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Research on stochastic differential equations (SDEs) involving both additive and mul-

tiplicative noise has been extensive. In cases where the primary process is driven by

a multiplicative stochastic process, additive white noise typically represents an in-

trinsic and unavoidable fast component. This applies to phenomena such as thermal

fluctuations, inherent uncertainties in measurement processes, or rapid wind forc-

ing in ocean dynamics. This study focuses on an important class of such systems,

particularly those characterized by linear drift and multiplicative noise, which have

been extensively explored in the literature. In many existing studies, multiplicative

stochastic processes are often treated as white noise. However, when considering

colored multiplicative noise, the emphasis has usually been on characterizing the far

tails of the probability density function (PDF), irrespective of the noise’s spectral

properties. In the absence of additive noise and with a general colored multiplicative

SDE, standard perturbation approaches lead to a second-order partial differential

equation (PDE) known as the Fokker-Planck Equation (FPE), consistent with Fick’s

law. This investigation reveals a significant deviation from this standard behavior

when additive white noise is introduced. At the leading order of the stochastic pro-

cess strength, perturbation approaches yield a third-order PDE, regardless of the

white noise intensity. The breakdown of the FPE further indicates the breakdown

of Fick’s law. Additionally, we derive the explicit solution for the equilibrium PDF

corresponding to this third-order PDE Master Equation. Through numerical simu-

lations, we demonstrate significant deviations from results obtained using the FPE

derived from Fick’s law.
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I. INTRODUCTION

Linear equations driven by both additive and multiplicative noise are common across

nearly all scientific disciplines. In the general N -dimensional case (N -D), these equations

are expressed as:

ẋ = −E ∙ x + f [t]−Ξ[t] ∙ x (1)

where x := (x1, . . . , xN), E and Ξ[t] are N × N matrices with constant and stochastic

components, respectively, and f [t] is a multidimensional white noise with a correlation (or

diffusion) matrix D. We adopt the convention of using square brackets for the time argument

of a stochastic process, while standard parentheses are used for specific realizations of the

stochastic process, which are functions of time. For example, a specific function f(u) with

0 ≤ u ≤ t is a realization of f [t].

As shown in1 extending equation (1) to an infinite (or continuous) vector space leads

to a general model that describes a wide range of important physical phenomena in fluid

dynamics and quantum mechanics. This model, also known as a random multiplicative

process (RMP), is a well-established mechanism for generating power-law behaviors.

Widely used to model various systems with both discrete and continuous time, the RMP

has been applied to phenomena such as on-off intermittency2–6 general intermittency with

power-law statistics7,8 (see Fig. 1), lasers9,10, economic activity11,12, fluctuations in biological

populations within changing environments13, and the advection of passive scalar fields by

fluids1,14. It is also a key model in theories of large fluctuations (e.g.,15 and references

therein). Therefore, the significance of the model (1) cannot be overstated.

For simplicity, this work focuses on the one dimensional (1-D) version of the model (1):

ẋ = −γx + f [t]− ε xξ[t], (2)

which is the primary focus of most of the literature cited above. While the extension to the

N -D case (1) case is straightforward, it is somewhat intricate, so to avoid burdening the

reader with tedious algebra, this generalization is relegated to Appendix A.

In equation (2) f [t] is a white noise with diffusion coefficient Df and ξ[t] is a Gaussian

stochastic process with zero mean, finite correlation time τ̄ 16 and normalized autocorrelation

function ϕ(t) = 〈ξ(t)ξ(0)〉ξ/〈ξ2〉ξ. Here, 〈...〉ξ denotes the average over realizations of the
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random process ξ[t], which is assumed to be at equilibrium. We also define:

τ :=

∫ ∞

0

ϕ(u) du. (3)

The value of τ can be much smaller than the actual decorrelation time τ̄ in cases where the

function ϕ(u) decays with oscillations over time.

Without loss of generality, we assume that 〈ξ2〉ξ = 1, so the intensity of the fluctuations in

the stochastic perturbation is governed by ε. However, the relevant dimensionless expansion

parameter is δ̄ = ετ̄ . Due to the practical difficulty of quantifying τ̄ precisely, we use the

parameter δ := ετ instead, where τ is evaluated as defined in equation (3).

The drift field −γx in the SDE (2) can also be interpreted as originating from the same

multiplicative stochastic process, in cases where the mean of its fluctuations is non-zero.

Indeed, if the unperturbed dynamics of x does not include the friction term and 〈ξ〉ξ = γ/ε,

we recover the SDE (2) by replacing ξ[t] with ξ[t] + γ/ε.

If x is interpreted as the velocity of a Brownian particle, the SDE (2) has the notable

feature that it can be considered a continuous process realization of Lévy random walks with

superdiffusive and superballistic regimes17 for certain parameter ranges.
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FIG. 1. A representative example, illustrating the intermittent behavior, is depicted in the time

evolution of the amplitude x for the SDE (2) with parameters τ = 0.5, ε = 5.0, γ = 2.0, Df = 0.5.

We refer to f [t] in equation (2) as the internal or intrinsic noise. This terminology is

appropriate since it typically arises from intrinsic and unavoidable factors such as thermal
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fluctuations, inherent uncertainties in measurement processes, or rapid wind forcing in the

context of ocean dynamics, among other possibilities.

As mentioned, the SDE (2) has been extensively studied in the scientific literature. How-

ever, in nearly all these studies, aside from the additive noise f [t], the stochastic process

ξ[t] has been treated as white noise. In cases where a colored stochastic process ξ[t] has

been considered1, the focus has been on characterizing the far tail of the probability density

function (PDF) of x, which, as we will see later, does not depend on the spectral properties

of the multiplicative noise.

To the best of our knowledge, no previous works have derived a simple closed-form ex-

pression (i.e., not a formal result involving an infinite series of operators) for the PDF across

its entire support range, along with the corresponding equilibrium solution. We will address

this gap by focusing on the case where the δ parameter is small and will find surprisingly

simple results that do not conform to the structure of the Fokker-Planck equation (FPE) or

Fick’s law.

To begin, let us assume that the intrinsic noise is absent (i.e., f [t] = 0). In this case, it

is well-known and straightforward to show (see Appendix B) that, regardless of the values

of τ and ε, the Master Equation (ME) for the PDF of x in equation (2) coincides with the

following FPE (we use the shorthand ∂y := ∂/∂y):

∂tP (x; t) =

{

γ∂xx +
δ2

τ
∂xx∂x x

}

P (x; t). (4)

This result indicates that the process (2), with Df = 0, does not depend on the spectral

(or color) features of the stochastic process ξ[t]. Consistently, in the white noise limit, i.e.,

for τ → 0 and δ2/τ = ε2τ held constant, the FPE (4) remains unchanged and corresponds

to the standard FPE for SDEs with multiplicative white noise, under the Stratonovich

interpretation of Wiener process differentials.

The FPE (4) can also be rewritten as a continuity equation:

∂tP (x; t) = −∂xJ(x) (5)

where

J(x) := −
{
(γτ + δ2)x/τ + Dξ(x)∂x

}
P (x; t), (6)

and we have introduced the inhomogeneous diffusion coefficient:

Dξ(x) := δεx2 = δ2x2/τ, (7)
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characteristic of multiplicative noise. The terms in Eq. (6) have a straightforward interpre-

tation: in the absence of internal noise (Df = 0 in (2)), the multiplicative stochastic process

generates an additional friction/drift term proportional to the intensity of the stochastic

perturbation and an inhomogeneous diffusion process proportional to the gradient of the

PDF (thus, following Fick-s law).

The equilibrium PDF of (5), obtained by setting J(x) = 0 in (6), exhibits a singular

behavior:

Peq(x) =






∝ |x|−(1+ γτ

δ2
) for x 6= 0 (a)

δ(x) for x = 0 (b),
(8)

where solution (a) is not normalizable, meaning that when normalized, it yields zero every-

where in its domain18.

Introducing an internal diffusion source effectively addresses this issue and is physically

plausible for many realistic models. In fact, by applying Fick’s law and including the stan-

dard, constant diffusion coefficient Df in the current (6), we have:

J(x) := −
{
(γτ + δ2)x/τ + (Dξ(x) + Df )∂x

}
P (x; t). (9)

By setting J(x) = 0 we now obtain P (x)eq ∝ (Df +Dξ(x))−
1
2(1+ γτ

δ2
), which no longer displays

the singular behavior around x = 0.

Note that for Dξ(x)� Df , i.e., for x�
√

Dfτ/δ2, the behavior is similar to the previous

noiseless case. Thus, the condition for the existence of the moments of x remains unchanged

by the introduction of this diffusive term.

We can say that the white noise f [t], corresponding to a diffusion process with diffusion

coefficient Df , introduces a repulsion from the origin, preventing any path from getting

trapped at x = 0 once reached. While the introduction of such intrinsic noise in multi-

plicative processes has been acknowledged by many researchers (see the works cited earlier),

it has not been emphasized that even though the two fluctuating processes are assumed

independent of each other, their contributions to the current J(x) of (5) don’t simply add

up, unless the multiplicative process is also white noise. More precisely, in this work, we will

show that instead of (9) (derived assuming Fick’s law holds), we have:

J(x) = −
{
(γτ + δ2)x/τ + (Dξ(x) + Df )∂x + DfDξ(x)ϑ∂2

x

}
P (x; t) (10)

with θ, given in (22), having the dimension of time and coinciding with 2τ for γτ � 1 and
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with γ−1 for γτ � 1. It is clear that Eq. (10) implies a breakdown of Fick’s law and the

corresponding FPE structure.

It should be noted that the new term on the right-hand side of (10) arises due to two key

factors: the finite time scale of the external stochastic perturbation (colored noise) and the

non-commutativity of its Liouvillian with the Liouvillian associated with the internal noise

(the standard diffusion operator).

More specifically, when using any time-dependent perturbation approach (such as cumu-

lants, Zwanzig, Born-Oppenheimer-like methods) to derive a Master Equation (ME) for the

reduced probability density function (PDF) of x, it leads to a power series expansion over

the dimensionless parameter δ (see Appendix B). In the second order (which is the leading

order for weak perturbations), we obtain a correction to the Fokker-Planck Equation (FPE)

derived by simply applying Fick’s law. This correction is proportional to both δ and Df and

results in a third-order partial differential operator on x.

This result is confirmed by the numerical simulations reported in Section III. A detailed

derivation of this phenomenon will be undertaken in the next session.

Before concluding this introduction, we also emphasize that this departure from the

standard FPE/Fick’s law is a general result, applicable beyond the linear drift case of (1),

and always occurs when both additive noise and multiplicative colored stochastic processes

are present. For simplicity, we focus here on the linear 1-D case of (2), while a more in-depth

exploration of these findings will be presented in future works.

II. A THIRD ORDER PDE FOR THE PDF

We indicate with ξ(∙) a realization ξ(u) of the stochastic process ξ[t] with, 0 ≤ u ≤ t.

Given the infinitely short time correlation of the additive noise f [t], to any realization ξ(∙) of

ξ[t], the continuity equation for the SDE (2) corresponds to the following Liouville equation

for the PDF of x:

∂tPξ(∙)(x, t)

= {La + ε ξ(t)LI}Pξ(∙)(x, t), (11)

in which La is the unperturbed Liouville operator given by

La := γ∂xx + Df∂
2
x; (12)
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and ε ξ(t)LI is the Liouville perturbation operator with:

LI := ∂xx. (13)

If the perturbing process εξ(t) is weak (characterized by small values of the δ parameter),

applying a perturbation projection19–21 or a cumulant22 approach to Eq. (11), at the leading

order of δ, we formally obtain the following standard result for the reduced PDF of x (see

Appendix B for a brief overview of the cumulant approach adapted to the present case, note

that P (x; t) := 〈Pξ(∙)(x, t)〉ξ, where 〈...〉ξ is the average over the realizations of the stochastic

process ξ[t]):

∂tP (x; t) = LaP (x; t) +
δ2

τ 2
LI

∫ t

0

duϕ(u) L̃I(−u) P (x; t), (14)

where ϕ(t) is the normalized autocorrelation function of ξ[t], as defined in the Introduction,

and

L̃I(t) := e−LatLIe
Lat (15)

is the interaction representation of the perturbing Liouvillian LI . By exploiting the

Hadamard’s lemma for exponentials of operators we can also write

L̃I(t) = e−L×
a t[LI ] (16)

in which, for any couple of operators A and B, we have defined A×[B] := [A, B] = AB−BA.

In literature (e.g.23), eA×t [B] is called the Lie evolution of the operator B along A, for a

time t.

Because the perturbing Liouvillian LI of (13) is a first order differential operator, the

order of the differential operator corresponding to the second addend in the r.h.s. of (14) is

one plus the order of differential operator of L̃I(−u). From Eq. (16), we see that this latter

is the result of the Lie evolution of LI along the unperturbed Liouvillian La.

If the decay time of ϕ(u) is significantly shorter than 1/γ, we can safely assume the ap-

proximation L̃I(−u) ≈ LI inside the integral on the r.h.s. of (14). Consequently, the ME

(14) effectively reduces to a FPE. However, when this is not the case, we must address the

challenge of evaluating the full Lie evolution of LI along La. In-depth exploration of this

topic, from a formal and general perspective, can be found in23. Specifically, Proposition

1 in23 is of particular relevance. However, for the simple 1-D case with linear drift, cor-

responding to the present SDE (2), we can easily derive the Lie evolution of LI along the
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unperturbed Liouvillian La in (16) as follows. From (16) we have

d

dt
L̃I(t) = −L×

a

[
e−L×

a t[LI ]
]

= −e−L×
a t [[La, LI ]] . (17)

By using (12) and (13), we get

[La, LI ] = [γ∂xx + Df∂
2
x , ∂xx] = 2Df∂

2
x (18)

thus, Eq. (17) can be written as

d

dt
L̃I(t) =− 2e−L×

a t
[
Df∂

2
x

]

=− 2e−L×
a t
[
γ∂xx + Df∂

2
x − γ∂xx

]
= −2(γ∂xx + Df∂

2
x) + 2γL̃I(t) (19)

of which the solution is

L̃I(t) = ∂x x + Df
1− e2γt

γ
∂2

x. (20)

By using Eq. (20) into the ME (14), and exploiting again (12) and (13), we finally obtain

∂tP (x; t) =γ∂x xP (x; t)

+
δ2

τ 2
∂xx

[∫ t

0

duϕ(u) ∂x x + Df
1

γ

∫ t

0

duϕ(u)
(
1− e−2γu

)
∂2

x

]

P (x; t). (21)

For t� τ and t� 1/γ, Eq. (21) can be safely approximated as

∂tP (x; t) ≈

{

γ∂x x + Df∂
2
x +

δ2

τ
∂xx∂xx + Dfδ

2 ϑ

τ
∂x x∂2

x

}

P (x; t)

= −∂xJ(x) (22)

with J(x) is given in (10) and the time ϑ defined as

ϑ :=
1

γτ
(τ − ϕ̂(2γ)) . (23)

The hat over a function indicates its Laplace transform: ϕ̂(s) :=
∫∞

0
duϕ(u)e−su. Note that,

if τ > 0, then, from (23) it follows that also ϑ > 0.

The third-order PDE (22) with (23) is the main result of this work. At the leading order

in powers of the δ parameter, Eq. (22) is exact, regardless of the value of the diffusion

coefficient Df .

Thus, upon introducing the internal noise, alongside the standard diffusion process, an

additional mutual contribution is activated. As we can see from (22), the mutual contribution
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of the white internal noise and the external multiplicative stochastic process exhibits an odd

nature in terms of partial derivatives. As previously emphasized in the Introduction, we

reiterate that the time parameter ϑ of (23) is order of τ for γτ � 1 and of γ−1 for γτ � 1.

Consequently, the adimensional parameter r := εϑ is similar the δ parameter, but is rescaled

based on the time scale relationship between the stochastic process and the unperturbed

dynamics.

Imposing the equilibrium condition to the ME (22), i.e., setting J(x) = 0, we obtain two

different analytical solutions, both involving the Kummer confluent hypergeometric function

of first kind24:

P1(x) = 1F1

(
1

2

(γτ

δ2
+ 1
)

;
1

2

(
1

δr
+ 1

)

;−
x2

2Dfϑ

)

P2(x) = |x|1−
1
δr 1F1

(
r (2δε + γ)− 1

2δr
;
3

2
−

1

2δr
;−

x2

2Dfϑ

)

. (24)

This fact is due to the third order nature of the PDE (22). From a mathematical point of

view any linear combination of these two functions is also a possible solution. However, it

is easy to show that the second one is not physically acceptable. In fact, let us consider the

behaviour of these two functions around x = 0. We have

P1(x) ≈ 1−
x2 [γτ + δ2]

(2Dfτ) (δr + 1)
+ O

(
x3
)

(25)

P2(x) ≈ |x|1−
1
δr + O

(
x3
)
. (26)

We see that if R := δr < 1, a condition which is typically met in our perturbation approach,

the solution P2(x) is not integrable, therefore it must be discarded. The expression of the

function P1(x) in (25) implies that the presence of r > 0 smears the equilibrium PDF around

x = 0.

Thus, the final result is given by

Peq(x) ∝ 1F1

(
1

2

(γτ

δ2
+ 1
)

;
1

2

(
1

δr
+ 1

)

;−
x2

2Dfϑ

)

. (27)

We note that the Kummer confluent hypergeometric function 1F1 (a; b;−z2) is positive (and

also well-defined) when its second argument (b) is greater than the first one (a). By the

definitions of δ := ετ , r := εϑ and of ϑ given in (23), it is straightforward to verify that in

(27) this condition leads to ϕ̂(2γ)/τ > 0 that, if τ > 0, is always satisfied.

In the case where the support of the PDF is not restricted (e.g., when there are no reflect-

ing boundary conditions at finite values of x), we can derive a simple analytical expression
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for the far tails (x� 2Dfϑ) of the equilibrium PDF (27). The result is Peq(x) ∼ |x|−( γτ

δ2
+1).

From this expression, we observe that even when considering the contribution from the third

partial derivative, the far-tail behavior of the equilibrium PDF of x remains unaffected by

the presence of the additive white noise f [t]. This implies that, for an unbounded PDF

domain, the condition for the existence of the n-th moment of x depends only on the ratio

γτ/δ2, and remains independent of the spectral properties of ξ[t]. Furthermore, in the case

of an unbounded PDF domain, from the PDE (22) it is possible to derive the following ODE

for the n-th moment of x:

∂t〈x
n〉 = −nγ〈xn〉

(
1− nδ2/(γτ )

)
+ n(n− 1)Df (1− nδr) 〈xn−2〉. (28)

For any fixed n, Eq. (28) represents a closed linear relationship between the first n moments

of x. The eigenvalues of the corresponding matrix are −nγ (1− nδ2/(γτ )), meaning they

do not depend on Df and r. Therefore, the relaxation behavior of the moments is also

independent of Df and r, and the moments exist only if (1− nδ2/(γτ )) > 0. On the other

hand, it is clear from the same Eq. (28) that the equilibrium values of the moments (if they

exist) do depend on Df , and also on the value of R := δr.

When it exists, the equilibrium solution of Eq. (28) is given by

〈xn〉eq =






0 for n odd
(

Df

γ

)n/2

(n− 1)!!
∏n/2

j=1
(1−2j δr)

(1−2j δ2/(γτ))
for n even

(29)

From (23) we always have ϑ < 1/γ, and considering that r = εϑ and δ = ετ , we obtain

(1− 2jδ2/(γτ )) < (1− 2j δr). Because (1− nδ2/(γτ )) > 0 (for the n-th moment to exist),

then we have (1− 2j δr) > (1− jδ2/(γτ )) ≥ (1− nδ2/(γτ )) > 0. I.e., 〈xn〉eq > 0 (for even

n), as it must be.

From Eq. (29), we also obtain that the third-order partial differential term in the PDE

(22), which is proportional to the parameter R := δr = εδϑ , decreases the value of the

moments of the PDF. This observation seems to contradict the above findings that suggest

the equilibrium PDF broadens around x = 0 as R increases and that the far tails of this

PDF do not depend on R. The resolution to this apparent contradiction lies in the fact

that, as we move away from the origin, where the expansion (25) holds, but before reaching

the asymptotic tails, the equilibrium PDF decays more rapidly as a function of x due to

the presence of R > 0. This behavior can be easily confirmed by comparing plots of the

equilibrium PDF for R = 0 and R 6= 0 (see next section).
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If there is a significant separation of time scales, i.e. γτ � 1, then from (23) and the

assumption given in Eq. (B13) (see also note16), we have

R = δr ≈ ε2

∫ ∞

0

duϕ(u)u ∼ (ετ )2 = δ2, (30)

which does not depend on γ. It should be noted that in the white noise limit, i.e., as

τ → 0 while keeping ε2τ = δε fixed, R in (30) tends to zero. Consequently, the non-

Fick contribution to J becomes negligible. Conversely, if δ, the relevant parameter for the

perturbation/cumulant series, is kept fixed (small enough to truncate the series at the second

order), while changing the time scale of the noise, R in (30) remains constant.

In essence, even with a weak stochastic process ξ[t] (which diverges in the white noise

limit), the breakdown of Fick’s law and the associated Fokker-Planck equation (FPE) for

model (2) persists, resulting in a PDE that includes a third-derivative term.

III. THE CASE OF ORNSTEIN UHLENBECK EXTERNAL STOCHASTIC

PROCESS: ANALYTICAL AND NUMERICAL RESULTS

To explore the full range of τ and γ, we consider the specific classical case of exponentially

decaying correlation function: ϕ(u) = exp(−u/τ ), from which, by also exploiting (23), we

have:

ϑ =
2τ

(2γτ + 1)
(31)

i.e.,

R := δr =
2δ2

(2γτ + 1)
. (32)

We observe that R depends solely on δ (the small parameter in the cumulant expansion) and

γτ (quantifying the time scale separation between the unperturbed relaxation process and

the relaxation of the correlation function of ξ[t]). It is evident from (32) that R decreases

when the time scale separation decreases (γτ increases) and increases quadratically with δ.

The equilibrium PDF (27) in this case reads:

Peq(x) = N 1F1

(
1

2

(γτ

δ2
+ 1
)

;
1

4

(
2γτ + 1

δ2
+ 2

)

;−
(2γτ + 1)x2

4Dfτ

)

. (33)

where N is a normalization factor. We note that, except for the quantity Dfτ , which acts

as a scale factor for x, also the equilibrium PDF (33) depends only on δ and γτ .
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FIG. 2. Plot of R of (32) vs γτ , for various values of δ (distinct curves). We see that at fixed δ,

as γτ decreases, R increases. The same happens increasing δ, at γτ fixed. The area with dotted

background correspond to δ and γτ values for which the variance of x is finite (γτ − 2δ2>0). The

points in the graph labeled with the letters (a) and (b) ((c) and (d)) corresponds to the γτ and δ

values, used for the four plots of the PDF of figure 3 (figure 4).

In figures 3-4, solid lines depict the plots of the PDF (33) for a fixed Dfτ = 0.5 and

different values of δ and γτ corresponding to the points (a)−(d) in the diagram (2). We have

also included the corresponding results of the numerical simulation of the SDE (2) (circles),

where ξ[t] is the Ornstein-Uhlenbeck process. Additionally, to assess the relevance of the

non Fick contribution to the current, we have also plotted, with dashed lines, the normalized

function Peq,FPE(x) ∝ (Df + Dξ(x))−
1
2(1+ γτ

δ2
) which is the solution for the vanishing “Fick”
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current of (9) (or the equilibrium PDF of the corresponding FPE). The excellent agreement

of the analytical result (33) with numerical simulations is evident, while when relying on the

Peq,FPE(x), the comparison with numerical simulations is not at all so good.
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FIG. 3. Two vertical panels (a) and (b), respectively, displaying the Equilibrium PDF of the SDE (2)

for the case in which the stochastic process ξ[t] is the Ornstein Uhlenbeck process. Panel (a):

Dfτ = 0.5, δ = 0.4 and γτ = 0.4. Panel (b): Dfτ = 0.5, δ = 0.5 and γτ = 0.6. In the bottom part,

the same data as the upper part are presented in semi-logarithmic scale. Circles are the results of the

numerical simulation. Solid lines represent the theoretical result (33), i.e., the equilibrium solution

of the PDE (22), with r given in (31). Dashed lines depict Peq,FPE(x) ∝ (Df + Dξ(x))
− 1

2

(
1+ γτ

δ2

)

,

the solution for the vanishing “Fick” current of (9) (or the equilibrium PDF of the corresponding

FPE). In these two cases, corresponding to the two points (a) and (b) in the diagram of figure 2,

we have γτ > 2δ2, thus the variance of x is finite (see text for details).
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FIG. 4. The same as figure 3, but for different values of γτ and δ as indicated in the header of the

panels. In these two cases, corresponding to the two points (c) and (d) in the diagram of figure 2,

we have γτ < 2δ2, thus, at equilibrium all the moments of x diverge.

IV. CONCLUSIONS

The Fokker-Planck Equation (FPE) holds a central role in statistical mechanics. Initially

derived as a Kramers-Moyal expansion of the Master Equation (ME), limited to Markovian

systems, it is now recognized as applicable to non-Markovian processes as well. In fact,

the FPE arises by eliminating irrelevant or fast variables -those weakly interacting with the

system of interest- through perturbation techniques, such as Zwanzig and Mori’s projection

methods, or by considering the order of magnitude of generalized cumulants. Thus, it

stands as the most important equation for deriving the time evolution of the PDF under

these approximations.

Moreover, the FPE has the advantage of being a second-order classical parabolic PDE

with well-established properties regarding the existence and positivity of its solutions. Its
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importance and widespread use are undeniable.

The connection between the FPE and Fick’s law is no coincidence. When expressed as a

continuity equation, the FPE shows that the current associated with the stochastic process

involves a diffusion term proportional to the gradient of the PDF, which constitutes Fick’s

law. Conversely, assuming Fick’s law holds, the continuity equation takes the form of a

second-order PDE, resembling the structure of the FPE. Therefore, the validity of Fick’s

law and the ME with the structure of the FPE are deeply interconnected.

The extensive use of the FPE has led to the development of numerous methods for

extracting key statistical information. Standard spectral analysis techniques, similar to those

used for the Schrödinger equation in quantum mechanics, can be applied. Furthermore, the

diffusion and drift coefficients of the FPE allow for the derivation of an analytical expression

for the mean first-passage time, an important quantity representing the average time it takes

for a trajectory, starting from an initial position x0, to reach a target point xT for the first

time.

In our study, we demonstrated that when the system of interest is inherently noisy -

featuring sources such as Nyquist noise in electric circuits, various thermal fluctuations,

rapid internal dynamics, intrinsic measurement errors, and more- the standard procedures

for eliminating fast or weakly interacting variables (often, but not necessarily, modeled as

stochastic processes) lead to a third-order PDE instead of a Fokker-Planck Equation (FPE).

Specifically, an additive third-order partial differential operator emerges from the interaction

between the standard diffusion process caused by internal noise and the diffusion process

induced by an external colored stochastic process (or by irrelevant degrees of freedom that

are projected out).

Given the inevitability of such internal noise (of any intensity), we conclude that the third-

order PDE should be considered more fundamental than the FPE in statistical physics. This

also implies the breakdown of Fick’s law.

While this approach can be extended to more general drift fields, our current focus in this

work is on the simpler case of linear drift, which is widely used across various disciplines.

The analytical expressions for the moments of the PDF reveal that the unexpected third-

derivative term significantly tightens the equilibrium PDF compared to the results we would

obtain by omitting this term and retaining only the standard FPE structure.

Figures 3 and 4 support this observation, showing perfect agreement between numerical
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simulations of the SDE and the third-order PDE. The figures clearly illustrate that the ac-

tual PDFs, accurately captured by the third-order PDE, exhibit much narrower equilibrium

distributions compared to those derived from the FPE. This aligns with the general conclu-

sion emphasized in section II, that the third-order differential contribution to the Master

Equation leads to a reduction in the moments of x. As a result, the tails of the actual

equilibrium PDF (and those of the third-order PDE equilibrium PDF) decay more rapidly

than those of the FPE. This indicates that crucial statistical quantities, such as the mean

first-passage time, computed using standard FPE techniques, would yield inaccurate results.

The fact that, for the statistical behavior of a specific part of a complex system, the third-

order PDE should be considered more fundamental than the FPE raises the question of how

to extend the general methods and results that allow the extraction of relevant statistical

information from the FPE to this higher-order PDE. For instance, in the 1-D case, it would

be valuable to derive a closed-form expression for the mean first-passage time. This question

will be the subject of future work.

As a final remark, it is worth noting the apparent conflict between our result (the third-

order PDE) and the well-known Pawula’s “truncation lemma” 25. This lemma, which pertains

to the coefficients of the Kramers-Moyal expansion of the differential Chapman-Kolmogorov

equation, concludes that the expansion can terminate after the first or second term. If

the expansion continues beyond the second term, it must contain an infinite number of

terms to ensure that the solution of the differential equation remains a valid PDF. In this

context, as stated in Risken’s book26, “this theorem does not say that expansions truncated

at n ≥ 3 are of no use,...one may very well use Kramers-Moyal expansions trucated at

n ≥ 3 for calculating distribution functions. Though the transition probability must then

have negative values at least for sufficiently small times, these negative values may be very

small”. Although it is crucial to verify that the solutions of any third- (or higher-) order PDE

are valid PDFs -i.e., positive and normalizable (a check we have indeed performed for the

general equilibrium PDF in Eq. (27))- it is also important to recall that our approach does

not originate from a Markovian system. Consequently, it does not rely on the Chapman-

Kolmogorov equation: our stochastic process is non-Markovian, and the PDE for the PDF

is derived through a forcing noise cumulant expansion, rather than a moment expansion as

in the Kramers-Moyal series.

Beyond the formal development presented in Appendix B, a simple argument provided
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below should convince the reader that the cumulant expansion, to which Pawula’s lemma

does not apply, is more general and accurate than the moment expansion.

Let us assume that it is possible to expand the equation of evolution of the PDF in a

series such as

∂

∂t
P (x, t) =

∞∑

n=1

1

n!
Dn(t)

∂n

∂xn
P (x, t), (34)

where Dn(t) are some time-dependent coefficients. Applying the Fourier transform to this

series, we obtain (here, the hat over the PDF means its Fourier transform)

∂

∂t
P̂ (k, t) =

∞∑

n=1

(ik)n 1

n!
Dn(t)P̂ (k, t), (35)

which, from a formal point of view, has the solution

P̂ (k, t) = e
∑∞

n=1(ik)n 1
n!

∫ t
0 Dn(u)duP̂ (k, 0). (36)

Identifying P (x, t) with the Green function of the PDE (or with the conditional PDF), we

can set P̂ (k, 0) = 1. Using this fact, it is apparent that the terms
∫ t

0
Dn(u)du of Eq. (36)

coincide, by definition, with the cumulants of x, while the coefficients Dn(u) are trivially

related to the cumulants of the fluctuations of the stochastic process forcing the variable x.
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Appendix A: The multidimensional case

In this Appendix we generalize the result (22) to the multi-dimensional case. For the

reader convenience, we copy here the general N -D extension of the SDE (2), already intro-
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duced in (1):

ẋ = −E ∙ x + f [t]−Ξ[t] ∙ x (A1)

where x := (x1, . . . , xN ), E and Ξ[t] are N × N matrices with constant and stochastic

components, respectively. Moreover, f [t] is a multidimensional white noise with correlation,

or diffusion matrix given by D.

As for the 1-D case, to any realization Ξ(∙) of the matrix stochastic process Ξ(u), 0 ≤

u ≤ t, from (A1) we can write the following Liouville equation for the PDF of x, that we

indicate with PΞ(∙)(x, t):

∂tPΞ(∙)(x, t)

= {La + LΞ(t)}PΞ(∙)(x, t), (A2)

in which the unperturbed Liouvillian is (∂ is the N -D gradient operator and the superscript

“T ” means “transpose”):

La := ∂T ∙ E ∙ x + +∂T ∙ D ∙ ∂ (A3)

and the Liouville perturbation operator is

LΞ(t) := ∂T ∙Ξ(t) ∙ x. (A4)

We rewrite the Liouville equation (A2) in interaction representation:

∂tP̃Ξ(∙)(x, t) = L̃Ξ(t)(t)P̃Ξ(∙)(x, t), (A5)

where

P̃Ξ(∙)(x, t) := e−LatPΞ(∙)(x, t) (A6)

and

L̃Ξ(t)(t) :=e−LatLΞ(t)e
Lat = e−L×

a t[LΞ(t)]. (A7)

Integrating (A5) and averaging over the realization of Ξ[t], we get

P̃ (x; t) = 〈←−exp

[∫ t

0

du L̃Ξ(t)(u)

]

〉Ξ P (x; 0) (A8)

in which ←−exp[...] is the standard chronological ordered exponential (from right to left) and

P̃ (x; t) := e−LatP (x; t) with P (x; t) := 〈PΞ(∙)(x, t)〉Ξ. By using the generalized cumulant
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approach and retaining only the second cumulant we get the following ME for the PDF of

x:

∂tP (x; t) = LaP (x; t) +

∫ ∞

0

du 〈LΞ(t)L̃Ξ(−u)(−u)〉Ξ P (x; t), (A9)

corresponding to the N -D version of Eq. (14). To obtain the explicit expression, as PDE,

of the ME (A9), we must solve the Lie evolution of LΞ(t) along the Liouvillian La, i.e.

we have to explicitly evaluate L̃Ξ(u)(u) of (A7), in which La and LΞ(t) are given in (A3)

and (A4), respectively. For that, let us start considering the operator identity e(LA+LB)t =

eLAt ∙←−exp
(∫ t

0
du L̄B(u)

)
in which LA and LB are operators that in general do not commute

with each other, and where L̄B(u) := e−LAuLBeLAu. From this identity, by making the

associations LA = ∂T ∙ E ∙ x and LB = ∂T ∙D ∙ ∂ (thus, LA + LB = La), with a few algebra

we easily obtain:

eLat = e∂
T ∙E∙x t ∙ ←−exp

(∫ t

0

du ∂T ∙ eEu ∙ D ∙ eE
T u ∙ ∂

)

. (A10)

By using (A10) and (A3) in (A7) we get

L̃Ξ(t)(t) :=e−LatLΞ(t)e
Lat

=e−∂
T ∙E∙x t ∙ ←−exp

(

−
∫ 0

−t

du ∂T ∙ eEu ∙ D ∙ eE
T u ∙ ∂

)

∙ LΞ(t) ∙ e
∂T ∙E∙x t ∙ ←−exp

(∫ t

0

du ∂T ∙ eEu ∙ D ∙ eE
T u ∙ ∂

)

=←−exp

(

−
∫ t

0

du ∂T ∙ eEu ∙ D ∙ eE
T u ∙ ∂

)× [
e−∂

T ∙E∙x t×
[
LΞ(t)

]]
. (A11)

In the last side of the following equation we have exploited the following identity, easily

demonstrated:

e−LAθ ∙ ←−exp

(

−
∫ t

0

du L̄B(u)

)

= e−LAθ×
[
←−exp

(

−
∫ t

0

du L̄B(u)

)]

e−LAθ

=←−exp

(

−
∫ t+θ

θ

du L̄B(u)

)

e−LAθ. (A12)

By using (A4) and the results of23, in particular those in Section VIA, we have

e−∂
T ∙E∙x t×

[
LΞ(t)

]
= e−∂

T ∙E∙x t×
[
∂T ∙Ξ(t) ∙ x

]
= ∂T ∙ eEt× [Ξ(t)] ∙ x. (A13)

Inserting this result in (A11) we obtain

L̃Ξ(t)(t) =

←−exp

(

−
∫ t

0

du ∂T ∙ eEu ∙ D ∙ eE
T u ∙ ∂

)× [
∂T ∙ eEt× [Ξ(t)] ∙ x

]
. (A14)
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By expanding the above series of nested commutators we see that all the terms are zero,

apart the zeroth and the first ones. Therefore, we get

L̃Ξ(t)(t) = ∂T ∙ eEt× [Ξ(t)] ∙ x

− ∂T ∙ eEt× [Ξ(t)] ∙
∫ t

0

du

{(
eEu ∙ D ∙ eE

T u
)T

+ eEu ∙ D ∙ eE
T u

}

∙ ∂, (A15)

that, given the symmetry property of the diffusion coefficient matrix, yields the final explicit

differential form for the interaction representation of the Liouvillian LΞ(t):

L̃Ξ(t)(t) = ∂T ∙ eEt× [Ξ(t)] ∙

{

x− 2

∫ t

0

du eEu ∙ D ∙ eE
T u ∙ ∂

}

. (A16)

Thus, by using this expression in the ME (A9), together with Eqs. (A3) and (A4), we arrive

to the final general PDE of third order for the PDF of x for the multi-dimensional case:

∂tP (x; t) =
{
∂T ∙ E ∙ x + +∂T ∙ D ∙ ∂

}
P (x; t)

+

∫ ∞

0

du〈∂T ∙Ξ(t) ∙ x

(

∂T ∙ e−Eu×
[Ξ(−u)] ∙

{

x + 2

∫ u

0

du eEu ∙ D ∙ eE
T u ∙ ∂

})

〉Ξ P (x; t).

(A17)

In the simplified case in which Ξ[t] = εGξ[t], where G is a N × N matrix with constant

components, and 〈ξ(t)ξ(0)〉Ξ = ϕ(t), then we have

∂tP (x; t) =
{
∂T ∙ E ∙ x + +∂T ∙ D ∙ ∂

}
P (x; t)

+
δ2

τ 2

∫ ∞

0

duϕ(u)∂T ∙G ∙ x

(

∂T ∙ e−Eu×
[G] ∙

{

x + 2

∫ u

0

du eEu ∙ D ∙ eE
T u ∙ ∂

})

P (x; t),

(A18)

where we have also used the definition of the adimensional parameter δ := ετ , that is the

relevant small quantity in the cumulant expansion.

Appendix B: The cumulant approach as a systematic way to obtain a ME for

the reduced PDF of x

In this Appendix we outline a few minima key steps to obtain the FPE (4) and the

ME (14), starting from the generalized cumulant (or M -cumulant) approach formally pre-

sented in22. We begin with the generic Liouville equation (11) (the stochastic process is
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one-dimensional, but the extension to multi-dimensional cases is straightforward), expressed

in interaction representation:

∂tP̃ξ(∙)(x, t) = εξ(t), L̃I(t)P̃ξ(∙)(x, t). (B1)

Here,

P̃ξ(∙)(x, t) := e−LatPξ(∙)(x, t) (B2)

and

L̃I(t) := e−LatL̃Ie
Lat = e−L×

a t[LI ]. (B3)

In23, L̃I(t) of (B3) is also referred to as the Lie evolution of the operator LI along the

Liouvillian La, for a time −t.

Integrating in time (B1) and averaging over the realization of ξ[t], we get

P̃ (x; t) = 〈←−exp

[

ε

∫ t

0

du ξ(u)L̃I(u)

]

〉ξP (x; 0) (B4)

in which ←−exp[...] is the standard chronological ordered exponential (from right to left) and

P̃ (x; t) := e−LatP (x; t) with P (x; t) := 〈Pξ(∙)(x, t)〉ξ. Moreover, we have exploited the as-

sumption that at the initial time t = 0 the total PDF factorizes as Pξ(∙)(x, 0) = P (x; 0)p(ξ).

This is equivalent to stating that at the initial time the PDF of x does not depend on the

possible values of the process ξ, or alternatively, we wait long enough so that the initial

conditions became irrelevant. Apart that, Eq. (B4) is exact; no approximations have been

introduced at this level.

We can look at the r.h.s. of (B4) as a sort of characteristic function (i.e., Fourier transform

of the PDF), or moment generating function, with wave number k := iε, for the stochastic

operator

Ω(u) := ξ(u)L̃I(u). (B5)

Formally, we can then introduce a generalized cumulant generating function22:

〈←−exp

[

ε

∫ t

0

du ξ(u)L̃I(u)

]

〉ξ :=←−exp [K(ε, t)] (B6)

with

K(ε, t) =
∞∑

i=1

εiKi(t). (B7)
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As for standard stochastic processes, we define the n-times joint M -cumulant of Ω(u), that

we indicate as 〈〈Ω(u1)Ω(u2)...Ω(un)〉〉, by setting

Ki(t) :=

∫ t

0

du1

∫ u1

0

du2...

∫ un−1

0

dun〈〈Ω(u1)Ω(u2)...Ω(un)〉〉. (B8)

Using (B8) in the r.h.s. of (B6) and expanding both exponential functions, we get the

standard relationship among cumulants and moments. For example, the joint two and four

times M -cumulants are given in terms of moments as (to improve readability, until the end

of this paragraph we will avoid putting the subscript “ ξ” to the angle brackets):

〈〈Ω(u1) Ω(u2)〉〉 = 〈Ω(u1) Ω(u2)〉 = L̃I(u1)L̃I(u2)〈ξ(u1) ξ(u2)〉 (B9)

and

〈〈Ω(u1) Ω(u2)Ω(u3) Ω(u4)〉〉 =

〈Ω(u1) Ω(u2)Ω(u3) Ω(u4)〉 − 〈Ω(u1) Ω(u2)〉〈Ω(u3) Ω(u4)〉

− 〈Ω(u1) Ω(u3)〉〈Ω(u2) Ω(u4)〉 − 〈Ω(u1) Ω(u4)〉〈Ω(u2) Ω(u3)〉 =

L̃I(u1)L̃I(u2)L̃I(u3)L̃I(u4) [〈ξ(u1) ξ(u2) ξ(u3) ξ(u4)〉 − 〈ξ(u1)ξ(u2)〈ξ(u3)ξ(u4)〉]

− L̃I(u1)L̃I(u3)L̃I(u2)L̃I(u4)〈ξ(u1)ξ(u3)〉〈ξ(u2)ξ(u4)〉

− L̃I(u1)L̃I(u4)L̃I(u2)L̃I(u3)〈ξ(u1)ξ(u4)〉〈ξ(u2)ξ(u3)〉, (B10)

respectively. From (B10) it is clear that the Gaussian nature of ξ[t] does not implies the same

for Ω[t] of Eq. (B5), as the time-dependent Liouvillian L̃I(u) generally does not commute

with itself evaluated at different times. However, when the unperturbed Liouvillian La and

perturbation Liouvillian LI commute with each other, as in the case of Eq. (12) with Df = 0

and LI of Eq. (13), we have L̃I(u) = LI , that does not depend on time. Hence, in this case

the Gaussian nature of ξ[t] is transferred to the stochastic operator Ω[t]. Therefore, in

this specific scenario, the M -cumulant series appearing in the exponential function of (B6)

reduces to only the second term containing the second M -cumulant, simplifying to (without

loss of generality, we consider the average value of ξ[t] to be zero):

P̃ (x; t) = exp

[

ε2LILI

∫ t

0

du1

∫ u1

0

du2〈ξ(u1) ξ(u2)〉

]

P (x; 0). (B11)

Time-deriving this result we obtain

∂tP̃ (x; t) =ε2LILI

∫ t

0

du〈ξ(t) ξ(u)〉 P̃ (x; t)

=ε2LILIτ P̃ (x; t). (B12)
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Getting rid of the interaction representation and by using (12) with Df = 0 and (13),

Eq. (B12) becomes exactly the FPE (4).

In the more general case, the Liouvillians La and LI do not commute with each other, so

L̃I(u) of (B3) depends on time. The advantage of utilizing the M -cumulants lies in the fact

that, similar to standard cumulants, they are exactly zero when referring to independent

random variables22. Thus, if the time lag between two events increases until they become

independent of each other, any joint M -cumulant containing these two events must tend to

zero. To model this situation more realistically, we assume that independence does not occur

abruptly at a fixed time lag τ̄ but instead follows a smoother pattern, characterized by an

exponential trend. Formally, for a series of events ξ(t1), ξ(t2), ..., ξ(tn) with t1 ≥ t2 ≥ ... ≥ tn,

we assume that the corresponding joint n-cumulant decays at least exponentially with the

time lag u1 − un:

|〈〈Ω(u1)Ω(u2)...Ω(un)〉〉| . |ξn| exp(−(u1 − un)/τ̄). (B13)

In this scenario, along with the definitions (B7) and (B8), it is evident that the argument of

the exponential function in the right-hand side of (B6) now yields a power series of δ̄ := ετ̄ .

For a sufficiently small δ̄, we can truncate this series to the first non-zero term, which is the

second one. Thus, Eq. (B6), combined with Eq. (B6) and (B9), gives

P̃ (x; t) =←−exp

[

ε2

∫ t

0

du1

∫ u1

0

du2L̃I(u1)L̃I(u2)〈ξ(u1) ξ(u2)〉+ O(δ̄4)

]

P (x; 0). (B14)

Time-deriving this result we obtain

∂tP̃ (x; t) = ε2

∫ t

0

duL̃I(t)L̃I(u)〈ξ(t) ξ(u)〉 P̃ (x; t) + O(δ̄4t/τ̄) (B15)

Getting rid of the interaction representation and by using again (12) (but now letting Df 6= 0)

and (13), Eq. (B15) becomes the ME (14).
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