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Abstract

Dynamical information exchange between central and autonomic nervous systems, as referred to functional brain-heart interplay,
occurs during emotional and physical arousal. It is well documented that physical and mental stress lead to sympathetic activation.
Nevertheless, the role of autonomic inputs in nervous system-wise communication under mental stress is yet unknown. In this study,
we estimated the causal and bidirectional neural modulations between electroencephalogram (EEG) oscillations and peripheral sym-
pathetic and parasympathetic activities using a recently proposed computational framework for a functional brain-heart interplay
assessment, namely the sympathovagal synthetic data generation model. Mental stress was elicited in 37 healthy volunteers by
increasing their cognitive demands throughout three tasks associated with increased stress levels. Stress elicitation induced an
increased variability in sympathovagal markers, as well as increased variability in the directional brain-heart interplay. The observed
heart-to-brain interplay was primarily from sympathetic activity targeting a wide range of EEG oscillations, whereas variability in the
efferent direction seemed mainly related to EEG oscillations in the c band. These findings extend current knowledge on stress physi-
ology, which mainly referred to top-down neural dynamics. Our results suggest that mental stress may not cause an increase in sym-
pathetic activity exclusively as it initiates a dynamic fluctuation within brain-body networks including bidirectional interactions at a
brain-heart level. We conclude that directional brain-heart interplay measurements may provide suitable biomarkers for a quantitative
stress assessment and bodily feedback may modulate the perceived stress caused by increased cognitive demand.

brain-heart interplay; mental stress; physiological modeling; sympathovagal control

INTRODUCTION

Human physiology entails constant and dynamic adapta-
tions in response to cognitive demand through regulatory
mechanisms. As part of the regulatory processes, monitoring
of peripheral bodily activity contributes to the adaptation to
changes in the self or the environment (1). To illustrate, these
processes may stimulate specific behaviors that allow find-
ing shelter or food in extreme conditions. Although such
physiological adjustments comprehensively refer to “homeo-
stasis,” adjustments that anticipate future needs refer to allo-
stasis (2). Allostasis thus requires cognitive functions, such
as subjective perception, understanding, learning, andmem-
orizing (2).

From a holistic point of view, the physiological responses
to cognitive load refer to “mental stress,”which can be elicited
by memory, arithmetic, and increased cognitive demand
tasks (3). Physical stress involves the physiological responses
triggered by homeostatic regulations to bodily conditions,
emerging from physical exercise or environmental changes
(e.g., temperature or atmospheric pressure) (3). Mental and

physical stress encompasses physiological responses from
different brain structures, together with responses from
peripheral systems (4). The neurophysiology of stress sets
the hypothalamus as a central component, in which the
paraventricular nucleus is the main integrator of stres-
sors, activating systems such as the sympathetic-adreno-
medullar and hypothalamus-pituitary-adrenal axes (5).
The brain structures actively involved in stress responses
include the prefrontal cortex (6) and the amygdala, whose activ-
ity is also associated with emotional processing (7). Prefrontal
projections to the amygdala (8), as well as hippocampus projec-
tions to the amygdala and prefrontal cortex (9) are involved as
well. Underlying stress mechanisms have also been captured in
electroencephalogram (EEG) studies, showing a high diversity
of responses, including hemispheric changes in a power and
wide-range variability in the EEG spectrum (10, 11).

The central autonomic network integrates the interocep-
tive and exteroceptive information to promote physiological
and behavioral changes that allow adaptation to ongoing
challenges, including stress conditions (4, 12–14). Previous
studies highlighted a close relationship between stress and
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sympathetic nervous system activity (15–17), which has
also been assessed through series of heart rate variability
(18–22), skin conductance (22, 23), breathing (24), body
temperature (25, 26), and blood pressure (18, 19, 22).
Gastrointestinal (27, 28), endocrine (29), and immune
responses (30) were also taken into account to investigate
the functional link between stress and sympathetic
response. On the other hand, acute stress triggers concur-
rent fluctuations in heart rate variability and functional
connectivity between the central executive and default
mode networks (31). Neural responses to heartbeats have
been described as a potential indicator of stress because
of the correlations found with sympathetic indexes (22).
Similarly with the correlations found between EEG power
and autonomic indexes under mental stress (32).

Since stress conditions may induce emotional responses
(33), physiological responses to stress (i.e., stress regulation)
may be linked to physiological mechanisms of emotion regula-
tion (34). Indeed, although cardiovascular dynamics aremodu-
lated by emotional processing (35, 36), modulation activity of
the functional brain-heart interactions have been observed
under thermal stress and thermoregulatory responses (26, 37),
as well as emotional processing (38). Accordingly, cardiac
interoceptive feedback seems actively involved under stressful
conditions (39, 40), and a wider involvement of the functional
brain-peripheral body axis in mental stress has already been
hypothesized (41). Nonetheless, the functional brain-periph-
eral body physiology associated with mental stress is yet
unknown. We have hypothesized that the embodiment of
mental stress is reflected in bidirectional brain-heart interplay,
with specific involvement of sympathetic and vagal dynamics.
Accordingly, this study aims to uncover the directional brain-
heart interplay mechanisms involved in mental stress induced
through visual stimulation and memory tasks. Specifically, we
exploited our recently proposed sympathovagal synthetic data
generation model (SV-SDG) (37) to uncover the mutual func-
tional communication between cortical oscillations, as meas-
ured through EEG, and cardiac sympathetic/parasympathetic
activities, estimated from heartbeat dynamics. The SV-SDG
model provides time-varying estimates of the causal interplay
between sympathetic/parasympathetic activities and EEG
oscillations in a specific frequency band. The framework
embeds a heartbeat generation model based on the estimation
of sympathetic and parasympathetic activities from Laguerre
expansions of the heartbeat series (42).

MATERIALS AND METHODS

Data Set Description

Data were gathered from 37 healthy participants (age me-
dian 30 yr, age range 22–45 yr, 20 males, 17 females) who
underwent mental stress elicitation tasks. Participants were
asked to sit comfortably and follow instructions on a screen.
Recordings of physiological signals included EEG (9-channel,
Biopac B-Alert) and one lead ECG, both sampled at 256 Hz.

This study was performed at Neurons, Inc., Taastrup,
Denmark, in accordance with the Declaration of Helsinki and
followed the rules and laws of the Danish Data Protection
Agency. Data protection policy also followed the European
Union law of the General Data Protection Regulation, as well

as the ethical regulations imposed by the Neuromarketing
Science and Business Association, Article 6. The participants
signed a written informed consent to participate in this study.
Each participant’s biometric data, survey responses, and
other types of data were anonymized and only contained the
log number as the unique identifier. Personal information
cannot be identified from the log number. The data process-
ing was approved by the ethics committee “Comitato Bioetico
di Ateneo” of the University of Pisa.

Experimental Protocol

Stress induction was performed through a parametric mod-
ulation protocol (43, 44) with increased stress levels over
time. The protocol comprised four stressing conditions,
including 1 min rest and three different stress load tasks, each
of which lasted 15 min approximately (5 min each task). The
stressors were presented in the same order to all participants.
The first stress load condition consisted in watching a docu-
mentary. The second stress load condition consisted in watch-
ing a documentary concurrently with performing a digit span
task. The third stress load condition consisted in watching a
documentary and performing the digit span task and the red
box task. For each condition, participants were asked to self-
assess and report the perceived stress level through a discrete
scale from 1 to 7 (from low- to high-stress score).

More specifically, the first 5 min of the documentary “The
Reality of Van Life,” Different Media © 2018, was projected
onto a screen as the first stressor (Fig. 1A). The digit span task
started with a fixation cross for 1.5 s. Then, three digits were
presented for 5 s, followed by a blank screen for 4 s. The partic-
ipant was then asked to verbally state the three digits in up to
5 s (Fig. 1B). The red box task, which ran in parallel to the digit
span task (Fig. 1C), started with a fixation cross for 1.5 s. Then
a red box (4 � 4 red and white box pattern) was presented for
3 s. Next, the three digits were presented for 5 s, followed by a
blank screen for 4 s. Then the participant was asked to ver-
bally state the three digits in up to 5 s. Consecutively, a red
box was presented, and the participant was asked if the pat-
ternmatches the previously presented one (yes or no answer).

EEG Preprocessing

EEG data were preprocessed using MATLAB R2022a and
Fieldtrip Toolbox (45). EEG data were bandpass filtered with
a Butterworth filter of order 4, between 0.5 and 45 Hz. Large
movement artifacts were visually identified and removed
manually from independent component space and wavelet
filtering. Consecutively, the Independent Component
Analysis (ICA) was computed to visually recognize and reject
the eye movements and cardiac-field artifacts from the EEG
data. One lead ECG was included as an additional input to
the ICA to enhance the process of finding cardiac artifacts.
Once the ICA components with eye movements and cardiac
artifacts were visually identified, they were removed to
reconstruct the EEG series. Channels were rereferenced
using a common average, which is the most appropriate for
brain-heart interplay estimations (46).

The EEG spectrogram was computed using the short-time
Fourier transformwith aHanning taper. Calculationswere per-
formed through a sliding time window of 2 s with 50% overlap,
resulting in a spectrogram resolution of 1 s and 0.5 Hz. Then,
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time series were integrated within five frequency bands (d: 1–4
Hz, h: 4–8Hz, a: 8–12 Hz, b: 12–30Hz, c: 30–45Hz).

ECG Data Processing

ECG time series were bandpass filtered using a Butterworth
filter of order 4, between 0.5 and 45 Hz. The R peaks from the
QRS waves were detected in a procedure based on the tem-
plate-matchingmethod (46). All the detected peaks were visu-
ally inspected over the original ECG, along with the interbeat
intervals histogram. Manual corrections were performed
where needed and guided from the automatic detection of ec-
topic beats (47).

Estimation of Sympathetic and Parasympathetic
Activities

Heart rate variability (HRV) series are usually analyzed by
using the Fourier transform, which represents HRV in the fre-
quency domain. This method groups the values into different
frequency ranges [very low frequency (VLF): < 0.04 Hz, low
frequency (LF): 0.04–0.15 Hz, and high frequency (HF): 0.15–
0.4 Hz]. However, an alternative approach is the use of autore-
gressive models, which have the advantage of reducing the
dimensionality of the frequency space by defining a limited
number of preferred oscillations. Thismethod has beenwidely
used in autonomic assessment, as the frequencies within the
HF range can be directly associated with vagal dynamics (48).
However, there are limitations to this method, such as the fact
that the LF range contains both vagal and sympathetic dy-
namics (49, 50). To overcome these limitations, we recently

proposed the sympathetic and parasympathetic activity indi-
ces (SAI and PAI, respectively), which use Laguerre functions
as an alternative way to analyze HRV through autoregressive
models. These functions are characterized by a specific
“order” and “a” value, which can vary from zero to any posi-
tive integer. Indices of sympathetic and parasympathetic
activities are derived from characterizing and predicting each
heartbeat event by using a combination of past information of
RR intervals (R-to-R peak intervals). This approach improves
the identification of model parameters needed to estimate the
cardiac sympathetic and parasympathetic activities (48).

Methodologically, the series of RR intervals were con-
volved with a set of Laguerre functions jj, as shown in Eq. 1:

Lj kð Þ ¼
Xk�1

n¼0

jj nð Þ � RR k � n� 1ð Þ: ð1Þ

Therefore, the RR series can be expanded using the con-
volved Laguerre functions L(k) = [L0(k),L1(k),. . .,L8(k)]

T , and
the theoretical autoregressive model can be used to separate
the sympathetic and parasympathetic components as follows:

RRðkÞ ¼

g0ðkÞ|fflffl{zfflffl}
baseline

þ
X1

j ¼ 0

g1; jðkÞ � LjðkÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

sympathetic

þ
X8

j ¼ 2

g1; j kð ÞLj kð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

parasympathetic

: ð2Þ

The time-varying Laguerre coefficients g(k) = [g0(k),
g1,0(k),. . .,g1,8(k)]

T were modeled according to a dynamic sys-
tem that fulfills Eqs. 3 and 4.

Figure 1. Exemplary stress elicitation images. A: sample image from stress load condition 1. The displayed video is an excerpt from the documentary
“The Reality of Van Life” (Different Media 2018). The video was presented for 5 min. B: sample image from stress load condition 2. The experimental
condition consisted in watching the documentary from (A) simultaneously to performing a digit span task of memorizing 3-digit sequences, for approxi-
mately 5 min. C: sample figure from stress load condition 3. The experimental condition consisted in watching the documentary from (A), performing the
digit span task from (B), and performing the red box task of memorizing 4� 4 patterns, for approximately 5 min.
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gðkÞ ¼ gðk � 1Þ þ ɛgðkÞ; ð3Þ

RRðkÞ ¼ LðkÞT gðkÞ þ ɛRRðkÞ; ð4Þ
where ɛg is the state noise and ɛRR is the observation noise.
The coefficients were then estimated using a Kalman filter
with a time-varying observation matrix (51), and SAI and PAI
were estimated as shown in Eqs. 5 and 6.

SAI ðkÞ ¼ ½Ws0 þ
X2

j¼ 1

Wsj � g1; j�1ðkÞ� =RRðkÞ; ð5Þ

PAI ðkÞ ¼ ½Wp0 þ
X7

j¼ 1

Wpj � g1; jþ 1ðkÞ� � 2RRðkÞ: ð6Þ

Here, Wsj and Wpj are the generalized values for the
sympathetic and parasympathetic kernels with numeric
values of Wsj = {39.2343, 10.1963, �5.9242} and Wpj = {28.4875,
�17.3627, 5.8798, 12.0628, 5.6408,�7.0664,�5.6779,�3.9474}.
For a comprehensive description of the model generation and
parametrization, see Ref. (48). SAI and PAI were computed
using publicly available online software, which can be gath-
ered fromwww.saipai-hrv.com.

The validation of SAI and PAI computation has been per-
formed in different studies, including congestive heart fail-
ure (52), muscle sympathetic nerve stimulation (53), lower
body negative pressure (51), pre-ejection period measure-
ment (54), and controlled breathing (55).

Functional Brain-Heart Interplay Assessment

The sympathovagal synthetic data generation model (SV-
SDG) provides time-variant estimates of the bidirectional func-
tional coupling between heartbeat and brain components. The
model uses the estimation of sympathetic and parasympathetic

Figure 2. Self-reported stress level for three stressful conditions. Each
data point corresponds to the reported stress level per subject for each
for: 1) stress load condition 1: documentary, 2) stress load condition 2: doc-
umentary þ digit span task, 3) stress load condition 3: documentary þ
digit span task þ red box task. ����P < 0.00005 from Wilcoxon signed-
rank test.

Figure 3. Group-wise distributions of RR, SAI, and PAI median and variability for each experimental condition. Each data point corresponds to the meas-
ured autonomic marker per subject at each of the four conditions. A: RR, SAI, and PAI median. B: RR, SAI, and PAI variability as measured through me-
dian absolute deviation (MAD). Time-varying autonomic indexes were z-score normalized for the whole experimental protocol duration before
computing median and MAD values. ��P < 0.005, ���P < 0.0005, ����P < 0.00005 (Bonferroni-corrected significance at a < 0.00833). PAI, parasym-
pathetic activity index; RR, R-to-R peak interval; SAI, sympathetic activity index.
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activities proposed in Refs. 42 and 48, described in Estimation
of Sympathetic and Parasympathetic Activities.

Functional interplay from the brain to the heart.
The topdown functional interplay was quantified through a
model of synthetic heartbeat generation based on Laguerre
expansions of RR series [see Candia-Rivera et al. (42) for fur-
ther details]. Briefly, heartbeat generation was based on the
modulation function m(t), which contains the fluctuations
with respect to the baseline heart rate. Such fluctuations
were modeled including the sympathetic and parasympa-
thetic interplay. The modulation function m(t) was expressed
as a linear combination of sympathetic (SAI) and parasympa-
thetic activity index (PAI), and their respective control coeffi-
cients CSAI and CPAI, representing the proportional central
nervous system contribution:

m tð Þ ¼ CSAI tð Þ � SAI tð Þ þ CPAI tð Þ � PAI tð Þ: ð7Þ
The modulation function was then taken as input to an

integrate-and-fire model (42). The model was fitted on the
RR interval series using a 15-s sliding time window and a lin-
ear regressionmodel with no constant term.

CSAI and CPAI coefficients model the directional interac-
tion from EEG activity to the sympathetic and parasympa-
thetic autonomic components, respectively. Accordingly,
the directional interaction from cortical oscillations in each
band to the autonomic component modulating heartbeat dy-
namics was defined as:

SDGEEG F!X tð Þ ¼ CX tð Þ=EEGF t� 1ð Þ; ð8Þ
where X [ {SAI, PAI} and EEGF indicates the time-varying
EEG power with F [ {d, h, a, b, c}.

Functional interplay from the heart to the brain.
The functional interplay from the heart to the brain was
quantified through a model based on the generation of syn-
thetic EEG series using an adaptative Markov process (56).
Themodel was fitted using a least-square autoregressive pro-
cess to estimate cardiac sympathovagal contributions to the
ongoing fluctuations in EEG power as:

EEGF tð Þ ¼ jF � EEGF t� 1ð Þ þ WF t� 1ð Þ þ ɛF; ð9Þ
where F is the EEG frequency band, KF is a fitting constant,
eF is the adjusted error, and WF indicates the fluctuations of
EEG power in F. Then, the heart-to-brain functional cou-
pling coefficients were calculated as follows:

SDGX!EEGF
ðtÞ ¼ WFðtÞ=XðtÞ; ð10Þ

where X [ {SAI, PAI}. For further details, please see Candia-
Rivera et al. (38).

The software for the computation of SAI and PAI is
available at www.saipai-hrv.com. The source code imple-
menting the SV-SDG model is available at www.github.
com/diegocandiar/brain_heart_svsdg.

Multivariate Analysis

To identify the most significant brain-heart features sensi-
tive to mental stress, a multivariate analysis was performed.
The feature selection is based on the ranking provided by
the computation of minimum redundancy maximum rele-
vance (MRMR) scores (57) and was computed over the 180

SV-SDG-derived features (180=2 directions � 2 autonomic
markers � 5 brain oscillations � 9 channels) to select the five
most significant ones in two conditions: 1) a linear regression
model predicting the median stress level in each condition,
and 2) a binary classification algorithm to discern low versus
high-stress level.

The MRMR score computation algorithm was performed
as follows:

1) The relevance Vx of all features x was computed. The
feature with the largest relevance max

x2X
Vx was selected.

The selected feature was added to an empty set of fea-
tures S.

Figure 4. Topographic maps of Friedman nonparametric test for the
paired brain-heart interplay variability on the ascending (top) and de-
scending (middle) direction from the SV-SDG model among experimental
conditions (rest and three mental stress conditions). In the bottom, topo-
graphic maps of Friedman nonparametric test for paired EEG power vari-
ability among experimental conditions (rest and three mental stress
conditions) are shown. White electrodes indicate P< 0.0056. The variabil-
ity measure was the median absolute deviation. Complementary results
on SV-SDG and EEG power medians are in Supplemental Fig. S1. EEG,
electroencephalogram; PAI, parasympathetic activity index; SAI, sympa-
thetic activity index; SV-SDG, sympathovagal synthetic data generation.
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Vxwas defined as:

Vx ¼ 1
jSj
X
x2S

Iðx; yÞ ; ð11Þ

where jSj is the number of features in S and I(x, y) is the mu-
tual information between the feature x and the output y:

I x; yð Þ ¼
X
ij

p xi; yjð Þlog
p xi; yjð Þ
p xið Þp yjð Þ : ð12Þ

2) Next, the features with nonzero relevance Vx and zero re-
dundancy Wx in Sc (complement of S) were identified.
Then, the feature with the largest relevance was selected,
maxx2Sc ;Wx¼0 Vx. The selected feature was added to the set S.

Wx was defined as:

Wx ¼ 1

jSj2
X
x;z2S

Iðx; zÞ : ð13Þ

If Sc did not include a feature with nonzero relevance and
zero redundancy, skip step 3
3) Step 2 was repeated until the redundancy Wx was not

zero for all features in Sc.
4) The feature with the largest Mutual Information Quotient

(MIQ) was selected, with nonzero relevance and nonzero
redundancy in Sc, and the selected feature was added to
the set S.

MIQ was defined as:

max
x2 Sc

MIQ ¼ max
x2 Sc

Vx

Wx
¼ max

x2 Sc

Iðx; yÞ
1
jSj

X
z2SIðx; zÞ

: ð14Þ

5) Step 4was repeated until the relevance was zero for all fea-
tures in Sc.

6) The features with zero relevance were added to S in ran-
dom order.

The multivariate analyses were performed in a fivefold
cross-validation framework. Linear regressions to the stress
level were performed using least squares kernel regression
with regularization strength set to 0.027. The stress level was
quantified “0” at rest, “1” for stressor 1, “4” for stressor 2, and
“5” for stressor 3 to closely match the median stress ratings
from subjects’ self-assessment reports. The regression per-
formance was measured through root mean squared error
(RMSE) for the prediction of median stress ratings. Binary
classification for the low versus high stress recognition was
performed through a kernel naïve Bayes classifier with a
Gaussian kernel, with “low stress” class associated with
“rest” and “stressor 1” conditions, and “high stress” associ-
ated with the stressors 2 and 3. The classification perform-
ance was quantified through the classification accuracy.

Statistical Analysis

Group-wise statistical analysis between the resting
state and the three stressor levels was performed through
nonparametric Friedman tests, whereas two-condition
comparisons were performed through Wilcoxon signed-
rank test. The statistical testing was performed per EEG
channel, in which the inputs correspond to SV-SDG cou-
pling coefficient computed at different experimental con-
ditions. The significance level of the P values was
corrected in accordance with the Bonferroni rule for
9 channels, with an uncorrected statistical significance
set to a = 0.05. The samples were described group-wise
using the median and related dispersion (variability)
measures that was quantified though the median abso-
lute deviation (MAD).

Table 1. Friedman test results on the variability of brain-heart interplay coupling coefficients

Ascending

Coupling

Coefficients

Median P Value

(among

Significant

Channels)

Median Friedman’s

Stat (among

Significant

Channels) Significant Channels

Descending

Coupling

Coefficients

Median P Value

(among

Significant

Channels)

Median Friedman’s

Stat (among

Significant

Channels) Significant Channels

SAI ! d 0.0006 19.5789 F3, Fz, C3, P3, POz,
P4

d ! SAI 0.0013 15.7895 F3, Fz, F4, C3, Cz,
POz

SAI ! h 0.0001 20.7789 F3, Fz, F4, C3, Cz,
C4, P3, POz, P4

h ! SAI 0.0030 13.9579 Fz, Cz

SAI ! a <0.0001 33.8211 F3, Fz, F4, C3, Cz,
C4, P3, POz, P4

a ! SAI 0.0046 13.0105 Cz

SAI ! b <0.0001 28.7053 F3, Fz, C3, Cz, P3,
POz, P4

b ! SAI 0.0019 14.9368 C3

SAI ! c <0.0001 24.0632 F3, Fz, F4, C3, Cz,
P3, POz, P4

c ! SAI 0.0004 18 F3, C3, POz

PAI ! d <0.0001 28.9263 Fz, C3, C4, POz, P4 d ! PAI 0.0006 17.5737 F3, Fz, F4, C3, Cz,
C4, POz, P4

PAI ! h <0.0001 23.6211 F3, C3, Cz, C4, P3,
POz, P4

h ! PAI 0.0033 13.7368 F3, F4, C3, Cz, P4

PAI ! a <0.0001 27.6947 F3, Fz, F4, C3, Cz,
C4, P3, POz, P4

a ! PAI 0.0022 14.9368 Cz, P4

PAI ! b <0.0001 21.6947 F3, Fz, F4, C3, Cz,
P3, P4

b ! PAI 0.0025 14.3053 F3, C3, C4

PAI ! c <0.0001 24.4421 F3, Fz, F4, C3 P3,
P4

c ! PAI 0.0003 18.7579 F3, Fz, F4, C3, Cz,
C4, P3, POz, P4

Median P values and Z values among significant channels are displayed. Critical a was set according to the Bonferroni rule for multi-
ple comparisons among channels at a = 0.05/9 � 0.0056. Variability of coupling coefficients on time was computed with median absolute
deviation (MAD). PAI, parasympathetic activity index; SAI, sympathetic activity index.
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RESULTS

The participants’ self-reports on the perceived level of
stress are displayed in Fig. 2 for each stressful condition,
where the group median ± MAD reported stress levels are
1 ±0, 4± 1 and 5± 1 (P = 2 � 10�14 from Friedman test). A mul-
tiple comparison analysis showed that the three stressful
conditions are significantly different (P< 0.00005).

The cardiac autonomic activity was assessed through the
sympathetic and parasympathetic activity indices (SAI and
PAI, respectively). Although condensing the SAI and PAI
time-resolved information, median SAI and median PAI did
not change significantly across the experimental conditions
(P = 0.0935 from Friedman test on median SAI, and P =
0.3101 from Friedman test on median PAI). Nevertheless,
SAI and PAI variability (i.e., MAD over time) significantly
changes across the experimental conditions (P = 7 � 10�6

from Friedman test on SAI variability and P = 4 � 10�9 from
Friedman test on PAI variability). Figure 3 depicts group-
wise distributions for RR, SAI, and PAI median and variabili-
ty, with an evident increase in SAI and PAI variability in the
three stressful conditions as compared with rest.

As autonomic variability is sensitive to stress levels, we
further explored how they relate to brain-heart interplay.
Figure 4 illustrates results from the Friedman tests on group-
wise brain-heart variability changes among experimental
conditions. Most of the significant changes among condi-
tions are associated with ascending interactions, especially
originating from sympathetic and vagal activity targeting
EEG oscillations in the a band (SAI ! a: all channels
Friedman test P 	 0.00013, PAI ! a: all channels Friedman
test P 	 0.00003). Ascending heart-to-brain communication
targeting EEG oscillations in the h, b, and c bands show

significant changes as well, together with descending inter-
actions from cortical c oscillations to vagal activity (see
Table 1). In contrast, cortical power variability mostly shows
not significant changes, with a few statistical differences
associated with c oscillations in the left-frontal electrodes, as
shown in Table 2 (see Supplemental Fig. S2 for visualizing an
exemplary subject’s SAI, PAI, and c power fluctuations on
time).

For the sake of completeness, results on the median brain-
heart are shown in Supplemental Fig. S1. Mental stress
mainlymodulates heart-to-brain functional communication,
especially targeting d, a, b (in the left hemisphere), and c
bands.

According to the MRMR algorithm, the five most informa-
tive features for the linear regression analysis and the low
versus high-stress classification are reported in Table 3 and
depicted in Fig. 5. In both multivariate analyses, ascending
features from SAI and PAI are prevalent. To illustrate,
although median stress level prediction mostly uses SAI!b,
most of the information needed for low versus high-stress
classification was provided by PAI! c.

In the regression analysis, the RMSE was 1.6851, and its
output showed a significant difference between all predicted
stress levels but stressor 2 versus stressor 3 (Fig. 5C). In the
classification, the five brain-heart features achieved a dis-
crimination accuracy as high as 77% (Fig. 5D), with a sensi-
tivity of 85.14% on detecting high stress, and 68.92%
specificity.

Figure 6 shows exemplary SAI!b and SAI! d estimates
from one subject for the whole duration of the experimental
protocol. An overall increased variability of both markers
can be observed in stressful conditions 2 and 3 with respect
to rest and stressful condition 1.

DISCUSSION

Supported by previous evidence linking mental stress
with sympathetic activity (15–17) and emotional responses,
we investigated functional brain-heart interplay direction-
ality under the hypothesis of modulation across different
stress levels.

When condensing the temporal dynamics of sympathetic
and parasympathetic activities throughout the experimental
conditions, on the one hand, we observed that SAI and PAI
central tendencies (median) did not change among stress
levels. On the other hand, we observed that the variability
(MAD) of SAI and PAI significantly increased in accordance
with stress levels up to stressful condition 2. Sympathetic ac-
tivity, as measured through systolic blood pressure, heart

Table 3. Brain-heart interplay feature ranking according to the minimum redundancy maximum relevance (MRMR)
algorithm

1st Feature 2nd Feature 3rd Feature 4th Feature 5th Feature

Regression SAI ! b, Cz PAI ! a, F3 PAI ! c, F3 SAI ! h, C3 PAI ! d, P4
MRMR = 0.2395 MRMR = 0.2247 MRMR = 0.1771 MRMR = 0.1669 MRMR = 0.1521

Binary classification PAI ! c, C3 SAI ! b, P3 SAI ! d, P4 PAI ! b, P4 SAI ! d, F3
MRMR = 0.1464 MRMR = 0.1399 MRMR = 0.1156 MRMR = 0.0473 MRMR = 0.0453

The MRMR scores were computed for two models: regression to the group-median reported stress (rest = 0, stress condition 1= 1, stress
condition 2=4, stress condition 3= 5), and classification of low and high-stress levels (low = rest and stress condition 1, high = stress condi-
tions 2 and 3). PAI, parasympathetic activity index; SAI, sympathetic activity index.

Table 2. Friedman test results on the variability of EEG
power

EEG Power

Median P Value

(Among

Significant

Channels)

Median Friedman’s

Stat (Among

Significant

Channels)

Significant

Channels

d NS NS NS
h 0.0021 22.8158 POz, P4
a 0.0003 18.7895 F3, Fz, POz
b <0.0001 21.7579 F3, Fz, C3
c <0.0001 26.8105 F3, Fz, F4, C3, P3

Median P values and Z values among significant channels are dis-
played. Critical a was set according to the Bonferroni rule for multiple
comparisons among channels at a = 0.05/9� 0.0056. Variability of cou-
pling coefficients on time was computed with median absolute devia-
tion (MAD). EEG, electroencephalogram; NS, no significant results.
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rate, ventricular ejection fraction, and skin conductance has
been associated with mental stress (22); moreover, mental
stress induced by mental arithmetic increases heart rate var-
iability power in the low frequency and a decrease in its
high-frequency power (58–61), suggesting an increase in the
sympathetic tone, and a decrease in the parasympathetic
one. Stress also modulates heartbeat nonlinear dynamics
(20, 62). Changes in attention have been referred to as a
source of autonomic variability (63). Furthermore, some
studies have suggested that high-frequency fluctuations in
heartbeat dynamics are associated with memory retrieval,

reaction time, and action execution (59, 64, 65), suggesting a
dynamic interaction between sympathetic and parasympa-
thetic activities under stress elicitation. As stress elicitation
may involve some executive functions (e.g., self-control and
working memory), the role of high-frequency autonomic ac-
tivity has been associated with specific dimensions of execu-
tive functioning (66–69).

We observed differences among stressful conditions in
EEG oscillations in the c band. The existing evidence on EEG
and stress shows heterogeneous and divergent findings with
respect to frequency bands. To illustrate, some studies

Figure 5.Multivariate analysis results. A: the five most informative brain-heart interplay features according to the MRMR regression criteria. The regres-
sion was performed on the group median stress level: rest = 0, stressor condition 1 = 1, stressor condition 2 =4, stressor condition 3=5. B: the five most in-
formative brain-heart interplay features according to the MRMR criteria to classify low vs. high-stress levels. Low stress referred to rest and stress load
condition 1; high stress referred to stress load conditions 2 and 3. C: regression model output from a fivefold cross-validation to the stress level using the
best five markers presented in A. The statistical comparisons correspond to paired Wilcoxon tests on the estimated stress level score computed with
the regression model. D: binary stress level classification using the five most informative features in B. Yellow and orange circles indicate low and high-
stress conditions, respectively. ��P< 0.005, ���P< 0.0005, ����P< 0.00005 (Bonferroni-corrected significance at a < 0.00833). MRMR, minimum re-
dundancy maximum relevance.
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suggest that different dimensions of stress are associated
with a -b interactions (11, 60, 70), h-b interactions (70, 71), a-c
interactions (72–74), and h-a interactions (73). Such hetero-
geneity may be related to the subjectivity and thus high
intersubject variability on perceived stress (72), as well as to
the coping strategies (75). For instance, the processing of
concurrent inputs/tasks requires multiple access to the
working memory (76). Another source of variability may be
associated with the level of cognitive demand of the tasks,
which may not be directly related to the stress level (77). In
this study, the digit span task involved a verbal report, which
is also associated with EEG signatures of parieto-occipital
desynchronizations of lower a (78).

We observed EEG activity modulation as linked to both au-
tonomic branches, whose activity was measured through SAI
and PAI. Particularly, our results on the brain-heart interplay
show that the variability of ascending heart-to-brain commu-
nication reflects the level of stress, especially until stressful
condition 2 as compared with descending brain-to-heart mod-
ulations. Indeed, the highest stress level is not statistically
associated with the highest variability of heart-to-brainmodu-
lation, nor with SAI and PAI dynamics. We speculate this may
be due to the following main factors: 1) perceived stress level
is mitigated or masked by mental fatigue due to sustained
attention (79) and 2) the increasing stress conditions may be
subject to an attentional-bradycardic effect to hyperarousing
conditions (80, 81), also known as “freezing” effect, and thus
highest stress conditions may be associated with a different
physiological response than other stressful conditions.

Previous studies on physiological correlates of stress
focused on top-down mechanisms exclusively (7, 82).
Although brain responses may precede cardiac responses,
as measured through EEG (60, 74) and fMRI (83, 84),

stressors may elicit activity in the amygdala and hippocam-
pus such that a subsequent bottom-up control is activated
(85). Indeed, the brain and heart continuously influence each
other (84), and the ascending arousal system shapes brain dy-
namics to mediate awareness of mental states (86), as well as
to facilitate performance at different tasks (87, 88) and to
shape physical and emotional arousal (37, 38). Stress regula-
tion shares mechanisms involved in emotion regulation as
well (34). To illustrate, the anterior insula integrates intero-
ceptive signals during emotional and cognitive processing,
being these processes involved in themonitoring of the physi-
ological state of the body (89). The neural monitoring of car-
diac inputs may trigger physiological adjustments in the
frame of homeostatic and allostatic regulations under emo-
tion elicitation (36, 90). The functional brain-heart interplay
under stress elicitation has been shown in heartbeat-evoked
potentials correlating with stress-induced changes in cardiac
output (22) and correlates of functional connectivity with
heart rate variability (31). The role of cardiac inputs in the
neurophysiology of stress is also supported by the experimen-
tal evidence showing an increased information flow from the
heart to the brain during increased attention (63) and dis-
rupted abilities on detecting cardiac and respiratory signals
from oneself under anxiety (91, 92).

On the bottom-up modulation, we observed that both
sympathetic and vagal oscillations map onto various EEG
oscillations at different frequency bands. Indeed, the sympa-
thetic origin of brain-heart interplay in stress was expected
because of previous evidence (18, 19, 22, 23). In this study,
SAI!b interplay seems more sensitive to changes in stress
levels. The involvement of b waves in mental stress has been
previously reported (93), along with a-b interactions (11, 60,
70) and h-b interactions (70, 71). Note that EEG oscillations

Figure 6. Exemplary participant during the experimental protocol. Parallel fluctuations in (A) SAI! b and (B) SAI! d are displayed. SAI, sympathetic ac-
tivity index.
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in the h band have been consistently reported as a sensitive
correlate of emotion processing (94) and also in heart-to-
brain communication (38). Our results show that preferential
heart-to-brain communication occurs over the frontal and
parietal cortical regions, consistently with a previous report
on stress (6) and correlates of cognitive operations (95).

We showed that a multivariate analysis helps to distin-
guish between stress levels, as compared with individual au-
tonomic markers. Although the use of low-density EEG in
this study is certainly a limitation to understanding the brain
mapping and cortical dynamics of stress neurophysiology, it
proves the suitability of this kind of device to detect levels of
stress with potential commercial applications. The study of
mental stress elicited in other paradigms, such as mental
arithmetic, could give a broader view of the physiological
processes involved in the brain-heart information exchange.
Our study confirms the advantages of analyzing the interac-
tions between the brain and heart, instead of studying heart
rate and brain dynamics exclusively (96, 97). The under-
standing of brain-heart dynamics and the neurophysiologi-
cal substrate of stress has clinical relevance. Heart rate
variability markers are acknowledged to reflect autonomic
dysregulation, which may lead to morbidity and mortality
(98, 99). The evidence also shows differences in heart rate
variability between healthy humans and different mood dis-
orders, but also as a marker of the effects of antidepressant
medications (98). The description of stress mechanisms can
enlighten the apparent relationships with cardiac death
(100), cardiovascular disease (101), sudden death (102), and
psychiatric disorders (103). The evidence in other markers of
brain-heart interplay shows as well that the dynamic interac-
tion of these systems may relate to different aspects of men-
tal health (22, 104, 105).

This study comes with limitations. The self-assessment
measurements we used for subjective stress evaluation do
not refer to a specific psychometric test. Moreover, we are
aware that confounding factors and artifact sources are
numerous in EEG and therefore in functional brain-heart
interplay studies (106–108). In particular, the c activity is
quite sensitive to muscle artifacts. Since simultaneously
electromyography recordings were not available, we cannot
exclude that all of the artifacts have been rejected in our pre-
processing stage. This indeed constitutes a limitation of our
study. However, by also relying on the several preprocessing
steps and by checking all series by visual inspection, we are
confident that our results are reliable in highlighting a func-
tional, directional link between EEG oscillations in the c
band and sympathovagal oscillations.

PERSPECTIVES AND SIGNIFICANCE

Stress neurophysiology involves bidirectional interactions
between the brain and heart, with peripheral bodily feed-
back playing a key role. Mental stress leads to increased vari-
ability in sympathetic and parasympathetic activities, which
is also reflected in changes in EEG c activity. These results
are in line with the experimental evidence showing a
dynamic information exchange between the central and au-
tonomic nervous systems during emotional arousal and
physical stress. Estimates of functional brain-heart interplay
may be suitable biomarkers ofmental stress.
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