecting a series of points through a polynomial equation that passes
through all of those points continuously.

2.2.3. FFT for RR Estimation

After synthesizing the baseline wander, non-respiratory oscillations, i.e., very-low-
frequency components, should be filtered, as they can hinder the identification of the
dominant frequency in the FFT domain (Figure 4a) [25,31]. For this aim, a moving aver-
age (MA) filter is used. After MA filtering, the dominant frequency of baseline wander
(Figure 4b) is multiplied by 60 to estimate RR in breaths per minute (BPM). Although it can
be argued that applying the MA may also influence the baseline wander, the MA filtering
removes very-low-frequency components (below 0.04 Hz) that are not in the frequency
range of RR for healthy subjects. The regulation of the moving average filter’s length is
described in Section 4.1.2. The summary of RR estimation procedure after extracting the
troughs of O2Hb signal is presented in Algorithm 2.

Algorithm 2 Estimation of the RR from the O2Hb signal’s baseline wander

Input: O2HB signal x(n), Troughs of O2HB signal K, and the length of moving average
filter L

Output: RR
1: m(n)← Spline (K, x(K), 1 to length(x(n)))
2: MA← 1

L×ones(L,1)
3: S(n)← filtfilt(MA,1,m(n))
4: G(n)← m(n)− S(n)
5: [P, F]← FFT (G(n))
6: r ← find

(
P(F)←Max(P(F))

)
7: RR← r × 60
8: return RR

0.2 0.4 0.6 0.8 1
Frequency (Hz)

0

0.02

0.04

|P
(f

)|
2

(a)

0 0.2 0.4 0.6 0.8 1
Frequency (Hz)

0

0.01

0.03

|P
(f

)|
2

(b)

Figure 4. The FFT of the baseline wander before (a) and after (b) employing the MA filtering. The red
dot stands for dominant frequency in the FFT domain. Note that the reference RR is 0.4 Hz in
this example.

2.3. Evaluation Criteria

The performance of trough and motion-induced artifact detection is assessed using
the critical success index (CSI), defined as

CSI =
TP

TP + FN + FP
, (1)

where TP, FN , and FP stand for correctly, missed, and wrongly detected trough and arti-
factual samples. Regarding RR estimation, the absolute error (AE) between the reference
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RR obtained from the respiratory signal and estimated RR from O2Hb signal is employed
as follows:

AE = |ReferenceRR − EstimatedRR|, (2)

To investigate whether there is a significant difference between the estimated and
reference RRs, the paired samples t-test with a significance level of 0.05 was performed for
each subject.

3. Data

In this paper, two different datasets are employed. The first one is used to adjust the
parameters of the proposed method, whereas the second one is only used for testing. Two
different fNIRS devices were used for each dataset, and the reference respiratory signals
were recorded simultaneously using a chest-band with a TMSi SAGA 32+/64+ amplifier
(Twente Medical Systems International B.V., Oldenzaal, The Netherlands) at a sampling
rate of 4000 Hz.

3.1. Data Recording Protocol

Before starting the experiment, the subjects were briefed on the procedure and in-
structed on how to perform the tasks, in English. The data recording protocol for RR esti-
mation, which was adapted from [32–34], is shown in Figure 5. As displayed, it consisted
of one block of a resting period lasting for 60 s (A), followed by two blocks of breathing
control tasks (B and D), separated by a 30 s rest period (C). Subsequently, the same blocks
were repeated (E to H). The subjects were asked to inhale and exhale at a constant pace and
at specific rates while watching a bar moving vertically together with a text showing inhale-
or exhale phases on the screen. Each block of the breathing control task consisted of 5 steps
with a constant RR over a period of 50 s. The RRs for the first and third blocks were 6, 12,
24, 12, and 6 BPM, and for the second and fourth blocks, they were 9, 18, 24, 18, and 9 BPM.

Rest

60s 

Breathing task

5 × 50s

Rest

30s 

5 × 50s

Breathing task

Rest

60s 

Breathing task

5 × 50s 5 × 50s

Breathing task

Rest

30s 

A B C D E F G H

Figure 5. Data recording protocol. It consists of a resting period for 60 s (A), and two breathing
control tasks lasting for 250 s (B,D), which are separated by a 30 s resting period (C). Subsequently,
the same blocks were repeated (E–H).

The local ethics committee of Comitatio Bioetico of the University of Pisa approved
this study protocol with ref. num. 2/2020. Before starting the experiment, all subjects were
informed about the experiment and signed the consent form. All methods were performed
based on the guidelines and regulations required by the Declaration of Helsinki. Data were
registered at Artinis Medical Systems B.V., Elst, The Netherlands.

3.2. fNIRS Systems for Data Collection
3.2.1. Dataset I

This dataset comprised fNIRS data from 8 healthy subjects (3 female) aged from 21
to 32 years recorded using a portable wireless 23 channel fNIRS system (Brite23, Artinis
Medical Systems B.V., The Netherlands) covering the whole frontal cortex (Figure 6a). This
device is supplied with a source–detector separation of 35 mm, nominal wavelengths of
760 and 850 nm, ambient light correction, and a sampling frequency of 50 Hz.
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3.2.2. Dataset II

This dataset consisted of fNIRS data collected from 18 healthy subjects (9 female) aged
from 24 to 37 years using a wireless multi-sensor fNIRS-system (PortaLite MKII, Artinis
Medical Systems B.V., The Netherlands). This device is equipped with up to 2 sensors,
each having 3 long channels (the source–detector distance being up to 41 mm), and 3 short-
separation channels (with distances of 7.2 and 8.0 mm), nominal wavelengths of 760 and
850 nm, ambient light correction, and a sampling rate of 100 Hz. The sensors simultaneously
recorded any movement using an IMU embedded within each sensor, and were designed to
be placed on both hemispheres of the prefrontal cortex of the brain. In this paper, we have
used only a single sensor placed on the left hemisphere of the prefrontal cortex (Figure 6b).

(a)                                            (b)

Figure 6. fNIRS optode placement for dataset I (a) and dataset II (b).

4. Experimental Results

In this section, the obtained results from both datasets are described. It is worth
mentioning that the required parameters of the proposed method were first tuned based
on the optimal results obtained from dataset I, then the adjusted parameters were used
for the analysis of dataset II. In addition, the short separation channels of dataset II were
discarded to have a similar data structure and analysis for both datasets.

4.1. Optimization of the Proposed Method’s Parameters
4.1.1. Trough Detection

Two empirical thresholds require tuning for the trough detection: Th1, which is
necessary for ignoring the local minima in the dicrotic notch, i.e., a small downward
deflection between the peaks and troughs, and Th2, which is used to discard the troughs
contaminated by the motion artifacts. Regarding the scaling coefficient of Th1, values from
0.25 to 1.5 with a step size of 0.25 were inspected. The best fit, i.e., the highest mean CSI,
was A = 1 (Figure 7a). As for the scaling coefficient of Th2, values from 1 to 6 with a step
size of 1 were investigated, and B = 3 was obtained as the best fit (Figure 7b).

(a)

0.25 0.5 0.75 1 1.25 1.5

Sclaing coefficient A (Th1)
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80
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(b)
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Figure 7. Regulation of constants for trough detection in terms of mean±std of the CSI. Th1 (a) and
Th2 (b).
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4.1.2. The Length of MA Filtering

As displayed in Figure 4, removing very-low-frequency components of the generated
baseline wander is of great importance for the accurate estimation of RR. For this aim,
different lengths of the MA filter from 2 to 5 s with a stepping size of 0.5 s were investigated.
According to the obtained average AE, although no noticeable difference was observed
between different lengths, 3 s had the lowest error (Table 1).

Table 1. The Influence of MA Filter’s Length on the RR estimation.

MA Filter Length (s) Average AE ± Std (BPM)

2 3.2 ± 1.9
2.5 3.1 ± 1.8
3 2.6 ± 1.3

3.5 2.7 ± 1.4
4 2.9 ± 1.9

4.5 2.9 ± 2.1
5 3.1 ± 2.2

4.1.3. Results of RR Estimation from Dataset I

In total, 160 50 s trials of the concurrent O2Hb and respiratory signals were used,
where each RR was repeated 4 times per subject. Table 2 displays the average AE between
the reference and estimated RRs for each subject. The average AE of all trials was 2.6 BPM.
Given the reported results from the PPG-based studies for RR estimation [32–34], the ob-
tained results indicate the feasibility of the proposed method for RR estimation from fNIRS.
According to the conducted statistical analysis between the reference and estimated RRs,
except for the subject 8, there is no significant difference (p > 0.05).

Table 2. The average AE between the reference and estimated RRs for each subject of dataset I.

Subjects Average AE (BPM)

1 0.9
2 2.7
3 2.7
4 1.1
5 2.2
6 1.9
7 2.1
8 5.2

4.2. Results of RR Estimation from Dataset II

An example of the filtered O2Hb signal, as well as its corresponding extracted baseline
wanders and the reference respiratory signal are displayed in Figure 8. As it can be seen,
the frequency of baseline wander is close to that of the reference respiratory signal.

The average AE between the reference and estimated RRs for each subject of dataset II
is disclosed in Table 3. Except for subject 13, the statistical analysis shows no significant
difference between the reference and estimated RRs (p > 0.05). The average AE for
all trials is 1.3 BPM. To evaluate the overall performance of the proposed method on
dataset II, a Bland–Altman plot (Figure 9) was used; this assesses the agreement between
reference and estimated RRs by showing the difference between each estimate and the
references against their mean. In this paper, the Limit of Agreement (LOA) is computed as
[mean− 2× std, mean + 2× std]. In this range, 94% of the differences are inside.
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Filtered O
2
Hb Sampled troughs Synthesized baseline wander

0 10 20 30 40 50
Time (s)

Reference respiratory signal

Figure 8. An example of the filtered O2Hb signal, the corresponding baseline wanders, and the
reference respiratory signal.

Table 3. The average of AE between the reference and estimated RRs for each subject of dataset II.

Subjects Average AE (BPM)

1 1.7
2 0.3
3 0.3
4 0.5
5 1.8
6 0.8
7 1.5
8 2.7
9 2.1

10 0.3
11 0.4
12 0.7
13 3.6
14 0.5
15 1.8
16 1.8
17 0.4
18 2.1
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Figure 9. The Bland–Altman plot of the estimated RRs on dataset II.

5. Discussion

The aim of this paper was to investigate the possibility of RR estimation from fNIRS.
Indisputably, this is a novel view on respiration interference in fNIRS, as almost all studies
have considered such an interference as a detrimental phenomenon. The importance of
this study is to derive an extra measure, i.e., RR, to the cerebral activity analysis without re-
quiring a reference signal. From the research point of view, the proposed method facilitates
the approximation of RR in applications where both cerebral and respiratory activities may
synergize the analysis. For instance, there is solid evidence in the literature suggesting that
RR alternation is an indicator of anxiety and mental workload levels [35,36].

5.1. Significance and Robustness of the Proposed Method

It is common knowledge that inhalation and exhalation can alter the blood flow within
the body [37]. On the other hand, respiratory fluctuations affect the cerebral blood volume
and flow [38]. Therefore, it can be expected that alternation in RR is revealed in fNIRS, and
in particular, in O2Hb signals [26]. Our underlying assumption, which was inspired from
PPG-based studies [25], was that fluctuations in the frequency of O2Hb signal’s baseline
wander can be related to RR.

The proposed method is based on the FFT obtained from the baseline wander of an
O2Hb signal. To synthesize the baseline wander, either troughs or peaks can be used. In this
paper, we have found the localization of troughs to be more convenient (Figure 2). Yet,
synthesizing the baseline wander required an interpolation method due to the irregular
sampling. Here, we used cubic spline interpolation, which was already proven as an effec-
tive method in PPG-based studies [30]. Afterwards, the dominant frequency of synthesized
baseline wander in the FFT domain was considered as RR. The motivation behind using
FFT rather than other spectral analyses such as Welch or MUSIC is its simplicity. i.e., the
FFT is a non-parametric algorithm.

To assess the feasibility of the proposed method, two different datasets were used: one
for adjustment of the required parameters of the proposed method and the other for testing.
Indeed, the second dataset was used to investigate the robustness of the proposed method’s
parameters when data were recorded from another fNIRS equipment with different charac-
teristics, e.g., the sampling rate, receiver gain, LED types, etc. The comparison between
Tables 2 and 3 confirms such robustness as there is no noticeable difference between the
obtained results from both datasets. More surprisingly, even a lower mean of AE was
achieved with the second dataset. One plausible explanation can be the weak performance
of our method for subject 8 in dataset I.
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5.2. Comparison with State-of-the-Art Methods

As this is the first research that proposes a method for RR estimation from fNIRS,
there is no possibility for comparing the performance of the proposed method to other
studies. Yet, a few investigations have aimed to regress out the respiratory components
from fNIRS data. For example, Tong et al. [38] used a zero-phase band-pass filter with
cut-off frequencies from 0.2 to 0.6 Hz to partition out the respiratory components from the
O2Hb signals. In another study, Lühmann et al. [39] proposed a multimodal extension of
the general linear model based on temporally embedded canonical correlation analysis to
extract respiratory components from fNIRS measurements. The former methodology may
not be efficient, as such a band width also involves cerebral activities, and the latter requires
the simultaneously recorded respiratory signal. Nonetheless, neither of the mentioned stud-
ies have considered RR estimation from the regressed respiratory components. Although it
may be inequitable to compare the quality of estimated RR from fNIRS with PPG-based
studies, our results are still comparable to [34], where both the finger and forehead PPG
data were used.

On the other hand, the mentioned studies used a large amount of data, which is
not appropriate for practical applications, as wearing a cap covering the whole head
discomforts the user for long-term recording. Furthermore, such a configuration usually
involves covering the hair-bearing areas of the head that are more subjected to noise.
In contrast, we developed and tested our algorithm-based sensors placed only on the
frontal region of head, which provide the user with more comfort, as it is mostly a hairless
area. In addition, such a configuration reduces the complexity of wearable instrumentation
as only one region of the brain is monitored.

5.3. Directions for Future Work

Regardless of the reported promising results, this research has several limitations
that should be addressed in future works. Firstly, the employed SQI algorithm is not
necessarily an optimal method for finding the best fNIRS data for the analysis. In particular,
the SQI is not sensitive to the emergence of motion artifacts, which can significantly
influence the synthesis of baseline wander. Yet, to the best of our knowledge, it is one
of the best methods for monitoring the quality of data. Secondly, the data recording
protocol was a simple breathing task where subjects needed to sit on a chair and perform
the experiment. In future work, the subjects should be asked to perform more dynamic
activities, e.g., cycling, to obtain more realistic RRs. Thirdly, due to the nature of the data
recording protocol, fNIRS data were not significantly contaminated by motion artifacts.
Thus, the performance of Th1 and Th2 for trough detection should be investigated further,
with more artifactual data. Fourthly, the performance of the proposed method should be
investigated by analyzing different time windows. Fifthly, it should be mentioned that
the correction for multiple comparisons has not been conducted for statistical analysis.
Lastly, the reliability of the proposed method was only evaluated on young healthy subjects.
It is also of great importance to assess the robustness of the proposed method on more
diverse cohorts (e.g., the elderly, neonates, and patients) as some studies showed that the
performance of RR estimation algorithm can be affected by different factors such as age [40].
Nevertheless, it should be noted that this is the first research that has proposed a method
for RR estimation from fNIRS; therefore, having the mentioned limitations was necessary
for investigating the possibility of RR estimation.

6. Conclusions

In this paper, a method based on the spectrum analysis of the O2Hb signal’s baseline
wander was introduced to estimate RR, and its performance was assessed on two different
datasets with distinctive data recording characteristics. The comparison between the
obtained results from both datasets confirmed the robustness of the proposed method,
which is of great importance for real-world applications. The milestone of this research was
to consider the respiration interference in fNIRS as source of complementary information,
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rather than a source of artifact. Indeed, the proposed method can provide extra information
from fNIRS that can be used alongside the cerebral activity analysis.
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